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ABSTRACT
While transactions with cryptocurrencies such as Ethereum are
becoming more prevalent, fraud and other criminal transactions are
not uncommon. Graph analysis algorithms and machine learning
techniques detect suspicious transactions that lead to phishing in
large transaction networks. Many graph neural network (GNN)
models have been proposed to apply deep learning techniques to
graph structures. Although there is research on phishing detection
using GNN models in the Ethereum transaction network, models
that address the scale of the number of vertices and edges and the
imbalance of labels have not yet been studied. In this paper, we
compared the model performance of GNN models on the actual
Ethereum transaction network dataset and phishing reported label
data to exhaustively compare and verify which GNN models and
hyperparameters produce the best accuracy. Specifically, we evalu-
ated the model performance of representative homogeneous GNN
models which consider single-type nodes and edges and hetero-
geneous GNN models which support different types of nodes and
edges. We showed that heterogeneous models had better model
performance than homogeneous models. In particular, the RGCN
model achieved the best performance in the overall metrics.

CCS CONCEPTS
• Social and professional topics → Financial crime; • Mathe-
matics of computing → Graph theory; • Computing method-
ologies→ Neural networks; Supervised learning by classifi-
cation.
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1 INTRODUCTION
1.1 Background and Problem Statement
Blockchain is a distributed public database that allows data ex-
change between two parties without centralized authority. Recently,
various applications using Blockchain technologies have been pro-
posed and are already in practice on large platforms such as Bitcoin
and Ethereum. However, money laundering, phishing scams, and
other financial crimes are common within these platforms and
difficult to uncover due to the many transactions, which will be
discussed later.

Each transaction through traditional banks is constantly mon-
itored and strictly checked when a new account is opened and
large suspicious transactions are held. However, it is easy to open
accounts (create "wallets") and make transactions freely without
the need for a third party, making it difficult to check for suspicious
transactions in advance. There is concern that transactions that
lead to crime could be hidden. On the other hand, all transaction
details are public due to the nature of the blockchain, and anyone
can obtain transaction information. However, as cryptocurrency
transactions become more widespread, the number of transactions
and wallets increase, making detection time-consuming.

Many studies have been conducted to detect suspicious transac-
tions in such large financial transaction networks. Most of these
studies have modeled the patterns of fraudulent transactions based
on the timestamps and amounts of one or more transactions as
features and detected unknown transactions with these models.
Many studies have conducted model optimization and evaluation
of fraud detection using graph embedding and incidental feature
fees, but few have been conducted using GNN models.

Recently, a graph convolution algorithm based on deep learn-
ing techniques has been proposed to automatically generate such
features using a graph algorithm rather than manually. The Graph
Convolutional Model (GCN)[4] model and its derivative models
that apply neural network models to graph data have been pro-
posed in recent years. They learn by updating the feature values
of each node and edge according to the graph structure. In addi-
tion, some models incorporate the information associated with the
vertices and edges of the graph directly into the learning process.

https://doi.org/XXXXXXX.XXXXXXX
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For example, the Graph Attention Network (GAT)[10] learns the
importance of vertices in the form of attention. The Relational GCN
(RGCN)[7] learns parameters according to the role of the edges
(edge type); thus, learning different types of it is possible to per-
form more informative learning on heterogeneous graphs. Despite
the wide variety of proposed GNNmodels, few have been applied to
detect fraudulent transactions on cryptocurrency trading networks.
It is still unclear which GNN models are effective in practice.

1.2 Our Contributions
This study will thoroughly examine which GNN models and hy-
perparameters effectively detect phishing fraud transactions from
public Ethereum transaction networks. First, we construct a hetero-
geneous transaction network that incorporates the basic homoge-
neous GNN models such as GCN[4], GraphSAGE[2], and GAT[10]
models and node types such as accounts (wallets and exchanges) in
the transaction network data. Then we developed a model perfor-
mance compared to heterogeneous GNN models such as RGCN[7]
and HGT[3], which correspond to heterogeneous graphs.

The main contributions of our work are as follows.
(1) We investigate the characteristics of a real Ethereum trans-

action network, and we found some types of nodes play the
role of hubs in the network.

(2) Based on the statistical evaluations, we evaluated and com-
pared the model performance of GNN models with the trans-
action network as a heterogeneous graph.

(a) We conduct exhaustive evaluations of model performances
with various graph neural network (GNN) models based
on these hypotheses.

(b) We compare the model performance of GNN models and
hyperparameters.

(c) Mainly, we focus on the heterogeneity of its network,
which each node and edge in the Ethereum transaction
network has a type.

The remainder of this paper is as follows. In Section 2, we present
related work on the problem of detecting fraudulent transactions in
finance and methods using graph convolution and GNN models. In
Section 3, we introduce representative homogeneous and heteroge-
neous GNN models, describe the characteristics of each model, and
present hypotheses for phishing fraud detection applications. In
Section 4, we construct a transaction network from actual Ethereum
transaction logs and phishing fraud report data, evaluate the model
performance of each GNN model, and compare the results. In Sec-
tion 5, we test and discuss how correct our hypotheses in Section 3
are in light of the results in Section 4. Finally, Section 6 concludes
this study and discusses future work.

2 RELATEDWORK
Fraud detection in the Ethereum transaction network is one of
the hot topics due to its social importance and the availability of
public datasets. Financial transaction networks usually have edge
attributes: timestamp and amount. These attributes are assumed
to be the key to fraud detection. Many fraud detection methods
have been proposed using transaction edge attributes based on
this assumption. However, some proposed models and algorithms
are used with arbitrary features, which may not apply to other

transaction network datasets or other types of fraud detection tasks,
such as money laundering detection.

With the development of graph embedding and graph neural
network research, many phishing detection methods using graph
embeddings have been proposed. The advantage of using graph
embedding and GNN models is to capture features of suspicious
account node features.

Wu et al. proposed a transaction embeddingmodel named trans2vec[14],
incorporating the amount and timestamp properties of the transac-
tion edges. They compared trans2vec with state-of-the-art embed-
ding algorithms, and it achieved better model performance with
time and amount of features. While creating account node-based
embedding vectors, it applies random walks with the amount and
time-biased sampling.

Chen et al. proposed another phishing detection model[1] based
on GCN and autoencoder. It samples subgraphs by randomwalk and
applies node embeddings and a GCN model to incorporate spatial
structures and node features. The proposed model performed better
than other traditional embedding methods. However, some node
features from transaction data are determined arbitrarily, and only
the GCN model is used to extract the structural features.

Lin et al. modeled the Ethereum transaction network as aweighted
temporal graph and a Temporal Weighted Multidigraph Embed-
ding (T-EDGE)[5] to incorporate temporal and weighted trans-
action edges. In T-EDGE, it extends the edge probabilities to be
visited in the random walk by transaction amount and interval. Xie
et al. also modeled it as a temporal-amount snapshot multigraph
(TASMG) and extended the random walk named temporal-amount
walk (TAW)[15] to generate embeddings. Construct a transaction
subgraph network (TSGN)[11] with a learnable transaction weight
mapping function and directed-TSGN to be aware of the edges. The
model performance of (Directed-)TSGN is better than the baseline
method in other Ethereum datasets.

3 GRAPH NEURAL NETWORKS
Graph neural networks (GNN) are neural network models that cap-
ture the structure of the graph by message passing between the
nodes in a graph. Many derived GNN models have been proposed,
including graph convolution, graph attention, and heterogeneous
GNN, depending on the graph data used and the application. This
section describes representative homogeneous GNN and heteroge-
neous GNNmodels and hypothesizes their effectiveness in phishing
scam detection applications using Ethereum networks, respectively.

3.1 Homogeneous GNN Models
First, we use GNN models for homogeneous graphs: GCN (graph
convolutional network), GAT (graph attention network), and Graph-
SAGE.

GCN (graph convolutional network)[4] is a neural networkmodel
based on its graph structure data that continuously accumulates the
node’s neighbor’s feature vectors, feeds it to a neural network, and
applies nonlinear functionality. The GCN model does not consider
transaction properties (count and amount) as "edge weights," which
may prevent detecting suspicious accounts with many transactions.
No matter how many transactions are made, all edge weights in
the GCN model are the same.
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In phishing detection applications in Ethereum networks, not all
neighboring account nodes are related to suspicious transactions or
fraudulent neighboring accounts. Each node has the same weights
as all neighboring nodes in the GCN model. On the other hand,
the GAT (graph attention network) model [10] implicitly learns
the different weight of each neighborhood as "attention". We may
distinguish normal and suspicious accounts more effectively with
the attention mechanism.

The original GCN model cannot be applied to large graph struc-
tures because of its computational cost to learn embeddings for all
nodes. The GraphSAGE[2] model learns the aggregation function
from neighboring nodes instead of embedding nodes. The most vi-
tal points of GraphSAGE are that the learned aggregation function
is applicable for unknown nodes and reduces the computational
functions for large graphs with neighboring node samplings.

3.2 Heterogeneous GNN Models
In Ethereum transaction networks, some nodes have different at-
tributes such as "exchanges" and "wallets" as well as normal ac-
counts. In addition, vertices representing accounts. Such graphs
with different vertices and edges are called heterogeneous graphs,
which is more informative for machine learning and other graph
analysis than a homogeneous graph with the usual types. In ma-
chine learning using GNN models, GNN models corresponding to
many heterogeneous graphs (heterogeneous GNN) have been pro-
posed because of their increasing application to knowledge graphs
and other graphs.

Although our research aims to detect accounts that commit phish-
ing fraud, it can be expected that including nodes with other roles,
such as exchanges, will detect suspicious accounts with greater
accuracy. This section describes the representative heterogeneous
GNN models used in the evaluation experiments: the RGCN, HAN,
and HGT models, respectively.

Kipf et al. proposed the Relational GCN (RGCN)[7] model, a
generalization GCN model that accepts multi-relational graphs
equivalent to edge types. In the RGCN layers, the weight parameters
of each relation and self-loop are separately trained, while the
original GCN model trains all of connecting edges uniformly.

As the heterogeneity extension of the GAT model, Wang et al.
proposed a Heterogeneous Graph Attention network (HAN)[13].
This model learns two types of attention (node-level and semantic-
level attention) from the sequence of different node types called
"meta-path". The node-level attention learns importance between
nodes in each meta-path, and the semantic-level attention learns
the importance of different meta-paths.

Inspired by the architecture design of the Transformer[9] atten-
tionmechanism, Hu et al. proposed theHeterogeneous Graph Trans-
former (HGT)[3] model, which models large-scale dynamic hetero-
geneous graphs. Like the HAN model, HGT uses meta-relations
(triplets of source, edge, and target types) to distinguish different
type relationships. Even though temporal information can be incor-
porated by relative temporal encoding (RTE) to handle the temporal
nature of web-scale graphs, RTE has not yet been implemented in
this time.

4 EXPERIMENTS
4.1 Overview of GNN Tasks
There are several possible approaches to financial fraud detection
tasks, such as phishing fraud detection, including edge classifica-
tion, which determines whether the transaction itself is fraudulent,
node classification, which determines whether the user or account
that made the transaction is fraudulent. Furthermore, subgraph clas-
sification determines whether the set of accounts and transactions
is fraudulent. We employed the node classification method to de-
termine fraudulent accounts in this work. In the original Ethereum
trading network dataset, information on phishing fraud accounts
was attached to the accounts (addresses in Ethereum). It is intuitive
to use node classification for each account, exchange, and other
corresponding vertices, as described below.

To evaluate the performance of each GNN model model and
its hyperparameters, we adopt precision, recall, F1-score, and PR-
AUC (area under the precision-recall curve) as performance metrics.
As is typical in fraud detection with imbalanced labels, recall and
PR-AUC are more critical because the main objective is to detect
phishing accounts. Because of imbalanced datasets (very few phish-
ing accounts), we adopt PR-AUC and precision, recall, and F1-score.

4.2 Hardware and Software Setup
In our experiments, we used GPUs and PyTorch as suitable hard-
ware and libraries for deep learning to train exhaustively various
GNNmodels and compare and evaluate their performance. To imple-
ment the various GNNmodels in a unified manner as generic neural
network models, we also used the Deep graph library (DGL)[12] as
the GNN framework.

As the computation environment, we used NVIDIA DGX-1[6].
Although it has 8 NVIDIA Tesla GPU processors, we assigned one
GPU to each GNN training process. Table 1 is a summary of DGX-1.

Table 1: Overview of DGX-1

GPU 8X NVIDIA®Tesla®V100, 16GB
CPU Intel®Xeon®CPU E5-2698 v4 2.20GHz, 2 x 20 cores
DRAM 512 GB 2,133 MHz DDR4 RDIMM

Table 2 is the list of libraries for our experiments. We used CUDA
version 11 and PyTorch 1.7 as libraries to train the GNN models on
the GPUs. Both of the GNN frameworks DGL and PyG work on the
GPU-bound PyTorch.

Table 2: Libraries and Softwares

Host OS Ubuntu 18.04.4 LTS
Docker 19.03.15, build 99e3ed8919
GPU Driver 418.197.02
CUDA 11.0
GCC 7.5.0
Python 3.6.9
PyTorch 1.7.1+cu110
Deep Graph Library (DGL) 0.7.1
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4.3 Ethereum Transaction Network Datasets
4.3.1 Data Source and SubgraphConstructions. As the real Ethereum
transaction network dataset, we obtained a public transaction graph
dataset from Kaggle1. It contains 2,973,489 nodes, 13,551,303 edges,
and 1,165 labeled (fraud) nodes. Each edge represents a single edge
and has two attributes, the amount (ETH) and the timestamp.

Due to the imbalance of the node label, we extract a subgraph
from the transaction network using a similar approach to [14]. First,
we picked up 2,230 nodes from the network (all 1,165 fraud nodes
and 1,165 normal nodes chosen randomly) and extract incoming
and outgoing neighboring nodes from all the chosen nodes. Then,
we extract a subgraph that only consists of these chosen nodes and
their neighbors. After subgraph extraction, the nodes and edges
are 9,629 and 386,612, respectively.

4.3.2 Extension to Heterogeneous Graphs. Some nodes in this trans-
action network dataset have different roles from the ordinal account
(address). While most nodes are ordinal accounts, a few nodes rep-
resent different types such as exchange accounts, token contracts,
etc. Although these account node types are not directly related
to phishing fraud detection applications because they cannot be
labeled "fraud accounts," we assume that the information will be
hints of suspicious surrounding transactions and account detection.

We add heterogeneity to the transaction graph and apply hetero-
geneous GNNmodels to the heterogeneous transaction graph based
on this assumption. Since the transaction network itself does not
contain node type, we obtained the role of nodes from another data
source named Etherscan2. Although there are hundreds of labels
registered for account nodes on this website, we used the following
labels, which may have a relationship with phishing transactions:
exchange, token-contract, exchange, gaming, gambling, ico-wallets,
wallet-app, cold-wallet. Then, we add labels as node attributes of
our transaction graph. Note that not all nodes in our graph data
have the corresponding node labels. We added a default label named
"account" to other nodes. Table 3 shows the number of vertices by
node type.

Table 3: The number of nodes by type

Node Type Number of nodes Percentage
account 9167 95.20
token-contract 414 4.30
exchange 30 0.31
gaming-tokens 9 0.09
ico-wallets 5 0.05
wallet-app 2 0.02
cold-wallet 1 0.01
gambling-accounts 1 0.01
Total 9629 100.00

Figure 1 and Figure 2 show the trends of in-degree and out-degree
of the top 100 hub nodes, respectively. Most of the hub vertices
with higher in-degrees are normal accounts, but some "contract"
nodes also have many incoming edges. On the other hand, many

1https://www.kaggle.com/xblock/ethereum-phishing-transaction-network
2https://etherscan.io/labelcloud

"exchange" nodes and fraud (phishing) accounts have large out-
degree. Even the "account" nodes consist of more than 95% of all
nodes, the "exchange" and "token-contract" nodes are connected to
many other nodes, which will be the key to fraud account detection.

Figure 1: In-degree of the Top 100 nodes by type

Figure 2: Out-degree of the Top 100 nodes by type

We added edge types based on the source and target edge types
to adopt heterogeneous GNN models in the next step. Many hetero-
geneous GNN models consider edge types rather than node types.
For example, The RGCN model applies graph convolution for each
edge type separately, and the HAN model learns heterogeneous
node relationships with meta-paths (sequences of node and edge
types). We concatenated the types of the source and target nodes
into a new label as the edge type. For example, an edge connecting
from the "account" type node to "wallet-app" has the type "account
- wallet-app." Finally, we created 35 types of heterogeneous edges
based on the following combination of the source and target node
types in Table 4.

In the sameway as edge type labels, we also defined "meta-paths"
for the HANmodel. Our experiments apply the HANmodel to meta-
paths connected to "Account" nodes and perform classification only
on the "Account" nodes with up to three edges. Because of the
regulation of the HAN model, the meta-path types of the source
and destination nodes must be the same as in Figure 3. As a result,
the total number of meta-paths connected to "Account" node types
is 49,103 (82.8%).
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Table 4: The number of Edges by Type

Source Target
Account exchange token-contract wallet-app ico-wallets cold-wallet gaming gambling

Account 8690075 265718 3274017 18588 64123 9952 83230 20730
exchange 667308 39111 328130 8 1594 0 7961 0

token-contract 35465 7 0 3 17143 0 0 0
wallet-app 6556 7 189 0 14 0 0 0
ico-wallets 8507 1 4389 0 2 0 0 0
cold-wallet 23 0 7 62 0 0 0 0

gaming 14 0 0 0 0 0 0 0
gambling 8357 1 0 11 0 0 0 0

Figure 3: Examples of meta-paths in HAN

Our target problem is to identify whether an account is fraud-
ulent or not, so we are defining meta-paths where the source and
target vertices should be "Accounts." Based on our statistical analy-
sis on meta-paths, more meta-paths are related to "taken-contract,"
"exchange," or "wallet."

For machine learning in financial transaction networks, the
timestamps of the edges that represent transactions are meaningful.
We split the transaction network into training and testing sub-
graphs by transaction timestamp. The training subgraph consists
of 80% former transactions, and the testing subgraph consists of
20% latter transaction edges. We apply a node classification task
for fraud account detection, so we must assign each node to train-
ing and testing data. However, by splitting the graph dataset with
the transaction timestamps, some accounts (A and B in figure 4)
involved in both training and testing the transaction edges. In this
case, fraud account B in both training and testing datasets turns
out to be automatically determined as fraud (true positive) because
it is already known as fraud. On the other hand, normal account A
will be predicted as normal (true negative) or fraud (false positive)
because it might become a fraud.

Figure 4: An Example of Nodes Involved in Training and
Testing Datasets

As input for each GNN model, we define the node feature set in
Table 5. Some features are computed from the transaction amount
and frequency for each node, and other features are from graph
analytics (PageRank and degree distributions).

Table 5: Base Node Features

Feature Name Description
send_num Transaction count sent from this account node
recv_num Transaction count received by this account node
send_amount Total amount sent from this account node
recv_amount Total amount received by this account node
in_degree Neighboring accounts for incoming transactions
out_degree Neighboring account for outgoing transactions
pagerank PageRank score in this account node

In addition to these account-based node features, we also define
one-hot node type features to embed heterogeneous graph infor-
mation to homogeneous GNN models. Figure 5 describes how we
convert the information from the node types into the input node
features. We encode a one-hot vector for each node, which has only
a nonzero value, and the others are zero corresponding node types.
We also use these one-hot features in addition to the transaction
and graph features in Table 5 to evaluate the effectiveness of het-
erogeneous GNN models compared to a homogeneous model with
node-type information.

Figure 5: One-hot Node Type Features forHomogeneousGNN
Models
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4.4 Model Performance Results
4.4.1 Homogeneous vs Heterogeneous GNN Models. Table 6 shows
homogeneous (GCN, GAT, and GraphSAGE) model performance
and heterogeneous (RGCN, HAN, HGT with/without temporal
encoding) GNN models. The best score for each metrics is indicated
in bold.

Table 6: Model Performance of Homogeneous and Heteroge-
neous GNN Models

Model Precision Recall F1 PR-AUC
GCN 0.8817 0.4387 0.5843 0.7154
GAT 0.8695 0.5093 0.6399 0.7558
SAGE 0.8244 0.6644 0.7354 0.8150
HAN 0.8800 0.4259 0.5725 0.6561
HGT 0.7718 0.7940 0.7849 0.8383
RGCN 0.8958 0.7454 0.8124 0.8896

Among homogeneous GNN models (GCN, GAT, and Graph-
SAGE), the GraphSAGE model achieves the best performance in
recall, F1 score, and PR-AUC values. On the other hand, although
GCN achieved 88% in precision, its recall was the lowest and results
in only 58% in F1-score. Among the heterogeneous GNN models
(RGCN, HAN, and HGT), the RGCN model achieved the best preci-
sion, F1-score, and PR-AUC values. The HGT model achieved the
best recall value (79%) among the GNN models. However, in the
HAN model, the overall model performance is almost the same as
that of the baseline GCN model. Overall, we conclude that some
heterogeneous models improve model performance and that the
RGCN model produces the best model performance in these GNN
models.

4.4.2 Heterogeneous Graph and GNN Models. With the result of
the model performance among homogeneous and heterogeneous
GNN models, we found that heterogeneous GNN models using
heterogeneous edge types are better than homogeneous models.
To confirm whether the better performance comes from the het-
erogeneous transaction network or heterogeneous GNN models,
we added information of node types to the input node features as
one-hot node type features.

Table 7 is the result of homogeneous GNN models with and
without one-hot input features. The precision and PR-AUC have
improved a little in the GCN and GAT models, but there is a slight
improvement in the GraphSAGE model.

Table 7: Model Performance of Homogeneous GNN Models
with One-hot Features

Model Precision Recall F1 PR-AUC
GCN Base 0.8819 0.4201 0.5711 0.7108
GCN One-hot 0.9057 0.4560 0.6060 0.7265
GAT Base 0.8630 0.5278 0.6562 0.7522
GAT One-hot 0.9292 0.4838 0.6370 0.7702
SAGE Base 0.8329 0.6620 0.7342 0.8147
Sage One-hot 0.8284 0.6609 0.7370 0.8151

Figure 8 compares homogeneous GNN models (GCN, GAT, and
GraphSAGE) with one-hot node type features and the best hetero-
geneous GNN model (RGCN). Although the precision value of GCN
and GAT models is better than the RGCN model, other metrics (re-
call, F1-score, and PR-AUC) of the RGCN model are still better than
the other models. Therefore, the RGCNmodel with a heterogeneous
transaction network is the best for phishing account detection.

Table 8: Model Performance of One-hot Features and RGCN
Model

Model Precision Recall F1 PR-AUC
GCN One-hot 0.9057 0.4560 0.6060 0.7265
GAT One-hot 0.9292 0.4838 0.6370 0.7702
SAGE One-hot 0.8284 0.6609 0.7370 0.8151
RGCN 0.8958 0.7454 0.8124 0.8896

4.5 Hyperparameter Tuning
In addition to the types of GNN models, we also examined how
the model performance varies with different hyperparameters. The
hyperparameters compared in this study are as follows: GAT heads,
learning rate, hidden layer size, and dropout ratio.

Attention Heads (GATmodel only). The GATmodel supports
multi-head attention to introduce independent attention mecha-
nisms. The more attention heads enable the GAT model to express
more complex the relationships between nodes.

Learning Rate. Learning rate, a hyperparameter for weighting
the error between the prediction results and the teacher data, is fed
back to the GNN model by the error backpropagation method, as
in learning other neural network models. The larger the learning
rate, the shorter the time required to reach the optimal solution
with fewer epochs, but if the learning rate is too large, the learned
model becomes unstable and may be far from optimal.

Hidden Layer Size. In the GCN model, adding one more hidden
layer to the GCN model results in the following convolution vector
of the node itself can be propagated one more hop to the next node,
allowing for learning that takes the graph structure into account.
As with the hidden layers described above, the number of hidden
units, or the number of training parameters per hidden layer, also
changes the expressive power of the neural network.

Dropout. An essential technique to improve the accuracy of neu-
ral network models is dropout[8]. Dropout suppresses overfitting
by randomly disabling a certain percentage of hidden units during
training. The higher the dropout rate, the smaller the proportion
of hidden units to be trained, but there is a trade-off in that more
training data and time are required to train the entire GNN.

WeightDecay. Another technique to reduce overfitting is weight
decay, which adds the L2-norm to the backward process. Weight
decay can suppress changes in drastic weight updates by adding L2
regularization when updating the weight parameters. The larger the
value of this hyperparameter, the more the change is suppressed.

The candidates of hyperparameters are as Table9. The default
values are indicated in bold.

We compared the model performances by the number of at-
tention heads only for the GAT model. We used the GraphSAGE
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Table 9: Candidates of Hyperparameters

Attention Heads 2, 3, 4
Learning Rate 0.001, 0.002, 0.005, 0.010, 0.020, 0.050, 0.100
Hidden Units 16, 32, 64, 128, 256
Dropout Ratio 0.00, 0.25, 0.50, 0.75
Weight Decay 0.0000, 0.0001, 0.0005, 0.0010, 0.0050

model for other hyperparameters, which achieves the best model
performance among homogeneous GNN models.

Table 10 shows the model performance results of the GAT model
with 2 (default), 3 and 4 attention heads and GCN and GraphSAGE
models for comparison. With four attention heads, the recall and
F1-score improved a little. However, the GraphSAGE model still
keeps the best model performance in these overall homogeneous
GNN models.

Table 10: Model Performance of GAT by Attention Headers

Model Precision Recall F1 PR-AUC
GCN 0.8817 0.4387 0.5843 0.7154
GAT (2 Heads) 0.8695 0.5093 0.6399 0.7558
GAT (3 Heads) 0.8815 0.4896 0.6304 0.7542
GAT (4 Heads) 0.8559 0.5521 0.6670 0.7625
SAGE 0.8244 0.6644 0.7354 0.8150

Table 11 shows the model performance of the GraphSAGE model
by the hidden layer size (the number of hidden units). With a larger
hidden layer size, all model performance metrics gradually im-
proved. In particular, the recall values with the largest hidden layer
(256 units) are more than 10% larger than the smallest layer (16
units). The F1-score and PR-AUC are also improved by 7% and 4.5%,
respectively.

Table 11: GraphSAGE Model Performance (Hidden Layers)

# Units Precision Recall F1 PR-AUC
16 0.8008 0.5833 0.6805 0.7797
32 0.8061 0.6181 0.6990 0.7874
64 0.8160 0.6377 0.7155 0.8051
128 0.8318 0.6620 0.7344 0.8174
256 0.8378 0.6840 0.7513 0.8250

Table 12 shows the model performance of the GraphSAGE model
by the learning rate. With more effective learning rates, all met-
rics consistently decreased. Remarkably, the recall and F1-score
drastically dropped in large learning rate more than 0.01.

Table 13 shows the performance of the GraphSAGE model by
the dropout ratio. The trend of model performance with a dropout
ratio is quite similar to the learning rate; the recall and F1-score
values have drastically dropped with a larger dropout ratio.

Table 14 shows the model performance of the GraphSAGE model
in weight decay. It was a more noticeable trend than the learning
rate and the dropout ratio. The precision and recall values were
87.5% and 74.4%, respectively, without weight decay. With 0.005
weight decay, however, the precision and recall values have dropped

Table 12: GraphSAGE Model Performance (Learning Rate)

Learning Rate Precision Recall F1 PR-AUC
0.001 0.8303 0.6690 0.7381 0.8069
0.002 0.8256 0.6667 0.7389 0.8070
0.005 0.8336 0.6597 0.7387 0.8177
0.01 0.8257 0.6632 0.7350 0.8130
0.02 0.8268 0.6470 0.7218 0.8080
0.05 0.8195 0.6285 0.7119 0.8003
0.1 0.8002 0.5938 0.6825 0.7811

Table 13: GraphSAGE Model Performance (Dropout Ratio)

Dropout Ratio Precision Recall F1 PR-AUC
No Dropout 0.8377 0.7049 0.7659 0.8401
0.25 0.8335 0.6852 0.7514 0.8273
0.50 0.8298 0.6655 0.7374 0.8151
0.75 0.8155 0.6215 0.7054 0.7943

by 10% and 19%, respectively. Dropout and weight decay techniques
usually prevent overfitting, but these were not effective in this
application.

Table 14: GraphSAGE Model Performance (Weight Decay)

Weight Decay Precision Recall F1 PR-AUC
No Weight Decay 0.8750 0.7442 0.8021 0.8641
0.0001 0.8650 0.6944 0.7678 0.8404
0.0005 0.8144 0.6690 0.7347 0.8155
0.001 0.8000 0.6343 0.7045 0.7931
0.005 0.7758 0.5556 0.6478 0.7576

Based on these results, we recommend that hyperparameters be
set according to the following policy for phishing fraud detection
using the GNN model.

(1) GAT heads have little impact on model performance, and
better results are obtained with GraphSAGE.

(2) The size of the hidden layer should be large.
(3) The learning rate should be small.
(4) Dropout and weight decay usually reduce overfitting, should

be avoided as they adversely affect the overall performance.

5 DISCUSSION
5.1 Homogeneous vs Heterogeneous GNN

Models
The results show that GNN models considering the node pair or
edge importance yielded higher model performance than the base-
line GCN. When comparing homogeneous GNN models, respec-
tively, GCN, GAT, and GraphSAGE had higher values for recall,
F1-score, and PR-AUC, in that order. Concerning precision, the GAT
model is the highest among these, followed by GCN and Graph-
SAGE, but Recall, F1-score, and PR-AUC are more important for
algorithms that detect very few phishing accounts.

RGCN, in which the GCN models were applied separately ac-
cording to edge type (combination of node types at both ends),
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outperformed other homogeneous GNN models in all measures of
precision, recall, F1-score, and PR-AUC. The other heterogeneous
GNN models, HAN and HGT models, also achieved higher recall,
F1-score, and PR-AUC than the baseline GCN model and other ho-
mogeneous GNN models. We conclude that using the RGCN model
with heterogeneous edge types is more practical based on these
results.

5.2 Heterogeneous Graph and GNN Models
Even when comparing the heterogeneous GNN models RGCN,
HAN, and HGT (without relative temporal encoding), RGCN con-
sistently achieved the best model performance. HAN learns graph
attention and GAT and has a similar trend with relatively high
precision values. On the other hand, HGT had a relatively high
recall and F1-score, similar to GraphSAGE. We hypothesized that
the HAN and HGT models, which define a heterogeneous meta-
path and learn attention, would make more accurate predictions.
However, the RGCN model, which applied the GCN model by edge
type, was the best on both measures.

The hypothesis is that by converting each node type into a fea-
ture vector of one-hot encoding, it is possible to obtain the same
expressive power as RGCN. The one-hot encoding can be applied
to GCN and GraphSAGE models with baseline features that do not
have the one-hot encoding feature, and the results are similar to
those of the RGCN. There are few improvements in model perfor-
mance for any metrics and it does not reach the level of RGCN.
The main possible reason is that the distribution of node types was
mostly biased toward account types, and not enough information
was obtained for node features.

6 CONCLUSION
In this study, we conducted a comprehensive set of comparative
model performance evaluation experiments using representative
homogeneous and heterogeneous GNN models to detect phishing
fraud accounts against a real Ethereum trading network. From
hypotheses based on the characteristics of the transaction log data,
we constructed a heterogeneous graph concerning account (node)
types. We also found that heterogeneous GNNmodels that consider
transaction edge types perform better than homogeneous GNN
models. In particular, the RGCNmodel, in which graph convolution
was applied separately to each edge type, achieved the best model
performance on all metrics. However, when node types were treated
as new input features, the accuracy did not improve compared to the
homogeneous GNN model as the baseline. In conclusion, the most
effective way to detect phishing fraud with GNN models is to let
the heterogeneous GNN model take advantage of the information
in the transaction network.

Although we conducted comparative evaluation experiments
based on heterogeneity considering node types, additional infor-
mation may be helpful in phishing fraud detection in an existing
transaction network, such as the time stamp at which the transac-
tion occurred and the attributes present in each account. As future
work, we will conduct further evaluation and optimization of model
performance using a GNN model to incorporate this information.
First, considering transaction timestamps may find patterns specific
to fraudulent transactions more accurately. A GNN model that can

handle dynamic changes in a graph structure, such as EvolveGCN,
would be helpful. Second, we also suppose it is possible to predict
phishing fraud transaction patterns by applying classification to a
subgraph consisting of each account and accounts close to it. GNN
models for graph classification tasks, such as GIN, can be suitable
to solve this problem. We do not have sufficient datasets to con-
struct such a dynamic graph and subgraph for graph classification.
However, we expect that more sophisticated phishing detection
models will be proposed in the future by combining these advanced
GNN models.
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