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ABSTRACT
Graphs are widely used in diverse areas such as chemistry, engi-
neering and network science to express relations among a set of
objects. In all these fields, measuring the similarity among a group
of graphs or indicating the correspondence among their nodes is
of great importance. Many of the algorithms introduced for this
purpose are not metrics and the few graph distance functions that
do satisfy the properties of a metric are extremely slow to compute.
In this work, we propose a fast and efficient framework to compute
the distance among a group of graphs. Our method can improve
the computation time up to 20 times over existing methods.

CCS CONCEPTS
• Computing methodologies: parallel computing methodolo-
gies;
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1 INTRODUCTION.
Graph similarities and graph isomorphism have applications across
domains such as machine learning, data mining, pattern recog-
nition and transfer learning [9, 16, 20, 23]. Graph distances arise
naturally in this literature: intuitively, given a group of (unlabeled)
graphs, their pairwise distances are scores quanitifying their struc-
tural differences or correspondences among their nodes. One very
desirable property of such distances is that they are indeed true
distances, meaning that they satisfy the properties of a metric. The
distance-based scores satisfying the metric properties have stronger
performance compared to non-metrics [4]. Non-compliance with
metric properties can result in poor performance in clustering tasks
and increase the misclassification rate in classifiers [4]. A canonical
way to compute a distance score between two graphs is to find a
mapping between the two graphs that minimizes their edge dis-
crepancies. The edit distance [13, 15] and the maximum common
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subgraph distance [5, 6] are two classic examples of metric distance
scores between two graphs. Although these distance functions are
metrics, they are hard to compute. Bento & Ioannidis [4] recently
introduced a family of metrics that are tractable but are limited to
comparing two graphs.

In this paper we study the problem of computing the distance
between a group of more than two graphs via a distance-based score,
known as multi-distances. We specifically study the multi-distances
that satisfy the𝑛-metrics properties (the generalization of themetric
properties to multiple graphs). In computing multi-distances, a
highly desirable property is consistency of alignment [24], i.e., a
distance-based score that produces mapping between every two
pairs of graphs should give joint mappings among all graphs. There
has been some work on computing multi-distances that does not
satisfy 𝑛-metrics property but enforces consistency of alignment
constraint [18], [8], [34]. Fermat distance function introduced by
Kiss et al. [19], measures the distance between a group of graphs that
satisfies𝑛-metrics properties and alignment consistency [19]. Safavi
and Bento [28] introduced G-align distance that jointly computes
the graph distance between a group of graphs incorporating 𝑛-
metrics properties and satisfying consistency of alignment [28].

To compute multi-distances in a setting that we have large num-
ber of graphs in the graph set (e.g., 100 graphs), it would take weeks
for Fermat distance function. [19] andG-align distance function [28]
to compute a distance score, while in our framework it takes at most
a few hours hours to come up with a distance score. In this work we
introduce a fast and scalable framework to compute the distance
among a group of graphs. We make the following contributions:

• Our framework can be applied to a group of 𝑛-metrics multi-
distance functions.

• Our framework can be parallelized and significantly im-
proves the speed of 𝑛-metrics multi-distances algorithms.

• We report on a set of experiments, demonstrating that our
method is up to 20 times faster compared to baselines, while
our best accuracy is ranging from 10% lower than the base-
lines to 60% better than the baselines.

The remainder of the paper is organized as follows. We review
related work in Sec. 2. We review background in Sec. 3. We present
our main algorithm including the problem formulation and solution
in Sec. 4, our experiment setup in Sec. 5 and we conclude in Sec. 6.

2 RELATEDWORK.
Graph distance (or similarity) scores have been popular in various
fields such as in image processing [9], chemistry [2], social network
analysis [20, 23] and transfer learning [16].When graphs are labeled,
graph distances are easy to define [20, 25, 30]. Examples of distances
in this setting are the chemical distance [22] and the Chartrand-
KubikiShultz (CKS) [7] distance. The edit distance [15, 29] and
the maximum common subgraph distance [5, 6] are two classic
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examples of graph distances that have versions for both labeled
graphs and unlabeled graphs. All four of these distances are metrics
and are hard to compute.

A simple approach to induce a metric over unlabeled graphs
is to embed them in a common metric space and then measure
the distance of the embeddings. Several approaches follow such
an approach via embedding graphs into real vectors by comput-
ing their edit distances to a set of prototype graphs [26, 27] or
through mapping graphs to spaces determined by their spectral
decomposition [11, 32, 35]. In general, such approaches are not as
discriminative as the metrics considered here [4], because embed-
dings only summarize the graph structure. Bento & Ioannidis [4],
in contrast, introduced a family of metrics for graph distances that
are computationally tractable but limited to computing the distance
between two graphs.

To compute the distances among a group of more than two
graphs, it is important that the distance function satisfies consis-
tency of alignment [24]. There has been some work on computing
multi-distances that enforce this constraint [8, 18, 34]; however
none of these methods satisfy 𝑛-metrics properties. Fermat distance,
proposed by Kiss et al., 2016 [19] and G-align distance proposed
by Safavi & Bento, 2018 [28] are two approaches to measure the
distances among a group of graphs in a way that satisfies (pseudo)
𝑛-metrics properties and alignment consistency [19]. We apply our
framework to these two graph distance approaches to enhance their
scalability and computational speed.

3 BACKGROUND.
Let G = {G1,G2, · · · ,G𝑛} be a group of 𝑛 undirected graphs. For a
given graph G𝑖 = (V, E𝑖 ) ∈ G,V = [𝑚] ≡ {1, 2, · · · ,𝑚} indicates
the node set and the edge set is denoted by E𝑖 ⊆ [𝑚] × [𝑚]. This
graph is represented by adjacency matrix 𝐴𝑖 ∈ {0, 1}𝑚×𝑚 . The
entries of this adjacency matrix are indexed by the nodes inV . We
denote the set that contains all such matrices by Ω ⊆ R𝑚×𝑚 .

Consider two graphs G𝑖 = (V, E𝑖 ) and G𝑗 = (V, E 𝑗 ) sampled
from G, with adjacency matrices 𝐴𝑖 , 𝐴 𝑗 ∈ Ω. To compute the dis-
tance between these two graphs, one possible approach is to find
a mapping between nodes and compute an edge discrepancy be-
tween them. A mapping between G𝑖 and G𝑗 can be represented by
a permutation matrix 𝑃 ∈ P𝑚 , i.e., P𝑚 ≜ {𝑃 ∈ {0, 1}𝑚×𝑚 ; 𝑃1 =

1, 𝑃𝑇 1 = 1}.
However, this mapping is computationally intractable [3, 4]. To

address this issue, Bento and Ioannidis [4] introduced a family of
tractable distance metrics for comparing two graphs. They intro-
duced a distance function 𝑑𝑆 : Ω2 ↦−→ R, defined as:

𝑑𝑆 (𝐴, 𝐵) = min
𝑃 ∈W𝑚

∥𝐴𝑃 − 𝑃𝐵∥ + 𝛽tr(𝑃𝑇𝐷𝐴,𝐵), (1)

where 𝛽 > 0 is a positive regularization parameter, ∥ · ∥ is a matrix
norm, tr is the trace operator, matrix 𝐷𝐴,𝐵 ∈ R𝑚×𝑚 represents a
dissimilarity between nodes across the two graphs, and matrix 𝑃 is
a doubly stochastic alignment matrix, that is, 𝑃 ∈ W𝑚 where

W𝑚 ≜ {𝑃 ∈ [0, 1]𝑚×𝑚 ; 𝑃1 = 1, 𝑃𝑇 1 = 1}. (2)

Matrix 𝐷𝐴,𝐵 is generally a distance matrix, where each element
represents the pairwise distances between the embeddings or fea-
tures of nodes across two graphs. For example, for two matrices

with graph features 𝑋𝐴 ∈ R𝑚×𝑑 and 𝑋𝐵 ∈ R𝑚×𝑑 that map nodes
of a graph into a lower-dimensional space, i.e. 𝑑 < 𝑚, 𝐷𝐴,𝐵 is:

𝐷𝐴,𝐵 = [𝐷𝑎,𝑏 ]𝑎∈V,𝑏∈V ∈ R𝑚×𝑚, where (3a)

𝐷𝑎,𝑏 = | |𝑥𝐴𝑎 − 𝑥𝐵
𝑏
| |2 ∀ 𝑎 ∈ V, 𝑏 ∈ V, (3b)

where 𝑥𝐴𝑎 indicates the 𝑎-th row of matrix 𝑋𝐴 and 𝑥𝐵
𝑏
indicates the

𝑏-th row of 𝑋𝐵 .
A naïve way to compute the distance among a group of 𝑛 > 2

graphs is to generalize a distance function 𝑑 (𝐴𝑖 , 𝐴 𝑗 ) between
two graphs to 𝑛 graphs, i.e., if 𝑑 (𝐴𝑖 , 𝐴 𝑗 ) is a distance function
between two graphs that satisfies metric property like Eq. (1),
𝑑 (𝐴1, 𝐴2, . . . , 𝐴𝑛) =

∑
𝑖, 𝑗 ∈[𝑛] 𝑑 (𝐴𝑖 , 𝐴 𝑗 ). The problem with this gen-

eralization is that it does not guarantee the alignment consistency
between multiple graphs. Alignment consistency states that if 𝑃𝑖 𝑗
aligns G𝑖 with G𝑗 , and 𝑃 𝑗𝑙 aligns G𝑗 with G𝑙 , the mapping matrix
𝑃𝑖𝑙 should keep the consistency of mappings under transitivity, i.e.,
𝑃𝑖𝑙 = 𝑃𝑖 𝑗𝑃 𝑗𝑙 [28]. We describe next two functions, Fermat distance
and G-align distance, for measuring the distance among a group of
graphs that satisfy consistency of alignment [28] and are (pseudo)
𝑛-metrics [28].

3.1 Fermat Distance.
Let 𝑑 (𝐴, 𝐵) be a metric for two graphs such that 𝑑 : Ω2 ↦−→ R.
Then the Fermat distance function [19] associated with 𝑑 is the
map 𝑑𝐹 : Ω𝑛 ↦−→ R defined by:

𝑑𝐹 (𝐴1, 𝐴2, . . . , 𝐴𝑛) = min
𝐴0∈Ω

∑𝑛
𝑖=1 𝑑 (𝐴𝑖 , 𝐴0), (4)

where 𝑑𝐹 (𝐴1, 𝐴2, . . . , 𝐴𝑛) is the alignment score for a set of graphs.
If 𝑑 is a metric like the 𝑑𝑠 function given in Eq. 1, then the Fermat
distance function induced by a 𝑑 function is 𝑛-metric [28]. The
Fermat distance function induced by Eq. (1) and matrix 𝐷 = 0 is:

𝑑𝐹 (𝐴1, 𝐴2, . . . , 𝐴𝑛) = min
𝑃𝑖 ∈W𝑚,∀𝑖∈[𝑛]𝐴0∈Ω

𝑛∑︁
𝑖=1

𝐺 (𝑃𝑖 , 𝐴0;𝐴𝑖 ), (5)

where W𝑚 represents the set of doubly stochastic matrices and
𝐺 : W𝑚 × Ω × Ω ↦−→ R is formulated as follows:

𝐺 (𝑃𝑖 , 𝐴0;𝐴𝑖 ) = ∥𝐴𝑖𝑃𝑖 − 𝑃𝑖𝐴0∥ . (6)

Graph G0, corresponding to𝐴0, represents the center of setG. Fig. 1
illustrates how the center graph in Fermat distance function has
the minimum distance from all graphs in the graph set.

The Fermat distance function in Eq. (5) satisfies consistency of
alignment, and is a pseudo 𝑛-metric [28]. It satisfies consistency
of alignment, since 𝑃𝑖 𝑗 = 𝑃𝑖 (𝑃𝑙𝑇 𝑃𝑙 )𝑃 𝑗𝑇 = 𝑃𝑖𝑃 𝑗

𝑇 = 𝑃𝑖𝑙𝑃𝑙 𝑗 . This
optimization problem is not convex; nevertheless, it can be solved
approximately via alternating minimization [16]. In alternating
minimization, at each iteration 𝑡 ∈ N, we update 𝐴0 and {𝑃𝑖 }𝑖∈[𝑛]
as follows:
Updating 𝐴0. Given that {𝑃𝑖 }𝑖∈[𝑛] is fixed and 𝐷 = 0, minimizing
Eq. (5) w.r.t 𝐴0 leads to the following problem:

min
𝐴0∈R𝑚×𝑚

𝑛∑︁
𝑖=1

∥𝐴𝑖𝑃 (𝑡−1)𝑖
− 𝑃 (𝑡−1)

𝑖
𝐴
(𝑡 )
0 ∥ (7)

This problem is convex and at step 𝑡 ∈ N can be solved via convex
optimization.
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Figure 1: Illustration of Fermat distance. G0 is the center
graph and all graphs in the graph set are getting aligned w.r.t
this graph.

Updating {𝑃𝑖 }𝑖∈[𝑛] . Given that 𝐴0 is fixed and 𝐷 = 0, minimizing
Eq. (5) w.r.t {𝑃𝑖 }𝑖∈[𝑛] leads to the following problem.

min
𝑃𝑖 ∈W𝑚

𝑛∑︁
𝑖=1

∥𝐴𝑖𝑃 (𝑡 )𝑖
− 𝑃 (𝑡 )

𝑖
𝐴
(𝑡 )
0 ∥ (8)

This step is convex and can be solved via optimization toolboxes
such as CVXPY [1, 10] or efficient algorithms such as Frank-Wolfe
algorithm [14]. Eq. (7) has 𝑛𝑚2 parameters and 𝑛𝑚2 constraints and
Eq. 8 contains 𝑛 optimization problems with𝑚2 parameters and
𝑚2 constraints. In practice, we need between 80 to 100 iterations to
compute the Fermat distance among 100 graphs.

3.2 G-align Distance
Safavi and Bento [28] introduced the G-align distance function, that
is a map 𝑑𝐺 : Ω𝑛 ↦−→ R defined by:

𝑑𝐺 (𝐴1, . . . , 𝐴𝑛) = min
𝑃𝑖 𝑗 ∈𝑆

1
2

∑︁
𝑖, 𝑗 ∈[𝑛]

𝐺 (𝑃𝑖 𝑗 ;𝐴𝑖 , 𝐴 𝑗 ), (9)

where 𝐺 (𝑃 ;A) is given in Eq. (6) and matrix 𝐷 = 0.

𝑆 = {{𝑃𝑖 𝑗 }𝑖, 𝑗 ∈[𝑛] : 𝑃𝑖 𝑗 ∈ W𝑚,∀𝑖, 𝑗 ∈ [𝑛],
𝑃𝑖𝑙𝑃𝑙 𝑗 = 𝑃𝑖 𝑗 ,∀𝑖, 𝑗, 𝑙 ∈ [𝑛], 𝑃𝑖𝑖 = 𝐼 ,∀𝑖 ∈ [𝑛]} (10)

Let 𝑷 ∈ 𝑅𝑛𝑚×𝑛𝑚 be a matrix with 𝑛2 blocks such that the (𝑖, 𝑗)th
block is 𝑃𝑖 𝑗 , i.e.:

𝑷 =


𝐼 𝑃12 𝑃13 ... 𝑃1𝑛
𝑃21 𝐼 𝑃23 ... 𝑃2𝑛
.
.
.

.

.

.
.
.
.
. . .

.

.

.
𝑃𝑛1 𝑃𝑛2 𝑃𝑛3 ... 𝐼

 . (11)

Then the constraints can be written in the G-align distance function:

𝑑𝐺 (𝐴1, . . . , 𝐴𝑛) = min
𝑃𝑖 𝑗 ∈W𝑚,
𝑃𝑖𝑖=𝐼 ,𝑷⪰0

1
2

∑︁
𝑖, 𝑗 ∈[𝑛]

𝐺 (𝑃𝑖 𝑗 ;𝐴𝑖 , 𝐴 𝑗 ), (12)

where 𝑷 ⪰ 0 indicates that 𝑷 is positive semidefinite. Eq. (12)
satisfies consistency of alignment and is a pseudo 𝑛-metric [28].
Given the constraints in Eq. (12), this problem is convex and can be
solved via optimization toolboxes such as CVXPY [1, 10] or more
efficient algorithms such as the Frank-Wolfe algorithm [14].

Eq. (12) contains 𝑛2𝑚2 variables. The constraints 𝑃𝑖 𝑗 ∈ W𝑚 ,
𝑃𝑖𝑖 = 𝐼 and 𝑷 ⪰ 0 have 𝑂 (𝑛2𝑚2), 𝑂 (𝑛𝑚) and polynomial worst-
case complexity [31], respectively. The quadratic nature of matrix
𝑷 makes it very expensive to solve.

3.3 Extensions.
The Fermat and G-align distance functions are not limited to graphs
with equal numbers of nodes. They can be extended to graph sets
with a variable number of nodes by adding “dummy” nodes such
that all graphs then have an equal number of nodes [4]. One of
several ways to do so is to first find the maximum number of nodes
mmax in the graph set and then expand all graphs with |V𝑖 | < mmax,
𝑖 ∈ [𝑛] by adding “dummy” nodes such that all graphs have mmax
nodes. In the expanded graphs, in order to differentiate “dummy”
nodes from actual nodes, “dummy” nodes are connected to each
other as well the actual nodes by edges with a small weight (e.g.,
0.01).

4 ACCELERATED METRIC
MULTI-DISTANCES.

4.1 Problem Formulation.
Given a graph set G = {G1,G2, · · · ,G𝑛} with 𝑛 undirected graphs,
our goal is to measure distance (similarity) among graphs via a fast
𝑛-metric multi-distance function that satisfies consistency of align-
ment. For this purpose we present our framework that accelerate
both the Fermat distance function [19] and the G-align distance
function [28].

4.2 Solution.
There are 3 paths that we can take to accelerate the Fermat [19] and
G-align distances [28]. Below we describe these paths in details.

4.2.1 G-Parallel: Grouping and Parallelizing Graphs. This method
has a recursive structure. We start by dividing the full group of
graphs into a collection of smaller groupings of graphs. In each
group, we first compute the mappings among graphs and the center
graph for each of these groupings, which can be done in parallel.
Once we find the center graph for each group, we compute the
mappings among them to find G0. We keep grouping graphs and
computing their centers until we find the final center graph for the
whole set. In G-Parallel, every operation that happens in the groups
can happen in parallel. Algorithm 1 illustrates how our framework
works, where 𝐾 represents the number of graphs in each group
and the “for loops” are processed in parallel. In the final stage, we
stop when the number of graphs is less than 𝐾 . Once we have the
final center graph fixed, we can compute the graph distances via
the Fermat distance given in Eq. (5). Note that however, in all the
intermediate stages we can use both Fermat or a variant of G-align
distance which we will describe below. For both Eq. (5) and Eq. (12),
rather than having inputs of size 𝑛, we have inputs of size 𝐾 and
because the cost is polynomial in the number of graphs (super
quadratic), this is a significant benefit.

The total number of stages in this recursive process is𝑂 (log𝐾𝑛)
and the total number of problems with 𝐾 graphs that we need to
compute is 𝑂 (𝑛).
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Algorithm 1: Our Framework

1

Input: G = {G1, G2, ..., G𝑛 }, 𝐾 : number of graphs in each group.
Output: G0out : the center graph.

2 for 𝑘 = {0, 1, 2, · · · , [ 𝑛
𝐾
] } do

3 G̃𝒌 = {G1+𝑘×𝐾 , G2+𝑘×𝐾 , · · · , G𝐾+𝑘×𝐾 }
4 G̃0

𝑘
= center(G̃𝒌 )

5 end for

6 G̃ = {G̃0
𝑘
, for 𝑘 = {0, 1, 2, · · · , [𝑁

𝐾
] }}

7 if [ 𝑛
𝐾
] > 𝐾 then

8 while [ 𝑛
𝐾
] > 𝐾 do

9 𝑛 = [ 𝑛
𝐾
]

10 G = G̃

11 for 𝑘 = {0, 1, 2, · · · , [ 𝑛
𝐾
] } do

12 G̃𝒌 = {G1+𝑘×𝐾 , G2+𝑘×𝐾 , · · · , G𝐾+𝑘×𝐾 }
13 G̃0

𝑘
= center(G̃𝒌 )

14 end for

15 G̃ = {G̃0
𝑘 for 𝑘 = {0, 1, 2, · · · , [ 𝑛

𝐾
] }}

16 end while
17 end if
18 Gout = G̃

19 G0out = center(Gout)

Computing The Center Graph for Fermat Distance. For the
Fermat distance, we compute the mappings and the center graph
simultaneously via Eq. (5)- (8).
Computing The Center Graph for G-align Distance. For the
G-align distance, in contrast, in order to compute the center graph
we first compute the mapping matrix 𝑷 by solving the problem in
Eq. (12) [28] and then take the first block column of 𝑷 , i.e., {𝑃𝑖1}𝐾𝑖=1,
and project each 𝑃𝑖1 ∈ W𝑚 onto the set of permutation matrices,
i.e.:

˜𝑃𝑖1 = ΠP𝑚 (𝑃𝑖1), (13)
whereΠP𝑚 is the orthogonal projection toP𝑚 . This problem can be
solved in polynomial time with the Hungarian algorithm [21]. (Note
that our selection of {𝑃𝑖1}𝑛𝑖=1 is arbitrary and we could choose any
block column.) We align all graphs with the first graph as follows:

𝐴̃𝑖 = ˜𝑃𝑖1
𝑇
𝐴𝑖 ˜𝑃𝑖1 ∀𝑖 ∈ [𝐾] (14)

Finally we compute the adjacency matrix of the center graph:
min

𝐴̂0𝑗,𝑘 ∈[0,1],∀𝑗,𝑘∈[𝑚0 ]

∑𝑛
𝑖=1 ∥𝐴̃𝑖 −𝐴0∥ (15)

Eq. (15) is convex and can be solved via CVXPY toolbox [1, 10].
Since the elements of 𝐴 are in the range [0, 1], we binarize the
elements of the adjacency matrix for the center graph G0 by using
a threshold. The time complexity of these equations is dominated
by the one for Eq. (12).

4.2.2 CG-Parallel: Clustering and parallelization of stochastic block
models. CG-Parallel has a recursive structure. In stochastic block
model graphs such as community graphs, to further speed up
the computation of 𝑛-metric multi-distances, within each smaller
groups of graphs we first cluster nodes in each graph via a clustering
algorithm such as k-means. After this step we will have multiple
clusters and a sparse matrix representing the edges connecting
those clusters (see Fig. 2a). We then create reduced size weighted
graphs in which each node represents a cluster and weighted edges
represent the number of edges connecting two clusters in the origi-
nal graphs. Ideally we want clusters with similar numbers of nodes
to get mapped to each other. For this reason in matrix 𝐷 (3b) we set
the node features or embeddings (𝑋 s) to the number of nodes in the
corresponding cluster. We compute the graph distances across the

(a) Breaking graphs into small
clusters

(b) Small weighted graphs repre-
senting the original graphs.

Figure 2: The procedure to break graphs into multiple clus-
ters and find the mappings across clusters rather than the
original larger graphs

clusters via G-align or Fermat distance (see Fig. 2b). Once we com-
pute the mappings among the nodes in the small graphs, we know
which clusters should be aligned with each other across graphs.
After aligning clusters and the sparse matrix connecting the clus-
ters, we solve the optimization problem given in Eq. (15) to find the
center of clusters and the edges connecting clusters. Finally given
the cluster centers and the edges connecting them, we recover the
original large center graphs.

This is a recursive process. We repeat these steps until we find a
center for the whole graph set. Here again many of the steps can
be parallelized.

Note that this method can be applied to graphs that do not follow
stochastic models, as well. In this case, we can break graphs in equal
sized clusters or set a minimum and maximum cluster size in k-
means to control the clustering procedure.

The total number of stages in this recursive process is 𝑂 (log𝑛
𝐾
)

and the total number of problems with 𝐾 graphs that we need to
compute is 𝑂 (𝑐𝑛) and the time complexity for k-means is 𝑂 (𝑚2).

4.2.3 C-NonParallel: Clustering Graphs. This method is similar to
Sec. 4.2.2. The only difference is that the structure is non-recursive,
i.e., we do not divide graphs into smaller groups. We only break
each graph into 𝑐 clusters using k-means algorithm and compute
the center graph by computing the centers for the clusters. The
total number of problems that we need to compute is 𝑂 (𝑐𝑛) and
the time complexity for k-means is 𝑂 (𝑚2).
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Community Grid

|V | 45 36
|E |ave 98 265
Fermat Solver CVXPY + AM CVXPY+ AM
G-align Solver CVXPY CVXPY

Table 1: Dataset summary, along with the algorithm and
solver used to compute graph mappings. CVXPY is the tool-
box used to solve the G-align distance problem. In Fermat
distance in addition to CVXPY solver we use alternating min-
imization (AM) to compute the graph distance.

5 EXPERIMENTAL SETUP
5.1 Datasets
We performed experiments on two synthetic datasets.
Community. We generated a community graph with 3-
communities, from the stochastic block model [33]. The graph
has |V| = 45 total nodes and [5, 15, 17] nodes in the communities.
Each community is generated by the Erdős-Rényi model (E-R) [12].
The probability for edge creation in each community is 𝑝 = 0.7 and
0.05|V| inter-community edges were added u.a.r. We obtain the
code for graph construction from [33].
Grid.We constructed a 2−D grid graph with |V| = 36 nodes using
NetworkX [17].

In both community and grid graphs, in order to build the graph
set we started with a single graph. Then we generated 100 random
graphs by randomly permuting the graph and then adding noise by
randomly removing 10% of edges and add back the same amount
of new edges added.

Table 1 gives details about the graphs as well as the algorithms
we used.

5.2 Comparison Algorithms
We compare our methods against two baseline computation of the
Fermat [19] and G-align [28] distances. We compare these baselines
to three of our frameworks.
G-Parallel: Compute the graph distance diving graphs into small
groupings and parallelization as defined in Sec. 4.2.1.
CG-Parallel: Compute the graph distance by diving graphs into
small groups and breaking graphs into clusters as defined in
Sec. 4.2.2.
C-NonParallel: Compute the graph distance by breaking each
graph into clusters and finding the mapping between clusters rather
than the whole graph as defined in Sec. 4.2.3.

5.3 Performance Evaluation.
To assess the performance our framework we designed two experi-
ments. In the first experiment we measured the algorithm speed
improvement for Fermat distance [19] and G-align distance [28]
before and after applying our framework. In the second experiment
our goal is to study the impact of of parallelization on the accuracy
of mappings. For this purpose, we computed the center graph in the
baselines and in our framework. We then computed the distance of

(a) Running timewith G-align dis-
tance baseline and applying our
frameworks to G-align distance
using community graphs.

(b) Running timewithG-align dis-
tance baseline and applying our
frameworks to G-align distance
using grid graphs.

(c) Running time with Fermat dis-
tance baseline and applying our
frameworks to Fermat distance
using community graphs.

(d) Running time with Fermat dis-
tance baseline and applying our
frameworks to Fermat distance
using grid graphs.

Figure 3: Running time for computing the graph distance
in community graphs (left) and grid graphs (right) given
the baselines and three different scenarios, G-Parallel, CG-
Parallel and C-NonParallel.

final 𝐴0 from the graph set via

ACC =
1
𝑛

𝑛∑︁
𝑖=1

∥𝑃𝑇
𝑖
𝐴𝑖𝑃𝑖 −𝐴0∥
∥𝐴1∥

. (16)

5.4 Parallelization Impact on Scalability and
Accuracy.

Due to scalability issues with the baselines we computed the dis-
tance among only 12 graphs. Fig. 3 represents the time consumed
for the baselines and our 3 methods to compute the graph distance.
Our methods make the 𝑛-metric multi-distance functions signifi-
cantly faster. Among our methods, G-Parallel is having the best
performance.

For both the baselines if we increase the number of graphs in the
graph set to 100 graphs, it will take weeks to compute the graph
distances while with our framework while dividing graphs into
groups we can compute the graph distance in at most in 4.3 hours.
In some scenarios this happens in less than half an hour. Table 2
summarizes the running time applying the G-Parallel scenario to
both Fermat and G-align distances.

In general all our 3 methods outperforms the baselines. The only
exception is CG-NonParallel applied to Fermat distance for grid
graphs. The running time for applying Fermat distance is longer
compared to G-align, since the Fermat distance function is not
convex and we need to use at least 80 iterations in alternating
minimization to solve the problem.
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Group-Parallel (Fermat) 15784.82 (s) 3584.53 (s)
Group-Parallel (G-align) 1973.82 (s) 1252.65 (s)

Table 2: Running time in seconds (s) usingG-Parallel scenario
for 100 graphs.

(a) Accuracy of using G-align dis-
tance base line and applying our
frameworks to G-align distance
using community graphs.

(b) Accuracy of using G-align dis-
tance base line and applying our
frameworks to G-align distance
using grid graphs.

(c) Accuracy of using Fermat dis-
tance base line and applying our
frameworks to Fermat distance
using community graphs.

(d) Accuracy of using Fermat dis-
tance base line and applying our
frameworks to Fermat distance
using grid graphs.

Figure 4: Accuracy of computing the graph distance in com-
munity graphs (left) and grid graphs (right) given the base-
lines and three different scenarios, G-Parallel, CG-Parallel
and C-NonParallel. G-align distance has better performance
compared to Fermat distance. Moreover, due to clustered
structure of community graphs clustering clustering and
grouping graphs in CG-Parallel even improves the accuracy.

We also investigated the impact of our framework on the accu-
racy of the graph distances via Eq. (16). Fig. 4 shows the comparison
of the baselines and our methods. Our results demonstrate that the
G-align distance is more accurate compared to Fermat distance in
computing the graph distance. Due to the clustered structure of
community graphs clustering and grouping graphs in CG-Parallel
improves accuracy even more. Based on the results in Figs. 3 and 4
we conclude that G-Parallel is the best method to improve compu-
tational speed while preserving accuracy.

6 CONCLUSION.
In this work we presented a framework that improves the scala-
bility and speed of two 𝑛-metric multi-distances. Our method can
compute the distance among a large group of graphs with while
maintaining accuracy.
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