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ABSTRACT

Multi-view networks are broadly present in real-world applications.
In the meantime, network embedding has emerged as an effective
representation learning approach for networked data. Therefore,
we are motivated to study the problem of multi-view network em-
bedding with a focus on the optimization objectives that are specific
and important in embedding this type of networks. In our prac-
tice of embedding real-world multi-view networks, we explicitly
identify two such objectives, which we refer to as preservation and
collaboration. The in-depth analysis of these two objectives are
discussed throughout this paper. In addition, the novel mvn2vec al-
gorithms are proposed to (i) study how varied extent of preservation
and collaboration can impact embedding learning and (ii) explore
the feasibility of achieving better embedding quality by modeling
them simultaneously. With experiments on a large-scale internal
Snapchat dataset, two public datasets and a series of synthetic
datasets, we confirm the validity and importance of preservation
and collaboration as two objectives for multi-view network embed-
ding. These experiments further demonstrate that better embedding
can be obtained by simultaneously modeling the two objectives,
while not over-complicating the model or requiring additional su-
pervision. The code and the processed datasets are available at
https://yu-shi-homepage.github.io/.
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1 INTRODUCTION

In real-world applications, objects can be associated with differ-
ent types of relations. These objects and their relationships can
be naturally represented by multi-view networks, i.e., multiplex
networks or multi-view graphs [4, 9, 17, 18, 23, 32]. Figure 1a gives
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(a) A toy multi-view network.
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(b) A close-up look of profession view

and friendship view.

Figure 1: A toy example of multi-view networks where each node

represents a person and the three views correspond to three types

of interpersonal relations. Co-workers are linked in the profession

view, friends are linked in the friendship view, and relatives are

linked in the kinship view.

a toy multi-view network, where each view corresponds to a type
of edge, and all views share the same set of nodes. As a more con-
crete example, a four-view network of users can be used to describe
a social networking service with social relationship and interac-
tion including friendship, following, message exchange, and post
viewing. With the vast availability of multi-view networks, it is of
interest to mine such networks.

In the meantime, network embedding has emerged as a scalable
representation learning method for networked data [7, 19, 24, 25].
Specifically, network embedding projects nodes of networks into
the embedding spaces. With the semantic information of each node
encoded, the learned embedding can be directly used as features
in various downstream applications [7, 19, 24]. Motivated by the
success of network embedding for homogeneous networks [7, 16,
19, 20, 24, 25], where nodes and edges are untyped, we believe it is
important to better understand multi-view network embedding.

To design embedding method for multi-view networks, the pri-
mary challenge lies in how to use the type information on edges
from different views. As a result, we are interested in investigating
the following two questions:

(1) With the availability of multiple edge types, what are the ob-
jectives that are specific and important to multi-view network
embedding?

(2) Can we achieve better embedding quality by modeling these
objectives jointly?

To answer the first question, we identify two such objectives,
preservation and collaboration, from our practice of embedding real-
world multi-view networks. Collaboration – In some datasets,
edges between the same pair of nodes may be observed in different
views due to shared latent reasons. For instance, in a social network,
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if we observe an edge between a user pair in either the message
exchange view or the post viewing view, likely these two users
are happy to be associated with each other. In such scenario, these
views may complement each other, and embedding them jointly
may potentially yield better results than embedding them indepen-
dently. We call such synergetic effect in jointly embedding multiple
views by collaboration, which is also the primary intuition behind
most existing multi-view network algorithms [9, 18, 23, 32]. Preser-
vation – On the other hand, it is possible for different network
views to have different semantic meanings; it is also possible that
a portion of nodes has completely disagreeing edges in different
views since edges in different views are formed due to unrelated
latent reasons. For example, the professional relationship may not
always align well with friendship. If we embed the profession view
and the friendship view in Figure 1b into the same embedding space,
the embedding of Gary will be close to both Tilde and Elton. As a
result, the embedding of Tilde will also not be too distant from Elton
due to transitivity. However, this is not a desirable result, because
Tilde and Elton are not closely related regarding either profession
or friendship according to the original multi-view network. In other
words, embedding in this way fails to preserve the unique infor-
mation carried by different network views. We refer to such need
for preserving unique information carried by different views as
preservation. The detailed discussion of the validity and importance
of preservation and collaboration is presented in Section 4.

Furthermore, the need for preservation and collaboration may
co-exist in the same multi-view network. Two scenarios can result
in this situation: (i) a pair of views are generated from very similar
latent reason, while another pair of views carries completely differ-
ent semantic meanings; and more subtly (ii) for the same pair of
views, one portion of nodes has consistent edges in different views,
while another portion of nodes have totally disagreeing edges in dif-
ferent views. One example of the latter scenario is that professional
relationship does not align well with friendship in some cultures,
whereas co-workers often become friends in certain other cultures
[1]. Therefore, we are also interested in exploring the feasibility
of achieving better embedding quality by modeling preservation

and collaboration simultaneously, and we address this problem in
Section 5 and beyond.

We note that, instead of proposing a sophisticated model that
beats many baselines, this paper focus on the objectives of interests
for multi-view network embedding. In experiments, we compare
methods with a highlight on the roles the two objectives play in
different scenarios. For the same reason, the scenarios where addi-
tional supervision is available are excluded from this paper, while
the lessons learned from the unsupervised scenario can also be ap-
plied to the supervised multi-view network embedding algorithms.
Additionally, node embedding learned by an unsupervised approach
can directly apply to different downstream tasks, while supervised
algorithms yield embedding specifically good for tasks where the
supervision comes from. We summarize our contributions as fol-
lows.

(1) We study the objectives that are specific and important to
multi-view network embedding and identify preservation

and collaboration as two such objectives from the practice of
embedding real-world multi-view networks.

(2) We explore the feasibility of attaining better embedding
by simultaneously modeling preservation and collaboration,
and propose two multi-view network embedding methods –
mvn2vec-con and mvn2vec-reg.

(3) We conduct experiments with various downstream applica-
tions on three datasets. These experiments corroborate the
validity and importance of preservation and collaboration and
demonstrate the effectiveness of the proposed methods.

2 RELATEDWORK

An attention-based collaboration framework is proposed for multi-
view network embedding [21]. The problem setting of this work
differs from ours since it requires supervision for its attention mech-
anism. Besides, this approach does not directly model preservation
– one of the objectives that we deem important for multi-view
network embedding. since the final embedding derived via linear
combination in this framework is a trade off between representa-
tions from all views. A deep learning architecture has also been
proposed for embedding multi-networks [14], where the multi-
network is a more general concept than the multi-view network
and allows many-to-many correspondence across networks. While
the proposed model can be applied to the more specific multi-view
networks, it does not focus on the study of the objectives of multi-
view network embedding. Another group of related work studies
the problem of jointlymodelingmultiple network views using latent
space models [5, 6]. These works again do not model preservation.
Two recent papers are proposed based on our method. Xiong et
al. [27] propose a contrastive learning based embedding method
using tensorized attention to adaptively capture multiplex infor-
mation. Ata en al. [2] propose a multi-view embedding method
that considers second order collaboration on top of the first or-
der collaboration and preservation. However these works do not
focus on detailed study of preservation and collaboration. There
exist a few more studies that touches the topic of multi-view net-
work embedding[3, 11, 12, 15, 28, 30] They do not model preser-
vation and collaboration or do not aim to provide in-depth study
of these objectives. Most recently, a new line of works emerged
using multi-view network with self-supervised contrastive learn-
ing for network embedding [8, 26, 31]. Zhao et al. [31] propose a
network embedding method by sampling and encoding subgraphs
of different views using graph neural networks and capturing the
intra-view and inter-view information by multi-view contrastive
learning. However, these works do not aim to provide in-depth
study of preservation and collaboration.

3 PRELIMINARIES

Definition 3.1 (Multi-View Network). A multi-view network

𝐺 = (U, {E (𝑣) }𝑣∈V ) is a network consisting of a setU of nodes and

a set V of views, where E (𝑣)
consists of all edges in view 𝑣 ∈ V . If a

multi-view network is weighted, then there exists a weight mapping

𝑤 : {E (𝑣) }𝑣∈V → R such that𝑤
(𝑣)
𝑢𝑢′ B 𝑤 (𝑒 (𝑣)

𝑢𝑢′) is the weight of the
edge 𝑒

(𝑣)
𝑢𝑢′ ∈ E (𝑣)

, which joints nodes 𝑢 ∈ U and 𝑢 ′ ∈ U in view

𝑣 ∈ V .

Additionally, when context is clear, we use the network view 𝑣

of 𝐺 = (U, {E (𝑣) }𝑣∈V ) to denote the network 𝐺 (𝑣) = (U, E (𝑣) ).
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Table 1: Summary of symbols

Symbol Definition

V The set of all network views
U The set of all nodes
E (𝑣) The set of all edges in view 𝑣 ∈ V
W (𝑣) The list of random walk pairs from view 𝑣 ∈ V
f𝑢 The final embedding of node 𝑢 ∈ U
f𝑣𝑢 The center embedding of node 𝑢 ∈ U w.r.t. view 𝑣 ∈ V
f̃𝑣𝑢 The context embedding of node 𝑢 ∈ U w.r.t. view 𝑣 ∈ V

𝜃 ∈ [0, 1] The hyperparameter on parameter sharing in mvn2vec-con
𝛾 ∈ R≥0 The hyperparameter on regularization in mvn2vec-reg
𝐷 ∈ N The dimension of the embedding space

Definition 3.2 (Network Embedding). Network embedding

aims at learning a (center) embedding f𝑢 ∈ R𝐷 for each node 𝑢 ∈ U
in a network, where 𝐷 ∈ N is the dimension of the embedding space.

Besides the center embedding f𝑢 ∈ R𝐷 , a family of popular
algorithms [13, 24] also deploy a context embedding f̃𝑢 ∈ R𝐷 for
each node 𝑢. Moreover, when the learned embedding is used as
the feature vector for downstream applications, we take the center
embedding of each node as feature following the common practice
in algorithms involving context embedding.

4 PRESERVATION AND COLLABORATION IN

MULTI-VIEW NETWORK EMBEDDING

In this section, we elaborate on the intuition and presence of preser-
vation and collaboration – the two objectives introduced in Sec-
tion 1. We first describe and investigate the motivating phenomena
observed in our practice of embedding real-world multi-view net-
works, and then discuss how they can be explained by the two
proposed objectives.

Two straightforward approaches for embedding multi-view

networks. To extend untyped network embedding algorithms to
multi-view networks, two straightforward yet practical approaches
exist. We refer to these two approaches as the independent model
and the one-space model. Specifically, we denote f𝑣𝑢 ∈ R𝐷𝑣 the
embedding of node 𝑢 ∈ U achieved by embedding only the view
𝑣 ∈ V of the multi-view network, where 𝐷𝑣 is the dimension of
the embedding space for network view 𝑣 . With such notation, the
independent model and the one-space model are briefly introduced
as follows, while further details can be found in Section 6.2.

• The independent model. Embed each view independently,
and then concatenate to derive the final embedding f𝑢 :

f𝑢 =
⊕
𝑣∈V

f𝑣𝑢 ∈ R𝐷 , (1)

where 𝐷 =
∑
𝑣∈V 𝐷𝑣 , and

⊕
represents concatenation. In

other words, the embedding of each node in the independent
model resides in the direct sum ofmultiple embedding spaces.
This approach preserves the information embodied in each

view, but do not allow collaboration across different views in

the embedding learning process.
• The one-space model. Let embedding for different views
share parameters when learning the final embedding f𝑢 :

f𝑢 = f𝑣𝑢 ∈ R𝐷 , ∀𝑣 ∈ V . (2)

Table 2: Embedding quality of two real-world multi-view networks

using the independent model and the one-space model.

Dataset Metric independent one-space

YouTube ROC-AUC 0.931 0.914
PRC-AUC 0.745 0.702

Twitter ROC-AUC 0.724 0.737

PRC-AUC 0.447 0.466

Therefore, the final embedding space correlates with all net-
work views. This approach allows different views to collaborate
in learning a unified embedding, but do not preserve informa-

tion specifically carried by each view. This property of the
one-space model is corroborated by additional experiment in
Section F.

Further details on these models can be found in Section 6.2.
It should also be noted that the embedding learned by the one-

space model cannot be obtained by linearly combining {f𝑣𝑢 }𝑣∈V in
the independent model. This is because most network embedding
models are non-linear.

Embedding real-world multi-view networks by straightfor-

ward approaches. Two networks, YouTube and Twitter, are used
in these exploratory experiments with users being nodes on each
network. YouTube has three views representing common videos
(cmn-vid), common subscribers (cmn-sub), and common friends
(cmn-fnd) shared by each user pair, while Twitter has two views
corresponding to replying (reply) and mentioning (mention) among
users. The downstream evaluation task is to infer whether two users
are friends, and the results are presented in Table 2.

It can be seen that neither straightforward approach is categor-

ically better than the other. In particular, the independent model
consistently outperformed the one-space model in the YouTube ex-
periment, while the one-space model outperformed the independent
model in Twitter. Furthermore, we interpret the varying perfor-
mance of the two approaches by the varying extent of needs for
modeling preservation and modeling collaboration when embed-
ding different networks. Specifically, recall that the independent

model only captures preservation, while one-space only captures
collaboration. As a result, we speculate if a certain dataset craves for
more preservation than collaboration, the independent model will
outperform the one-space model. Otherwise, the one-space model
will win.

To corroborate our interpretation of the results, we examine the
involved datasets and look into the agreement between information
carried by different network views. We achieve this by a Jaccard
coefficient based measurement, where the Jaccard coefficient is a
similarity measure with range [0, 1], defined as 𝐽 (S1,S2) = |S1 ∩
S2 |/|S1 ∪ S2 | for set S1 and set S2. For a pair of network views, a
node can be connected to a different set of neighbors in each of the
two views. We calculate the Jaccard coefficient between these two
sets of neighbors. In Figure 2, we apply this measurement on both
datasets and illustrate the proportion of nodes with the Jaccard
coefficient greater than 0.5 for each view pair.

As presented in Figure 2, little agreement exists between each
pair of different views on YouTube. As a result, it is not surpris-
ing that collaboration among different views is not as needed as
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(a) YouTube.
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Figure 2: Agreement between information carried by each pair of

network views given by a Jaccard coefficient based measurement.

preservation. On the other hand, a substantial portion of nodes has
Jaccard coefficient greater than 0.5 over different views on Twitter
– not surprising to see modeling collaboration brings about more
benefits than modeling preservation.

5 THE MVN2VEC MODELS

In the previous section, preservation and collaboration are identi-
fied as important objectives for multi-view network embedding.
In the extreme cases, where only preservation is needed – each
view carries a distinct semantic meaning – or only collaboration

is needed – all views carry the same semantic meaning – simply
choosing between independent and one-space may be enough to
generate satisfactory results. However, it is of more interest to study
the scenario where both preservation and collaboration co-exist in
a multi-view network. Therefore, we are motivated to (i) study
how varied extent of preservation and collaboration can impact em-
bedding learning and (ii) explore the feasibility of achieving better
embedding by simultaneouslymodeling both objectives. To this end,
we propose two methods that capture both objectives, while not
over-complicating the model or requiring additional supervision.
These two approaches are named mvn2vec-con and mvn2vec-reg,
where mvn2vec is short formulti-view network to vector, while
con and reg stand for constrained and regularized.

As with the notation convention in Section 4, we denote f𝑣𝑢 ∈
R𝐷𝑣 and f̃𝑣𝑢 ∈ R𝐷𝑣 the center and context embedding, respectively,
of node 𝑢 ∈ U for view 𝑣 ∈ V . Further given the network view 𝑣 ,
i.e.,𝐺 (𝑣) = (U, E (𝑣) ), we use an intra-view loss function tomeasure
how well the current embedding can represent the original network
view

𝑓 𝑙 ({f𝑣𝑢 , f̃𝑣𝑢 }𝑢∈U |𝐺 (𝑣) ). (3)

We defer the detailed definition of this loss function to a later point
of this section. We let 𝐷𝑣 = 𝐷/|V| ∈ N for all 𝑣 ∈ V out of con-
venience for model design. To further incorporate multiple views
with the intention to model both preservation and collaboration, two
approaches are proposed as follows.

mvn2vec-con. The mvn2vec-conmodel does not enforce further
design on the center embedding {f𝑣𝑢 }𝑢∈U in the hope of preserv-
ing the semantics of each individual view. To reflect collabora-
tion, mvn2vec-con enforce constraints on the context embedding
{f̃𝑣𝑢 }𝑢∈U for parameter sharing across different views, so they are

required to have the form

f̃𝑣𝑢 = 𝜑𝑣
𝜃
({g̃𝑣

′
𝑢 }𝑣′∈V ) B (1 − 𝜃 ) · g̃𝑣𝑢 + 𝜃

|V| ·
∑︁
𝑣′∈V

g̃𝑣
′
𝑢 , (4)

where g̃𝑣𝑢 ∈ R𝐷𝑣 and 𝜃 ∈ [0, 1] is a hyperparameter controlling
the extend to which model parameters are shared. The greater the
value of 𝜃 , the more the model enforces parameter sharing and
thereby encouraging more collaboration across different views. The
mvn2vec-con model solves the following optimization problem

min
{f𝑣𝑢 ,g̃𝑣𝑢 }

∑︁
𝑣∈V

𝑙 ({f𝑣𝑢 , 𝜑𝑣𝜃 ({g̃
𝑣′
𝑢 }𝑣′∈V )}𝑢∈U |𝐺 (𝑣) ). (5)

After model learning, the final embedding for node 𝑢 is given by
f𝑢 =

⊕
𝑣∈V f𝑣𝑢 . We note that in the extreme case when 𝜃 is set

to be 0, the model will be identical to the independent model in
Section 4. To further distinguish the importance of different views,
one can replace 𝜃 in Eq. (4) with a view-specific parameter 𝜃𝑣 , we
defer the study of which to future work.

mvn2vec-reg. Instead of setting hard constraints on how param-
eters are shared across different views, the mvn2vec-reg model
regularizes the embedding across different views and solves the
following optimization problem

min
{f𝑣𝑢 ,f̃𝑣𝑢 }

∑︁
𝑣∈V

𝑙 ({f𝑣𝑢 , f̃𝑣𝑢 }𝑢∈U |𝐺 (𝑣) ) + 𝛾 · [R𝑣 + R̃𝑣], (6)

where𝛾 ∈ R≥0 is a hyperparameter,R𝑣 = ∑
𝑢∈U ∥f𝑣𝑢− 1

|V |
∑
𝑣′∈V f𝑣

′
𝑢 ∥22,

R̃𝑣 = ∑
𝑢∈U ∥f̃𝑣𝑢 − 1

|V |
∑
𝑣′∈V f̃𝑣

′
𝑢 ∥22, and ∥·∥2 is the 𝑙-2 norm. This

model captures preservation again by letting {f𝑣𝑢 }𝑢∈U and {f̃𝑣𝑢 }𝑢∈U
to reside in the embedding subspace specific to view 𝑣 ∈ V , while
each of these subspaces are distorted via cross-view regularization
to model collaboration. Similar to the mvn2vec-con model, the
greater the value of the hyperparameter 𝛾 , the more the collabora-
tion is encouraged, and the model is identical to the independent
model when 𝛾 = 0. To distinguish the importance of different views,
one can replace (∑𝑣′∈V f𝑣

′
𝑢 )/|V| in the formulation of R𝑣 with

(∑𝑣′∈V 𝜆𝑣′ · f𝑣
′
𝑢 )/(∑𝑣′∈V 𝜆𝑣′ |), and revise R̃𝑣 similarly. We also

defer this study to future work for simplicity.

Intra-view loss function. There are many possible approaches to
formulate the intra-view loss function in Eq. (3). In our framework,
we adopt the random walk plus skip-gram approach, which is one
of the most common in the literature [7, 19, 20]. Specifically, for
each view 𝑣 ∈ V , multiple rounds of random walks are sampled
starting from each node in𝐺 (𝑣) = (U, E (𝑣) ). In any randomwalk, a
node 𝑢 ∈ U and a neighboring node 𝑛 ∈ U constitute one random
walk pair, and a list W (𝑣) of random walk pairs can thereby be
derived. We will describe the detailed description of the generation
ofW (𝑣) later in this section. The intra-view function is then given
by

𝑙 ({f𝑣𝑢 , f̃𝑣𝑢 }𝑢∈U |𝐺 (𝑣) ) = −
∑︁

(𝑢,𝑛) ∈W (𝑣)

log 𝑝 (𝑣) (𝑛 |𝑢), (7)

where 𝑝 (𝑣) (𝑛 |𝑢) = exp
(
f𝑣𝑢 · f̃𝑣𝑛

)
/∑𝑛′∈U exp

(
f𝑣𝑢 · f̃𝑣

𝑛′
)
.

Model inference. To optimize the objectives in Eq. (5) and (6),
we opt to asynchronous stochastic gradient descent (ASGD) [22]
following existing skip-gram–based algorithms [7, 13, 19, 20, 24].
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In this regard, W (𝑣) from all views are joined and shuffled to
form a new list W of random walk pairs for all views. Then
each step of ASGD draws one random walk pair from W and
updates corresponding model parameters with one-step gradient
descent. Negative sampling is adopted as in other skip-gram–based
methods [7, 13, 19, 20, 24], which approximates log𝑝 (𝑣) (𝑛 |𝑢) in
Eq. (7) by − log𝜎 (f𝑣𝑢 · f̃𝑣𝑛 ) −

∑𝐾
𝑖=1 E𝑛′𝑖∼𝑃 (𝑣) log𝜎 (−f𝑣𝑢 · f̃𝑣

𝑛′
𝑖

), where
𝜎 (𝑥) = 1/(1 + exp(−𝑥)) is the sigmoid function, 𝐾 is the negative

sampling rate, 𝑃 (𝑣) (𝑢) ∝
[
𝐷
(𝑣)
𝑢

]3/4
is the noise distribution, and

𝐷
(𝑣)
𝑢 is the number of occurrences of node 𝑢 in W (𝑣) [13].
With negative sampling, the objective function involving one

walk pair (𝑢, 𝑛) from view 𝑣 in mvn2vec-con is

Ocon = log𝜎 (f𝑣𝑢 · 𝜑𝑣
𝜃
({g̃𝑣

′
𝑛 }𝑣′∈V ))

+
𝐾∑︁
𝑖=1
E𝑛′

𝑖
∼𝑃 (𝑣) log𝜎 (−f𝑣𝑢 · 𝜑𝑣

𝜃
({g̃𝑣

′

𝑛′
𝑖
}𝑣′∈V )) .

On the other hand, the objective function involving (𝑢, 𝑛) from
view 𝑣 in mvn2vec-reg is

Oreg = log𝜎 (f𝑣𝑢 · f̃𝑣𝑛 ) + 𝛾 · (R𝑣𝑢 + R̃𝑣𝑛)

+
𝐾∑︁
𝑖=1

[
E𝑛′

𝑖
∼𝑃 (𝑣) log𝜎 (−f𝑣𝑢 · f̃𝑣

𝑛′
𝑖
) + 𝛾 · (R𝑣𝑢 + R̃𝑣

𝑛′
𝑖
)
]
.

The gradients of the above two objective function used for ASGD
are provided in Appendix A.

Lastly, we also describe the details on random walk pair gen-

eration in Appendix B, provide complexity analysis in Appendix
C, and summarize the mvn2vec algorithms in Appendix D.

6 EXPERIMENTS

In this section, we further corroborate the intuition of preservation
and collaboration, and demonstrate the feasibility of simultaneously
model these two objectives.

We introduce the real-world datasets, baselines, and experiment
setting for comprehensive quantitative evaluations. Then, we an-
alyze the evaluation results and provide further discussion. Addi-
tionally, to validate our intuition discussed above, we perform a
case study on a series of synthetic multi-view networks that have
varied extent of preservation and collaboration in Appendix E.

6.1 Data Description and Evaluation Tasks

We perform quantitative evaluations on three real-world multi-view
networks: Snapchat, YouTube, and Twitter. The key statistics are
summarized in Table 3, and we describe these datasets as follows.

YouTube. YouTube is a video-sharing website. We use the YouTube
dataset made publicly available by the Social Computing Data
Repository [29]1. From this dataset, a network with three views
is constructed, where each node is a core user, and the edges in
the three views represent the number of common friends, the num-
ber of common subscribers, and the number of common favorite
videos, respectively. Note that the core users are those from which
the author of the dataset crawled the data, and their friends can
fall out of the scope of the set of core users. Without user label
1http://socialcomputing.asu.edu/datasets/YouTube

available for classification, we perform only link prediction task
on top of the user embedding. This task aims at inferring whether
two core users are friends, which has also been used for evaluation
by existing research [21]. Each core user forms positive pairs with
his or her core friends, and we randomly select 5 times as many
non-friend core users to form negative examples. Records are split
into training, validation, and test sets as in the link prediction task
on YouTube.

Twitter. Twitter is an online news and social networking service.
We use the Twitter dataset made publicly available by the Social
Computing Data Repository [10]2. From this dataset, a network
with two views is constructed, where each node is a user, and
the edges in the two views represent the number of replies and
the number of mentions, respectively. Again, we evaluate using a
link prediction task that infers whether two users are friends as in
existing research [21]. Negative examples generation and training–
validation–test split method are the same as in the YouTube dataset.

Snapchat. Snapchat is a multimedia social networking service.
On the Snapchat multi-view social network, each node is a user,
and the three views correspond to friendship, chatting, and story
viewing3. We perform experiments on the sub-network consist-
ing of all users from Los Angeles. The data used to construct the
network are collected from two consecutive weeks in the Spring
of 2017. Additional data for downstream evaluation tasks are col-
lected from the following week (week 3). We perform a multi-label
classification task, and a link prediction task on top of the same
user embedding learned from each network. For classification, we
classify whether or not a user views each of the 10 most popular
discover channels4 according to the user viewing history in week 3,
which aims at inferring users’ preference and thereby guide product
design in content serving. For each channel, the users who view
this channel are labeled positive, and we randomly select 5 times
as many users who do not view this channel as negative examples.
These records are then randomly split into training, validation, and
test sets. This is a multi-label classification problem that aims at
inferring users’ preference on different discover channels and can
therefore guide product design in content serving. For link predic-
tion, we predict whether two users would view the stories posted
by each other in week 3, which aims to estimate the likelihood
of story viewing between friends, so as to re-rank stories accord-
ingly. Negative examples are the users who are friends but do not
have story viewing in the same week. It is worth noting that this
definition yields more positive examples than negative examples,
which is the cause of a relatively high AUPRC score observed in
experiments. These records are then randomly split into training,
validation, and test sets with the constraint that a user appears as
the viewer of a record in at most one of the three sets. This task
aims to estimate the likelihood of story viewing between friends so
that the application can rank stories accordingly.

We also provide the Jaccard coefficient based measurement on
Snapchat in Figure 3. It can be seen that the cross-view agreement
between each pair of views in the Snapchat network falls in between
YouTube and Twitter as presented previously in Section 2.
2https://snap.stanford.edu/data/higgs-twitter.html
3https://support.snapchat.com/en-US/a/view-stories
4https://support.snapchat.com/en-US/a/discover-how-to
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Table 3: Basic statistics for the three real-

world networks, where the number of

edges specifies the total number of edges

from all network views.

Dataset # views # nodes # edges
Snapchat 3 7,406,859 131,729,903
YouTube 3 14,900 7,977,881
Twitter 2 116,408 183,341
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Figure 3: Agreement be-

tween each pair of views

for Snapchat.

For each evaluation task on all three networks, training, vali-
dation, and test sets are derived in a shuffle split manner with an
80%–10%–10% ratio. We split the data and repeat the experiments
20 times to compute the mean and its standard error under each
metric. Furthermore, a node is excluded from evaluation if it is
isolated from other nodes in at least one of the multiple views. This
processing ensures every node has a valid representation when
embedding only one network view.

6.2 Baselines and Experimental Setup

In this section, we describe the baselines as well as experimental
setup for both embedding learning and downstream evaluation
tasks.

Baselines. Quantitative evaluation results are obtained by ap-
plying downstream learner upon embedding learned by a given
embedding method. Therefore, for fair comparisons, we use the
same downstream learner in the same evaluation task. We exper-
iment with both in-house baselines and external baselines from
related work. Since our study aims at understanding the objectives
of multi-view network embedding, we build the following in-house
embedding methods from the same random work plus skip-gram
approach with the same model inference method as described in
Section 5. Independent – As introduced in Section 4, the inde-

pendent model is equivalent to mvn2vec-con when 𝜃 = 0, and to
mvn2vec-regwhen𝛾 = 0. It preserves the information embodied in
each view, but do not allow collaboration across different views in
the embedding process. One-space – Also introduced in Section 4,
the one-space enables different views to collaborate in learning a
unified embedding, but do not preserve information specifically
carried by each view. View-merging – The view-merging model
first merges all network views into one unified view, and then
learn the embedding of this single unified view. To comply with
the assumed equal importance of all network views, we rescale
the weights of edges proportionally in each view to the same total
weight. This method serves as an alternate approach to one-space in
modeling collaboration. The difference between view-merging and
one-space essentially lies in whether or not random walks can cross
different views. We note that just like one-space, view-merging does
not model preservation. Single-view – For each network view, the
single-view model learns embedding from only one view as a sanity
check to verify whether introducing more than one view does bring
in informative signals in each evaluation task. In other words, it
is identical to embedding only one of the multiple network views

using the DeepWalk algorithm [19], or equivalently node2vec with
both return parameter and in-out parameter set to 0 [7]. This base-
line is used to as a sanity check to verify whether introducing more
than one view does bring in informative signals in each evaluation
task.

We also experiment with two external baselines that have exe-
cutable implementation released by the original authors and can
be applied to our experiment setting with minimal tweaks. Note
that the primary observations and conclusions made in the ex-
periments would still hold without comparing to these external
baselines.MVE [21] – An attention-based semi-supervised method
for multi-view network embedding. The released implementation
supports supervision from classification tasks. For fair compari-
son, in our unsupervised link prediction experiments, we assign
the same dummy class label to 1% randomly selected nodes. We
have observed that the percentage of nodes receiving such dummy
supervision does not significantly affect the evaluation results in
additional experiments. DMNE [14] – A deep learning architecture
for multi-network embedding, where the multi-network is a more
general concept than the multi-view network. As a more complex
model, the released DMNE implementation takes significantly more
time to train on our datasets, and we hence use only the default
hyperparameters. The authors commented in the original paper
that this implementation can be further sped up with additional
parallelization. We experiment with two external baselines on the
smaller YouTube and Twitter dataset for scalability reason. We
do not include any network embedding methods with contrastive
learning and graph neural network as baselines as these methods
are typically far from scalable enough for our dataset.

Downstream learners. For fair comparisons, we apply the same
downstream learner onto the features derived from each embedding
method. Specifically, we use the scikit-learn5 implementation of lo-
gistic regression with 𝑙-2 regularization and the SAG solver for both
classification and link prediction tasks. Regularization coefficient
in the logistic regression is always tuned to the best on the valida-
tion set. Following existing research [24], each embedding vector is
post-processed by projecting onto the unit 𝑙-2 sphere. In multi-label
classification tasks, the feature is simply the embedding of each
node, and an independent logistic regression model is trained for
for each label. In link prediction tasks, features of node pairs are
derived by the Hadamard product of the embedding vectors of the
two involved node as suggested by previous work [7].

Hyperparameters. For independent,mvn2vec-con, andmvn2vec-
reg, we set embedding space dimension 𝐷 = 128 · |V|. For single-
view, we set 𝐷 = 128. For all other methods, we experiment with
both 𝐷 = 128 and 𝐷 = 128 · |V|, and report the better result. To
generate random walk pairs, we set 𝐿 = 20 and 𝐵 = 3. For Snapchat,
we set 𝑀 = 10 due to its large scale and set 𝑀 = 50 for all other
datasets. The negative sampling rate 𝐾 is set to be 5 for all models,
and each model is trained for 1 epoch.

Metrics. For link prediction tasks, we use two widely used metrics:
the area under the receiver operating characteristic curve (ROC-
AUC) and the area under the precision-recall curve (PRC-AUC).
The receiver operating characteristic curve (ROC) is derived from
5http://scikit-learn.org/stable/
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Table 4: Mean of link prediction results with standard error in brack-

ets on YouTube and Twitter.

Dataset YouTube Twitter
Metric ROC-AUC PRC-AUC ROC-AUC PRC-AUC
worst single-view 0.831 (0.002) 0.515 (0.004) 0.597 (0.001) 0.296 (0.001)
best single-view 0.904 (0.002) 0.678 (0.004) 0.715 (0.001) 0.428 (0.001)
independent 0.931 (0.001) 0.745 (0.003) 0.724(0.001) 0.447 (0.001)
one-space 0.914 (0.001) 0.702 (0.004) 0.737 (0.001) 0.466 (0.001)
view-merging 0.912 (0.001) 0.699 (0.004) 0.741 (0.001) 0.469 (0.001)
MVE [21] 0.918 (0.001) 0.714 (0.001) 0.727 (0.001) 0.451 (0.001)
DMNE [14] 0.749 (0.001) 0.311 (0.001) — —
mvn2vec-con 0.932 (0.001) 0.746 (0.001) 0.727 (0.000) 0.453 (0.001)
mvn2vec-reg 0.934 (0.001) 0.754 (0.003) 0.754 (0.001) 0.478 (0.001)

Table 5: Mean of link prediction results and of classification results

with standard error in brackets on Snapchat.

Dataset Snapchat
Task Link prediction Classification
Metric ROC-AUC PRC-AUC ROC-AUC PRC-AUC
worst single-view 0.587 (0.001) 0.675 (0.001) 0.634 (0.001) 0.252 (0.001)
best single-view 0.592 (0.001) 0.677 (0.002) 0.667 (0.002) 0.274 (0.002)
independent 0.617 (0.001) 0.700 (0.001) 0.687 (0.001) 0.293 (0.002)
one-space 0.603 (0.001) 0.688 (0.002) 0.675 (0.001) 0.278 (0.001)
view-merging 0.611 (0.001) 0.693 (0.002) 0.672 (0.001) 0.279 (0.001)
mvn2vec-con 0.626 (0.001) 0.709 (0.001) 0.693 (0.001) 0.298 (0.001)
mvn2vec-reg 0.638 (0.001) 0.712 (0.002) 0.690 (0.001) 0.296 (0.002)

plotting true positive rate against false positive rate as the threshold
varies, and the precision-recall curve (PRC) is created by plotting
precision against recall as the threshold varies. Higher values are
preferable for both metrics. For multi-label classification tasks, we
also compute the ROC-AUC and the PRC-AUC for each label and
report the mean value averaged across all labels.

6.3 Quantitative Evaluation Results on

Real-World Datasets

The main quantitative evaluation results are presented in Table 4
and Table 5. Among the in-house baselines and the proposedmvn2vec
models, all models leveraging multiple views outperformed those us-

ing only one view, which justifies the necessity of using multi-view
networks. Moreover, one-space and view-merging had compara-

ble performance on each dataset. This is an expected outcome be-
cause they both only model collaboration and differ from each other
merely in whether random walks are performed across network
views.

In case the need for either collaboration or preservation pre-

vails. On YouTube, the proposed mvn2vecmodels perform as good
but do not significantly exceed the baseline independent model.
Recall that the need for preservation in the YouTube network is
overwhelmingly dominating as discussed in Section 4. As a result,
it is not surprising to see that additionally modeling collaboration
does not bring about significant performance boost in such extreme
case. On Twitter, collaboration plays a more important role than
preservation, as confirmed by the better performance of one-space

than independent. Furthermore, mvn2vec-reg achieved better per-
formance than all baselines, while mvn2vec-con outperformed
independent by further modeling collaboration, but failed to ex-
ceed one-space. This phenomenon can be explained by the fact that
{f𝑣𝑢 }𝑣∈V in mvn2vec-con are set to be independent regardless of
its hyperparameter 𝜃 ∈ [0, 1], and mvn2vec-con’s capability of
modeling collaboration is bounded by this design.

In case both collaboration and preservation are indispensable.

The Snapchat network used in our experiments lies in between
YouTube and Twitter in terms of the need for preservation and col-

laboration. The proposed two mvn2vec models both outperformed
all baselines under all metrics. In other words, this experiment
result shows the feasibility of gaining performance boost by si-
multaneously model preservation and collaboration without over-
complicating the model or adding supervision.

The multi-label classification results on Snapchat are presented
in Table 5. As with the previous link prediction results, the two
mvn2vec model both outperformed all baselines under all met-
rics, with a difference that mvn2vec-con performed better in this
classification task, while mvn2vec-reg outperformed better in the
previous link prediction task. Overall, while mvn2vec-con and
mvn2vec-reg may have different advantages in different tasks,
they both outperformed all baselines by simultaneously modeling
preservation and collaboration on the Snapchat network, where both
preservation and collaboration co-exist.

External baselines. MVE underperformed mvn2vec models on
YouTube. We interpret this outcome as MVE is a collaboration
framework that does not explicitly model preservation, which has
been shown to be needed in the YouTube datasets. Meanwhile, MVE
did not get performance boost from its attention mechanism since
the experiment setting forbids it from consuming informative super-
vision as discussed in Section 6.2. Without additional optimization,
the released DMNE implementation did not finish training on the
Twitter dataset after two days on a machine with 40 cores of Intel(R)
Xeon(R) CPU E5-2680 v2 @ 2.80GHz. The comparatively worse per-
formance of DMNE on YouTube should partially attribute to the
use of default hyperparameters as described in Section 6.2. Another
possible explanation is that DMNE is designed for the more general
multi-networks, not optimized for multi-view networks.

These observations in combine demonstrated the feasibility of
gaining performance boost by simultaneously modeling preser-

vation and collaboration without over-complicating the model or
requiring additional supervision.

6.4 Hyperparameter Study

We study the impact of 𝜃 for mvn2vec-con and 𝛾 for mvn2vec-

reg in real world datasets, which corroborated the observations in
Section 6.3. Additionally, to rule out the possibility that one-space
could actually preserve the view-specific information as long as the
embedding dimension were set to be large enough, we study the
impact of embedding dimension on synthetic dataset used in
the case study. Details of the hyperparameter study are presented
in Appendix F.
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7 CONCLUSION AND FUTUREWORK

We identified and studied the objectives that are specific and im-
portant to multi-view network embedding, i.e. preservation and
collaboration. We then explored the feasibility of better embedding
by simultaneously modeling both objectives, and proposed two
multi-view network embedding methods. Experiments with various
downstream tasks were conducted on three real-world multi-view
networks and a series of synthetic networks from distinct sources,
including two public datasets and a large-scale internal Snapchat
dataset. The results corroborated the validity and importance of
preservation and collaboration as two optimization objectives, and
demonstrated the effectiveness of the proposed mvn2vec methods.

Knowing the existence of the identified objectives, future works
include modeling different extent of preservation and collaboration

for different pairs of views in multi-view embedding. It is also re-
warding to explore supervised methods for task-specific multi-view
network embedding that jointly model preservation and collabora-

tion.
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APPENDIX

A GRADIENTS OF OBJECTIVE FUNCTIONS

We provide the gradients used for ASGD in the proposed algorithms.

mvn2vec-con :
𝜕Ocon
𝜕f𝑣𝑢

=

(
1 − 𝜎 (f𝑣𝑢 · 𝜑𝑣

𝜃
( {g̃𝑣′𝑛 }𝑣′∈V ))

)
· 𝜑𝑣
𝜃
( {g̃𝑣′𝑛 }𝑣′∈V )

−
𝐾∑︁
𝑖=1

𝜎 (f𝑣𝑢 · 𝜑𝑣
𝜃
( {g̃𝑣′

𝑛′
𝑖
}𝑣′∈V )) · 𝜑𝑣

𝜃
( {g̃𝑣′

𝑛′
𝑖
}𝑣′∈V ), (8)

𝜕Ocon

𝜕g̃�̂�𝑛
=

(
1 − 𝜎 (f𝑣𝑢 · 𝜑𝑣

𝜃
( {g̃𝑣′𝑛 }𝑣′∈V ))

)
· f𝑣𝑢 ·

{
𝜃 + 1−𝜃

|V| , 𝑣 = 𝑣,

𝜃, 𝑣 ≠ 𝑣,
(9)

𝜕Ocon

𝜕g̃�̂�
𝑛′
𝑖

= −𝜎 (f𝑣𝑢 · 𝜑𝑣
𝜃
( {g̃𝑣′

𝑛′
𝑖
}𝑣′∈V )) · f𝑣𝑢 ·

{
𝜃 + 1−𝜃

|V| , 𝑣 = 𝑣,

𝜃, 𝑣 ≠ 𝑣.
(10)

mvn2vec-reg :
𝜕Oreg
𝜕f𝑣𝑢

=

(
1 − 𝜎 (f𝑣𝑢 · f̃𝑣𝑛)

)
· f̃𝑣𝑛 −

𝐾∑︁
𝑖=1

𝜎 (f𝑣𝑢 · f̃𝑣
𝑛′
𝑖
) · f̃𝑣

𝑛′
𝑖

+2𝛾
(
𝐾 + 1

) (
1 − 1

|V |

)
·
(
f𝑣𝑢 − 1

|V |
∑︁
𝑣′∈V

f𝑣
′
𝑢

)
, (11)

𝜕Oreg

𝜕f̃𝑣𝑛
=

(
1 − 𝜎 (f𝑣𝑢 · f̃𝑣𝑛)

)
· f𝑣𝑢 + 2𝛾

(
1 − 1

|V |

)
·
(
f̃𝑣𝑛 − 1

|V |
∑︁
𝑣′∈V

f̃𝑣
′
𝑛

)
,

(12)

𝜕Oreg

𝜕f̃𝑣
𝑛′
𝑖

= − 𝜎 (f𝑣𝑢 · f̃𝑣
𝑛′
𝑖
) · f𝑣𝑢 + 2𝛾

(
1 − 1

|V |

)
·
(
f̃𝑣
𝑛′
𝑖
− 1

|V |
∑︁
𝑣′∈V

f̃𝑣
′
𝑛′
𝑖

)
. (13)

Note that in implementation, |𝑉 | should be the number of views
in which 𝑢 is associated with at least one edge.

B RANDOMWALK PAIR GENERATION

Without additional supervision, we assume the equal importance
of different network views and sample the same number 𝑁 ∈ N of
random walks from each view. To determine 𝑁 , we denote 𝑛 (𝑣) the
number of nodes that are not isolated from the rest of the network
in view 𝑣 ∈ V , 𝑛max B max{𝑛 (𝑣) : 𝑣 ∈ V}, and let 𝑁 B 𝑀 ·𝑛max ,
where 𝑀 is a hyperparameter to be specified. Given a network
view 𝑣 ∈ V , we generate random walk pairs following existing
studies [7, 19, 20], where the transition probabilities from a node are
proportional to the weights of all its outgoing edges. Specifically,
each random walk is of length 𝐿 ∈ N, and ⌊𝑁 /𝑛 (𝑣) ⌋ or ⌈𝑁 /𝑛 (𝑣) ⌉
random walks are sampled from each non-isolated node in view 𝑣 ,
yielding a total of 𝑁 random walks. For each node in any random
walk, this node and any other node within a window of size 𝐵 ∈ N
form a random walk pair that is then added toW (𝑣) .

C COMPLEXITY ANALYSIS

For every view, random walks are generated independently by
existing method [7, 19, 20]. An analysis similar to that in related
work [7] can show the overall complexity is O

(
|V |·𝐿
𝐵 · (𝐿−𝐵)

)
, which is

linear to the number of views |V|. For model inference, the number
of ASGD steps is |W|, linear to 𝐿, 𝐵,𝑀 and |V|. Each ASGD step
computes gradients given in the supplementary file, which is again
linear to |V|. Therefore, the overall complexity of model inference
is quadratic to the number of views |V|.

D THE MVN2VEC ALGORITHMS

We summarize both the mvn2vec-con algorithm and the mvn2vec-
reg algorithm in 1.

Algorithm 1: mvn2vec-con and mvn2vec-reg

Input : the multi-view network 𝐺 = (U, {E (𝑣) }𝑣∈V ) and
the hyperparameters

Output : the final embedding {f𝑢 }𝑢∈U
begin

for 𝑣 ∈ V do

Sample a listW (𝑣) of random walk pairs
Join and shuffle the lists of random walk pairs from all
views to form a new random walk pair listW
for each epoch do

// The following for-loop is parallelized

for (𝑢, 𝑛) ∈ W do

if training mvn2vec-con then

Update {f𝑣𝑢 , g̃𝑣𝑢 }𝑢∈U,𝑣∈V with one step
descent using gradients in Eq. (8)–(10)

if training mvn2vec-reg then

Update {f𝑣𝑢 , f̃𝑣𝑢 }𝑢∈U,𝑣∈V with one step
descent using gradients in Eq. (11)–(13)

for 𝑢 ∈ U do

Derive the embedding for node 𝑢 by f𝑢 =
⊕

𝑣∈V f𝑣𝑢

E CASE STUDY – VARIED PRESERVATION AND

COLLABORATION ON SYNTHETIC DATA

To directly study the relative performance of different models on
networks with varied extent of preservation and collaboration, we
design a series of synthetic networks and conduct a multi-class
classification task.

We denote each of these synthetic networks by 𝐺 (𝑝), where
𝑝 ∈ [0, 0.5] is referred to as the intrusion probability. Each 𝐺 (𝑝)
has 4, 000 nodes and 2 views – 𝑣1 and 𝑣2. Furthermore, each node
is associated to one of the 4 class labels – A, B, C, or D – and each
class has exactly 1, 000 nodes. Before introducing the more general
𝐺 (𝑝), we first describe the process for generating 𝐺 (0) as follows:

(1) generate one random network over all nodes with label A
or B, and another over all nodes with label C or D; put all
edges in these two random networks into view 𝑣1;

(2) generate one random network over all nodes with label A
or C, and another over all nodes with label B or D; put all
edges in these two random networks into view 𝑣2.

To generate each of the four aforementioned random networks, we
adopt the widely used preferential attachment process with one
edge to attach from a new node to existing nodes, where the prefer-
ential attachment process is a widely used method for generating
networks with power-law degree distribution. With this design,
view 𝑣1 carries the information that nodes labeled A or B should be
treated differently from nodes labeled C or D, while 𝑣2 reflects that
nodes labeled A or C are different from nodes labeled B or D. More
generally, 𝐺 (𝑝) are generated with the following tweak from 𝐺 (0):
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Figure 4: An illustration of the series of synthetic networks𝐺 (𝑝) .
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Figure 5: Classification results under accuracy and cross entropy

on synthetic networks 𝐺 (𝑝) with varied intrusion probability 𝑝,

corresponding to different extent of preservation and collaboration.

when putting an edge into one of the two views, with probability
𝑝 , the edge is put into the other view instead of the view specified
in the 𝐺 (0) generation process.

It is worth noting that greater 𝑝 favors more collaboration, while
smaller 𝑝 favors more preservation. In the extreme case where 𝑝 =

0.5, only collaboration is needed in the network embedding process.
This is because every edge has equal probability to fall into view
𝑣1 or view 𝑣2 of 𝐺 (0.5), and there is hence no information carried
specifically by either view that should be preserved.

For each𝐺 (𝑝), independent, one-space,mvn2vec-con, andmvn2vec-
reg are tested. Atop the embedding learned by each model, we
apply logistic regression with cross-entropy to carry out the multi-
class evaluation tasks. Parameters are tuned on a validation dataset
sampled from the 4, 000 class labels. Classification accuracy and
cross-entropy on a different test dataset are reported in Figure 5.

Observations. From Figure 5, we make three observations. (i)
independent performs better than one-space in case 𝑝 is small –
when preservation is the dominating objective in the network –
and one-space performs better than independent in case 𝑝 is large –
when collaboration is dominating. (ii) The two proposed mvn2vec
models perform better than both independent and one-space ex-
cept when 𝑝 is close to 0.5, which implies it is indeed possible for
mvn2vec to achieve better performance by simultaneously mod-
eling preservation and collaboration. (iii) When 𝑝 is close to 0.5,

Figure 6: Classification results under accuracy and cross entropy on

network𝐺 (0) with varied embedding dimension 𝐷 .

one-space performs the best. This is expected because no preserva-

tion is needed in 𝐺 (0.5), and any attempts to additionally model
preservation shall not boost, if not impair, the performance.

F HYPERPARAMETER STUDY

Impact of 𝜃 for mvn2vec-con and 𝛾 for mvn2vec-reg. We
study the impact of 𝜃 for mvn2vec-con and 𝛾 for mvn2vec-reg,
which corroborated the observations in Section 6.3. With results
presented in Figure 7, we first focus on the Snapchat network. Start-
ing from𝛾 = 0, where only preservationwasmodeled,mvn2vec-reg
performed progressively better as more collaboration kicked in by
increasing 𝛾 . The peak performance was reached between 0.01 and
0.1. On the other hand, the performance of mvn2vec-con improved
as 𝜃 grew. Recall that even in case 𝜃 = 1, mvn2vec-con still have
{f𝑣𝑢 }𝑣∈V independent in each view. This prevented mvn2vec-con
from promoting more collaboration.

On YouTube, the mvn2vec models did not significantly outper-
form independent nomatter how 𝜃 and𝛾 varied due to the dominant
need for preservation as discussed in Section 4 and 6.3.

On Twitter, mvn2vec-reg outperformed one-space when 𝛾 was
large, while mvn2vec-con could not beat one-space for reasons dis-
cussed in Section 6.3. This also echoedmvn2vec-con’s performance
on Snapchat as discussed in the first paragraph of this section.

Impact of embedding dimension. To rule out the possibility that
one-space could actually preserve the view-specific information as
long as the embedding dimension were set to be large enough, we
study the impact of embedding dimension. Particularly, we carry out
the multi-class classification task on𝐺 (0) under varied embedding
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(a) Varying 𝜃 of mvn2vec-con in

Snapchat link prediction.

(b) Varying 𝛾 of mvn2vec-reg in

Snapchat link prediction.

(c) Varying 𝜃 of mvn2vec-con in

Snapchat classification.

(d) Varying 𝛾 of mvn2vec-reg in

Snapchat classification.

(e) Varying 𝜃 of mvn2vec-con in

YouTube link prediction.

(f) Varying 𝛾 of mvn2vec-reg in

YouTube link prediction.

(g) Varying 𝜃 of mvn2vec-con in Twit-

ter link prediction.

(h) Varying 𝛾 of mvn2vec-reg in Twit-

ter link prediction.

Figure 7: Performance of the mvn2vec models under varying hyperparameters regarding preservation and collaboration.

dimensions. Note that 𝐺 (0) is used in this experiment because it
has the need for modeling preservation as discussed in Section E.
As presented in Figure 6, one-space achieves its best performance
at 𝐷 = 256, which is worse than independent at 𝐷 = 256, let alone
the best performance of independent at 𝐷 = 512. Therefore, one
cannot expect one-space to preserve the information carried by
different views by employing embedding space with large enough
dimension.

Besides, all four models achieve their best performance with 𝐷
around 256∼512. Particularly, one-space uses the smallest embed-
ding dimension to reach peak performance. This is expected since
one-space does not divide the embedding space to suit multiple
views and have more freedom in exploiting an embedding space
with given dimension.
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