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ABSTRACT

Network alignment, or the task of finding corresponding nodes in
different networks, is an important problem formulation in many
application domains. We propose CAPER, a multilevel alignment
framework that Coarsens the input graphs, Aligns the coarsened
graphs, Projects the alignment solution to finer levels and Refines
the alignment solution. We show that CAPER can improve upon
many different existing network alignment algorithms by enforc-
ing alignment consistency across multiple graph resolutions: nodes
matched at finer levels should also be matched at coarser levels.
CAPER also accelerates the use of slower network alignment meth-
ods, at the modest cost of linear-time coarsening and refinement
steps, by allowing them to be run on smaller coarsened versions
of the input graphs. Experiments show that CAPER can improve
upon diverse network alignment methods by an average of 33% in
accuracy and/or an order of magnitude faster in runtime Paper
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1 INTRODUCTION

Graphs or networks are foundational representations for relational
structure and their analysis is useful in innumerable scientific and
industrial applications. In many diverse tasks, such as recommen-
dation across multiple social networks, protein-protein interac-
tion analysis, and database schema matching [8], it is necessary to
discover meaningful correspondences between nodes in multiple
networks. This general problem is called network alignment.
Network alignment methods in general have two main limita-
tions. First, they may overfit to local structural similarity and fail to
preserve higher-order measures of matching consistency [2, 5]. Sec-
ond, they tend to rely on solving challenging optimization problems
with high computational complexity. Some of the most successful
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graph alignment algorithms require quadratic or cubic time in the
number of nodes in one of the input graphs [2, 16, 20].

We argue that multilevel network analysis is a powerful tech-
nique for improving network alignment algorithms on both fronts.
Accordingly, we design a general framework that turns any network
alignment method into a multilevel method. Our framework con-
sists of the following steps, which we call CAPER: (1) Coarsening a
graph into multiple levels of varying coarseness, (2) Aligning at the
coarsest level, and (3) Projecting back to finer levels, and (4) Refin-
ing the solution at each level. First, we repeatedly leverage graph
coarsening to shrink the sizes of the input graphs. Then, we run a
network alignment algorithm on the resulting coarsened graphs,
which allows alignment algorithms that are computationally ex-
pensive to be run on smaller input graphs. Finally, we project the
coarse alignment solution back to the original input graph, using
a new soft refinement step to ensure a high-fidelity resolution at
each intermediate level. By performing the base matching based
on global structural similarity in the coarsened graph and refin-
ing it with successively finer-grained local structural information,
the final matchings found by CAPER reflect all levels of structural
information.

Our contributions can be summarized as follows:

e General-Purpose Framework: We propose an intuitive mul-
tilevel framework (CAPER) in which any network alignment
method can be used.

Design Choices and Empirical Success: We propose and study
specific design choices and parameter settings that work well
within CAPER.

Study of Accuracy and Runtime Tradeoff: Through complex-
ity analysis and experiments, we show that CAPER is able to
improve accuracy by 33% on average across multiple datasets
and/or is 10x faster runtime than baselines, depending on the
properties of the base methods employed.

We provide code and additional supplementary material at https:
//github.com/GemsLab/CAPER.

2 RELATED WORK

Graph Coarsening and Multilevel Methods. Graph coarsen-
ing [13] is the process of shrinking a large graph into a similar
smaller one, such that some properties or structures are preserved,
e.g. spectral graph properties or cliques. The typical approach for
coarsening involves grouping neighboring nodes in the original
graph into supernodes and connecting them with superedges. It
has been used to accelerate many graph mining tasks, including
graph clustering [4], node embedding [3, 12] and graph neural
networks [17].
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Figure 1: An illustrative example of CAPER. The pink node and blue node in the leftmost figure have exactly the same local
structural similarity in the two graphs. So, methods that overfit the local structural similarity cannot differentiate which nodes
should be aligned. But with the help of higher-order information (coarsened graphs in step (2)), CAPER is able to eventually

correctly align the pink nodes as well as the blue nodes.

Table 1: Qualitative comparison of alignment meta-
frameworks.

General Multiscale Improves Improves

accuracy  runtime
MOANA [19] X v X v
Boosting [10] X X 4 X
RefiNA [5] v X 4 X
CAPER v v v v

Network Alignment. Unsupervised graph alignment approaches
can be categorized into two groups. (1) Classic graph alignment ap-
proaches often formulate an optimization-based assignment
problem. NetAlign [1] aims to preserve “complete squares” by
matching two nodes sharing an edge in one graph to counter-
parts sharing an edge in the other graph. FINAL [18] optimizes a
topological consistency objective which may be augmented with
node and edge attribute information. MAGNA [15] simulates the
evolution of network populations with a genetic algorithm, max-
imizing proximity consistency criteria such as edge correctness
and is often used in the biological domain. More recently, Zhang
et al. [20] leveraged kernel-based methods to solve the quadratic-
assignment problem, but they suffered from cubic computational
complexity. (2) Another line of work relies on embedding-based
methods. These methods represent each graph as a distribution
of node embeddings and match these distributions. For instance,
the first work in this space, REGAL [6] matches structural node
embeddings [7, 14] that are directly comparable across networks.
CONE-Align [2] first uses proximity-based embeddings and aligns
the embedding spaces with a subspace alignment procedure, while
GWL [16] solves a Gromov-Wasserstein optimization problem to
jointly find node embeddings and a graph matching solution. The
above approaches are unsupervised, requiring no “anchor” pairs
of corresponding nodes to be known a priori. In this work, we
focus on unsupervised network alignment given the difficulty of
constructing ground-truth anchor pairs in practice.

Network Alignment Meta-Frameworks. Because of the chal-
lenge of unsupervised network alignment, a few recent works have
proposed meta-frameworks to refine network alignment algorithms’
solutions. This includes MOANA, the only other multilevel network
alignment approach [19]. MOANA uses multiresolution matrix fac-
torization to accelerate the method FINAL [18] at the cost of some

accuracy. However, it produces negative-valued adjacency matrices
that do not work well with other network alignment methods. Re-
fiNA [5] refines any network alignment solutions by the matched
neighborhood consistency principle (nodes that are close in one
graph should be matched to nodes that are close in another graph).
Such an approach makes the opposite tradeoff, increasing accuracy
of several base methods at the cost of adding additional runtime.
Another meta-framework [10] specifically studying how design
choices of recent embedding-based network alignment methods
can be combined to increase accuracy via boosting. Meanwhile, our
approach is orthogonal to boosting approaches, inherits all these
benefits, as we show in a qualitative comparison in Tab. 1.

3 PRELIMINARIES

Graphs. We consider two graphs G; and G, with nodesets Vy, V;
and adjacency matrices A1, Az containing edges between nodes. A
graph G; has a coarsened counterpart G; with a smaller nodeset V;
of fi < n nodes. Each node in the original graph corresponds to a
node in the coarsened graph, with assignments being stored in an
assignment matrix P € {0, 1}™%_For clarity, we drop the G notation
unless it is necessary to distinguish coarsened and uncoarsened
counterparts.

Alignment. An alignment between the nodes of two graphs can be
represented by a matrix S, where s;; is the (real-valued or binary)
similarity between node i in G; and node j in Gy.

Problem Statement. Given two graphs G; and G2 with meaning-
ful node correspondences, but none known a priori, we seek to
shrink them into coarsened versions G; and Gg, and recover their
alignment S from the alignment S obtained by aligning their coarser
versions Gy and G.

4 METHOD

Next, we detail our CAPER framework, the first general-purpose
multilevel framework for unsupervised network alignment that can
accommodate any base network alignment approach. It consists
of four steps that are carefully designed in order to achieve higher
accuracy and/or lower runtime compared to its base alignment
methods: Coarsen, Align, Project, Refine (CAPER). In Fig. 1, we
provide an example of how CAPER can implicitly enforce higher-
order structural consistency that improves network alignment.



4.1 Graph Coarsening

Given an input graph G;, we want to obtain a coarsened graph
G; using grouping-based coarsening methods. We leverage the
normalized heavy-edge matching (NHEM) heuristic [4] for graph
coarsening. This approach repeatedly combines pairs of adjacent
nodes into a supernode, until no node is left uncombined or the
uncombined nodes do not have uncombined neighbors (isolated
nodes). Each supernode becomes a new node in the resulting coarser
graph, and two supernodes share an edge if any of the constituent
nodes in one supernode shared an edge in the original graph with
any of the constituent nodes in the other supernode.

Nodes are combined in decreasing order of degree-normalized
edge weight [12], which for edge (u,v) with weight wy,, connect-
ing nodes u and v with degrees d;, and d, respectively is given
by —~4__ As in many network alignment settings, our graphs

Vdudy)

are unweighted (so wy, = 1 for all edges). This has the effect of
combining low-degree nodes first, a useful heuristic since we first
coarsen the parts of the graph that are “safer” to coarsen and are
also harder to align since there is less topological structure to lose.

Graph coarsening turns each input graph G; into a coarsened

graph G;. We may iteratively repeat this coarsening procedure up to
L times to produce a sequence of coarsened graphs Gl.(o), e éi(L),
where the first level is the input graph (Gi(o) = G;), and the coarsest
(smallest) graph is G~l.(L). The assignments of nodes between nodes

at consecutive levels £ — 1 and ¢ are contained in a matrix Pl([) for
t € [1,...,L] as defined in Sec. 3.

4.2 Alignment of Coarsened Graphs

In this step, the input is two coarsened graphs G1 and Gy, and
the output is an alignment solution S. We can apply any existing
unsupervised network alignment method to align the nodes of
the graphs at the coarsest level to produce a matching s, we
observe that the coarsening procedure sometimes generates slightly
different numbers of nodes for the same graph even if the input
graphs have the same size, so the proposed formulation must be
able to handle graphs of different sizes. A workaround suggested
for graph matching formulations designed for equally sized graphs
is to add singleton nodes to the smaller graph [2].

4.3 Projection

We project the alignment solution at the coarsest level SO toa
mapping between the nodes at the next finer level using the assign-
ment matrices: $(~1) = PY)TS([) Péf). Note that this solution is
coarse, and all nodes in level £ — 1 mapped to the same supernode
in level ¢ will have the same match. Thus, we need to use the finer
graph structure to refine this coarse solution. To do so, we use soft
refinement in the next step.

4.4 Soft Refinement

In this step, we aim to refine the coarse alignment solution we get in
the projection step to obtain a more fine-grained alignment solution.
Recent work for refining network alignment [5] operates on “hard”
initial solutions, where each node is mapped to at most one other
node. Here, we propose a new refinement operator that uses the

“soft” initial alignments, which better models the various strengths
of several potential matches for each node, as shown in Fig. 5. Given
an initial soft alignment S, we updates the alignment matrix S by
iteratively applying the update rule S = NORMALIZE(SoA;SAz+€),
where o denotes Hadamard product, € is a small positive minimum
matching score to any pair of nodes to prevent over-reliance on the
initially discovered matches (we set e = 10~ Mog1o malx<”1’"2)]) and
NORMALIZE is a single round of row-wise normalization followed
by column-wise normalization, as in [5]. This “soft refinement”
allows us to correct misaligned nodes during refinement as well as
to preserve higher-order structural consistency.

We iteratively apply this project-and-refine procedure between
successive levels until we arrive back at the input level, giving us
the mapping between nodes in the original graph.

4.5 Computational Complexity

For clarity, we assume both graphs have n nodes. Below we present
the time complexity of each method as a function f dependent on
n. Then the computational complexity of our CAPER framework is

Lfeoarsen(n) + f;llign ( 2%) +L (fproject (1) + frefine (n)) . The first, third

and fourth terms represent the overhead introduced by coarsen-
ing, projection and refinement, respectively. The coarsening time
applied to each of L levels, feoarsen(n), is linear in the number of
edges using heavy-edge matching [4], which is O(n) for the sparse
graphs that are typically considered. The refinement consists of pro-
jection fproject by multiplying matching and assignment matrices,
and refinement fiefne using RefiNA: these may take quadratic time
for dense matrices, but by maintaining a sparse matching matrix
consisting of only a small number of top matches for each node
as proposed in [5], these operations can also run in O(n) time for
sparse graphs.

This leads us to the runtime of the base alignment method, fajign-
With the heavy edge matching heuristic shrinking the graph by
approximately a factor of 2 at each level [4], note that we are able to
run the base alignment step on a smaller graph, incurring a runtime
of falign(ziL) as opposed to fa1ign (1) by applying the base alignment
algorithm to the full input graphs.

Thus, CAPER can offer computational speedup particularly for
slow base alignment methods, where fyjig, may be asymptotically
large (such as O(n?) as some recent, effective methods have [16]).
For fast base alignment methods on smaller graphs, the overhead
of coarsening and refinement may cause a modest linear-time total
increase in runtime. However, the faster approaches tend to stand
the most to benefit in accuracy from CAPER ensuring alignment
consistency at multiple levels.

5 EXPERIMENTS

In our experiments, we investigate how much CAPER can improve
some popular base methods in network alignment both in terms of
accuracy and runtime. We first describe our experimental setup and
the datasets and baseline methods used in our empirical analysis,
and then show quantitative results and discuss our observations.

Data. We use both semi-synthetic and real-world data (Tab. 2).
Following prior works [6, 18], we simulate a network alignment
scenario with known ground truth: a graph with adjacency matrix A



Table 2: Datasets statistics: These four datasets represent
various phenomena such as communication network, social
network and protein-protein interactions.

Name Nodes Edges Description
Arenas [9] 1,133 5,451 communication network
Hamsterster [9] 2,426 16,613 social network
Facebook [11] 4,039 88,234 social network
Magna [15] 1,004 8,323  protein-protein interaction

is aligned to a noisy permuted copy A* = SAS' and S, for which we
generate a random permutation matrix S; we then randomly remove
edges from A* with probability p € [0.05,0.10, 0.15,0.20, 0.25]. We
perform this procedure on graphs representing various phenomena
as shown in Table 2. The MAGNA [15] networks are protein-protein
interaction (PPI) networks that are aligned to versions of themselves
with various percentages of low-confidence PPIs (edges) added;
thus, all edges in this graph represent real-world phenomena and
we do not need to synthesize an alignment scenario.

Baselines. We consider both optimization- and embedding-based
alignment methods. We use (1) FINAL [18] and (2) REGAL [6] as
representative and popular network alignment methods for un-
supervised network alignment, respectively. They have publicly
available and easy-to-use codebases, and represent different classes
of techniques, (optimization and node embeddings) demonstrating
the wide applicability for our framework. We also compare with the
more recent approach, (3) GWL [16], which combines optimization
and node embeddings, and achieves good task performance but has
slow runtime due to its O(n?) computational complexity. Moreover,
we consider the refinement approach RefiNA applied to each of
the network alignment methods. We refer to these refined variants
as (4) FINAL-RefiNA, (5) REGAL-RefiNA and (6) GWL-RefiNA.
Additionally, we also use (7) MOANA [19] as a baseline, the only
other multilevel network alignment method.

For FINAL’s prior alignment information, we take the top k =
[log, n| most similar nodes by degree for each node [2, 6]. We set
other parameters for REGAL [6] and GWL [16] using the defaults
recommended by the authors.

CAPER variants. For our framework, we consider three base align-
ment approaches: FINAL, REGAL and GWL. We refer to these
variants as CAPER(FINAL), CAPER(REGAL), CAPER(GWL), re-
spectively. We use the exact same setup for the base methods as
described above. We use 3 coarsening levels and 100 refinement it-
erations, as in [5], to balance accuracy and computational efficiency
(we found that further iterations may increase performance if that
is desired and increased runtime is acceptable).

Evaluation metrics. We measure alignment accuracy, or the
proportion of correctly aligned nodes. We also study the runtime.
We average over 5 independent trials on each dataset (with different
random permutations and noise additions) and report the average
accuracy and standard deviation.

Table 3: Number of nodes in the coarsened graph after 2,3,4
levels of coarsening for Hamsterster and Facebook dataset

Name 2 3 4

Hamsterster 1,288 702 418
Facebook 2,078 1,078 572

5.1 Alignment Accuracy

Setup. In Fig. 2, we report the average and standard deviation for
each metric over five trials for each experimental setting, except
for Magna. Magna is a real-world dataset, so we do not generate
any synthetic data for different noise levels. The + sign in Fig. 2
means that the standard deviation here is larger than 0.05.
Results. While the existing multilevel alignment method MOANA
has accuracy below its single-level counterpart FINAL as expected,
our multilevel framework, CAPER, significantly outperforms dif-
ferent base alignment methods as well as their single-level refined
variants using RefINA. Moreover, we can see that CAPER is more
robust to noise; specifically, the performance for REGAL-CAPER
is very stable even when the noise level increases. This is mainly
due to the fact that CAPER forces the nodes to maintain high-order
consistency even when the noise level increases.

5.2 Alignment Runtime

Runtime Setup & Evaluation. Due to GWL’s slow runtime, we
only run it for one trial on the largest Facebook dataset. Others are
averaged over five trials in Figure 3.

Results. For faster base methods such as FINAL and especially
REGAL, our improvements are mainly in accuracy. This is because
the overhead of coarsening the graphs and refining the coarsened
alignment solution does not outweigh the computational savings of
performing the alignment on smaller graphs when the base align-
ment method is fast. However, when the base alignment method is
slow, as is the case for GWL, our framework results in considerable
computational savings, while we see that it can largely preserve
accuracy. Compared with MOANA, CAPER is able to obtain better
accuracy.

5.3 Ablation studies

Number of levels. Figure 4 compares the performance of CAPER
using REGAL as the base alignment method and different numbers
of coarsening levels on the Hamsterster and Facebook datasets.
We observe that having 2 levels works best while having a larger
number of coarsening levels (e.g. 4) actually hurts the performance
of CAPER. However, the number of coarsening levels to have is
also relevant to the tradeoff between accuracy and runtime: more
coarsening levels leads to fewer nodes in the coarsened graph and
faster runtime at a cost of an eventual drop in accuracy, as shown
in Tab. 3. Similar trends are observed for other datasets as well. As
mentioned, for our main experiments, we used 3 levels of coarsening
for all datasets to balance this tradeoff.

Hard vs. soft refinement. Recent work for refining network align-
ment [5] requires a hard prior alignment where each node is mapped
to only one counterpart, while in CAPER, we propose to use soft
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CAPER(REGAL) on the Hamsterster and Facebook dataset.
In general, two levels lead to highest accuracy. In our main
experiments, we choose 3 levels for the best accuracy runtime
tradeoff/consistency.

refinement to use more detailed alignment information. Here, we
study how hard versus soft refinement affect our results.

We found that in CAPER, using soft refinement works better than
hard refinement, as shown in Fig. 5. This effect is most noticeable for
the base method REGAL, which is more accurate on these datasets.
For FINAL, because its initial solution is less accurate, we used
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Figure 5: Ablation study for the accuracy for CAPER(REGAL)
and CAPER(FINAL) on Magna and Facebook dataset using
soft/hard refinements. We observe that soft refinement works
significantly better than hard refinement, especially when
the base alignment method is REGAL.

hard refinement at the coarsest level (when operating directly on
the solution returned by FINAL) and soft refinement at subsequent
levels. This also explains the smaller gap in performance.



6 CONCLUSION

We describe the first general-purpose multilevel framework for
unsupervised network alignment that can work with a variety of
base network alignment algorithms, making them more accurate
and robust by incorporating multiscale graph information, and
accelerating the runtime of slower network alignment methods
by allowing them to operate on smaller input graphs. We have
also found that not all coarsening methods work well. Some up-to-
date spectral coarsening methods [3] will give clusters with zero
nodes in it and thus our multi-level alignment framework could fail.
One possible future direction would be to characterize the effect of
various coarsening methods on multilevel network alignment.
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