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ABSTRACT
Recent analyses of self-supervised representation learning (SSL)

find the following data-centric assumptions are critical for learning

high-quality representations: invariance to task-irrelevant seman-

tics, separability of classes in some latent space, and recoverability
of labels from augmented samples. However, it is unlikely that

graph SSL methods support these assumptions given the discrete,

non-Euclidean nature of graphs. This raises the question: how do

graph SSL methods work well? To systematically probe this ques-

tion, we perform a generalization analysis of graph SSL when using

random topological or feature perturbations as generic graph aug-

mentations (GGAs). Our analysis shows how GGAs can effect the

recoverability and separability assumptions and theoretically mo-

tivates the need for task-relevant data augmentations. Indeed, we

empirically find that GGAs fail to induce task-relevant invariances

on benchmark datasets, leading to only marginal gains over naive,

untrained baselines. Finally, our theory motivates a synthetic data

generation process that enables control over both augmentation re-

coverability and dataset separability., enabling a better benchmark

for evaluation of graph SSL methods that demonstrates different

training paradigms are effective in different regimes. Overall, our

work rigorously contextualizes, both empirically and theoretically,

the effects of data-centric assumptions on graph SSL paradigms

and augmentations.

1 INTRODUCTION
Self-Supervised Learning (SSL) [1–9] has revolutionized visual rep-

resentation learning by producing representations that are more

robust [10, 11], transferable [12, 13], and semantically consistent

[6] than their supervised counterparts. This impressive empirical

success has motivated a surge of efforts that seek to gain insights

into SSL’s behavior [14–21] or adapt successful frameworks to dif-

ferent modalities, including graph data [22–26]. Notably, many

analyses of SSL have converged upon the following data-centric

assumptions as critical to its success: (i) augmentations should in-

duce invariance to task-irrelevant attributes, as to better reflect

the underlying data generation process and improve generalizabil-

ity; (ii) samples (and corresponding augmentations) from different
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underlying classes should be separable in some latent space, as to

ensure a high-performing classifier is realizable; and (iii) labels of

augmented samples should be recoverable from the natural sample

using which they were generated [16, 20, 27] so that representa-

tions are semantically consistent for downstream tasks. Due to

the continuous representation of natural images and well-designed

augmentation strategies, these assumptions are indeed supported

by standard visual SSL practices [28].

However, despite the growing popularity of SSL for graph rep-

resentation learning, it appears unlikely that the above properties

are supported for non-Euclidean, discrete data. Indeed, the design

of recoverable graph data augmentation [29–31] remains an open

research area because is it difficult to determine prima facie what
changes to a graph’s topology or node features will preserve se-

mantics. Moreover, as graphs are often abstract representations of

structured data, it is also unclear what invariances are relevant to
the downstream task. The assumption of a separable latent space
may also be violated as intermediate points in this latent space may

be meaningless in the discrete, structured input space. In contrast

to natural image data, the systematic evaluation of these properties

for graph SSL is difficult as it must accommodate both discrete and

structured data.

Our Work. Better understanding the relationship between graph

SSL practices and the aforementioned properties can help explain

the behavior of existing frameworks and inform the design of new

ones. Therefore, in this work, we take the first step towards un-

derstanding this relationship by analyzing commonly used generic

graph augmentations (GGAs), and designing useful tools that en-

able probing of these properties, including a theoretical framework

for understanding the generalization of graph contrastive learn-

ing (CL) with GGA, and a synthetic data generation process that

helps disentangle the effects of unrecoverable augmentations from

performance. As we show, current practices often do not support

the desired properties, and we identify some of the causes for this

misalignment. Our contributions are as follows:

• Analysis of Generalization and Separability.We provide the

first generalization error bound for graph CL when using GGAs.

This bound suggests that GGAs induce a performance vs. separa-

bility trade-off that is determined by underlying dataset properties.

Further, our theory provides a principled justification as to why

GGAs are insufficient in many tasks and motivates the need for

task-aware augmentations in such situations.

• Missing Invariance on Benchmark Datasets. On standard

benchmarks, we show that despite improved invariance, models
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trained with GGA have marginal improvements in accuracy com-

pared to untrained encoders. Our analysis indicates GGAs induce

limited task-relevant invariance at best, revealing a fundamental

misalignment between the objectives of CL and its behavior in

practice.

• Recoverability: Synthetic Data Generation Process.We pro-

pose a synthetic data generation process that allows for control

over augmentation recoverability. Using the proposed process, we

confirm that adhering to the aforementioned properties is indeed

beneficial. Notably, even the recent automated graph augmen-

tation methods fail to identify augmentations that induce task-

relevant invariances. For reproducibility, we have included code

at https://anonymous.4open.science/r/gcl_recon_22-F44C/

2 BACKGROUND
In this section, we briefly discuss existing graph SSL paradigms. We

then discuss the motivation behind the data-centric assumptions

(task-relevant invariance, separability and recoverabilty) central to

this work.

Self-Supervised Graph Representation Learning. Recent
advancements in representation learning have been driven by the

SSL paradigm, where the goal is to ensure positive (negative) views

of a sample have high (low) representational similarity. Existing

SSL frameworks can be broadly categorized based on the mecha-

nism adopted for enforcing this consistency between views: con-

trastive learning (CL) frameworks [1, 7, 8, 22, 29, 31], such as

GraphCL[22], use the InfoNCE loss to perform instance discrim-

ination; approaches that rely only on positive pairs, such as Sim-

Siam [2] and BGRL [24] use Siamese architectures with stop gradi-

ent [2] and asymmetric branches[21] respectively; SpecCL [15] uses

a spectral clustering loss to enforce consistency; others attempt to

directly reduce redundancy between views [3, 32]. Despite these

differences, all methods rely upon data augmentation to generate

positive views, which are assumed to share semantics.

Generic graph augmentations (GGAs) [22], which include ran-

dom node dropping, edge perturbation, masking node attributes

and sampling subgraphs, are a popularly used graph augmentation

strategy and assume that limited changes to a graph’s attributes or

topology are unlikely to alter a its label. Other strategies include

using diffusion matrices [23], GGAs with a non-uniform prior, or

automated methods that utilize a bi-level optimization to learn aug-

mentation sampling strategies [29] or parameterized augmentation

modules [31]. We primarily focus on GGAs due to their popularity,

simplicity and effectiveness. Reconstruction approaches are an al-

ternative paradigm for graph SSL. For example, AAVAE [33] is a

novel auto-encoding framework for visual CL that optimizes for

recovering original samples from their augmentations. We adapt

AAVAE for graph data by using a graph-specific auto-encoder [34]

and augmentation strategy. Please the see appendix for additional

discussion about augmentations and paradigms.

Theoretical Analsyis of SSL. Several different perspectives
have recently been used to successfully analyze SSL’s behavior, in-

cluding learning theory [14, 15, 35], causality [17, 18], information

theory [27], and dynamical systems [36]. Many of these analyses

assume, either implicitly [18, 35] or explicitly [15, 28, 37], the exis-

tence of a latent space that is invariant to augmentation functions

and supports the properties of recoverability and separation.

Invariance to Augmentations: Producing a similar representation

for an augmentation function induces invariance to the correspond-

ing transform. Indeed, if augmentations are related by properties

that are not relevant to the downstream task (e.g., rotation angle),

representations will become invariant to this relationship over the

course of SSL training and generalization will improve [16, 38]. Con-

versely, however, if augmentations induce invariance to relevant
properties, then representations will fail to represent this informa-

tion and are likely to lose task performance (e.g, color invariance is

harmful when classifying different Labradors) [20, 39]. This latter

point is often ignored by the theoretical analyses mentioned above,

but we take it into account in the following sections.

Recoverability and Separability: These properties state that in

the latent space that instantiates the data generation process, two

augmentations of a sample are close to each other (e.g., a clear and

blurry dog) and unrelated points (e.g., dogs and cats) are sufficiently

separated from each other. It is often implicitly assumed that only

task-relevant augmentations are allowed [15, 28]. While originally

proposed for manifolds [37], both recoverability and separability

have been recently converted to graph connectivity properties [15]

and verified empirically on modern deep learning methods [28].

Specifically, recoverability and separability can be used to bound

generalization error on unseen data and we demonstrate how this

can be done for graph CL in Sec. 3.

Notations Let X be a natural dataset with 𝑟 different classes.

Our use of word natural implies the samples in this dataset were

collected via a natural sensing process (e.g., molecules from wet-

lab experiments or scene graphs from images). We use A(.|𝒈) to
denote the distribution of augmentations for the sample 𝒈 ∈ X.

Here, A(𝒈 |𝒈) represents the probability of generating a particular

augmentation 𝒈, and X := ∪𝑥 ∈PX
A(·|𝒈) is the set of all samples

transformed via our set of augmentation functions. Let 𝑓 : X → R𝑑
be a feature extractor, where 𝑓 (𝑥) can be used for downstream

tasks. Unless otherwise noted, let 𝒈 be a natural (graph) sample

from X, A(·|·) be some GGA, and 𝒈 ∼ A(·|𝒈) be an augmented

graph generated using GGA.V𝒈 and E𝒈 correspond, respectively,

to the node and edge sets of 𝒈. We note our generalization analysis

will specifically focus on the recently proposed contrastive loss

by HaoChen et al. [15], called SpecLoss. Due to the similarities

in generalization analysis of contrastive frameworks proposed by

Saunshi et al. [14, 38], the takeaways from our work remain valid

for other methods as well. We denote SpecLoss using L(𝑓 ) and
define it as follows: let 𝒈 ∼ A(·|𝒈), 𝒈+ ∼ A(·|𝒈), given 𝒈 ∈ X,

and 𝒈− ∼ A(·|𝒈′), given 𝒈′ ∼ PX ∧ 𝒈′ ≠ 𝒈. Then, for the posi-

tive/negative pairs (𝒈,𝒈+)/(𝒈,𝒈−), SpecLoss is defined as: L(𝑓 ) =
−2 · E𝒈,𝒈+

[
𝑓 (𝒈)⊤ 𝑓 (𝒈+)

]
+ E𝒈,𝒈−

[ (
𝑓 (𝒈)⊤ 𝑓 (𝒈−)

)
2

]
.

3 GENERALIZATION BOUNDS FOR CL WITH
GGAS

As discussed above, recent analyses have found that SSL general-

ization error can be bounded under the assumptions of invariance

to relevant augmentations, recoverability, and separability. In this

section, we demonstrate how GGAs influence these assumptions

by deriving a generalization bound tailored for graph data. No-

tably, this bound allows us to demonstrate conditions where using

https://anonymous.4open.science/r/gcl_recon_22-F44C/
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Table 1: Generic Graph Augmentations vs. Graph Edit Operators.
GGA can be straightforwardly expressed using graph edit operators.
Please see Appendix. B for a detailed discussion.

Augmentations Graph Edit Operators

Node Dropping Node Deletion

Edge Perturbation Edge Deletion, Edge Addition

Categorical Attribute Masking Feature Masking Operator

Sub-graph Sampling Node Deletions

GGAs results in low separability and recoverability, motivating the

need for augmentations that induce task-relevant invariances to go

beyond perturbative generic graph transformations.

Key Insight: Our main idea for the following analysis is that

GGAs can be instantiated in a general manner as a composition of
graph edit operations. This allows us to derive a unifying assumption

related to recoverability and separability in terms of the graph edit

distance (GED) between samples. Moreover, because GED amongst

samples is a property intrinsic to the dataset, we can now discuss

how the tightness of a SSL generalization error bound (SpecLoss’s,

specifically) will change as a function of GED between samples of

underlying classes and augmentation strength.

We begin by defining GED and explaining how GGAs can be

represented using graph edit operators.

Definition 3.1 (Graph Edit Distance). Let the elementary graph

operators comprise the set of graph edits: these include node inser-
tion, node deletion, edge deletion, edge addition, and an additional

categorical feature replacement operator. Then,

𝐺𝐸𝐷 (𝑔1, 𝑔2) = min

(𝑒1,...,𝑒𝑘 ) ∈P (𝑔1,𝑔2)

𝑘∑︁
𝑖=1

𝑐 (𝑒𝑖 ) ,

where P (𝑔1, 𝑔2) is the set of paths (series of edit operations) that
transforms 𝑔1 to be isomorphic to 𝑔2. Here, 𝑒𝑖 is 𝑖-th edit operation

in the path, and 𝑐 (𝑒𝑖 ) is the cost for performing the edit.

As shown in Table 1, frequently used GGA transforms can be

easily decomposed using standard graph edit operators described

in Def. 3.1. For example, assuming each operator has a unit cost,

the edge perturbation augmentation can be seen as applying the

minimum cost path consisting of edge deletion and edge addition

operations to obtain 𝒈 from 𝒈. Further, augmentation strength and

the set of possible augmentations for a given natural sample can

also be expressed in terms of GED, as follows:

Lemma 3.2. Allowable augmentations can be expressed using
GED. Let 𝛾 represent augmentation strength or the fraction of the
graph that GGAs may modify. Then, 𝛿 ∈ {⌊𝛾 |V𝒈 |⌋, ⌊𝛾 |E𝒈 |⌋} repre-
sents the number of discrete, allowable modifications for the specified
GGA, so 𝐺𝐸𝐷 (𝒈,𝒈) ≤ 𝛿. Correspondingly, we have 𝒈 ∈ A(𝒈) ⇔
𝐺𝐸𝐷 (𝒈,𝒈) ≤ 𝛿 .

For example, consider a graph 𝒈 ∼ A(·|𝒈), generated via node

dropping. Then, 𝒈 contains 1− 𝛿 nodes and the minimum cost path

to transform 𝒈 to 𝒈 contains only 𝛿 “node deletion" operations.

Further, all augmentations generated from 𝒈 will have 1 − 𝛿 nodes

and thus have 𝐺𝐸𝐷 (𝒈,𝒈) ≤ 𝛿 . In Appendix B, we prove the above

statement and demonstrate how to approximate |A(𝒈) | (e.g., the
set of allowable augmentations for a given natural sample) using

a combinatorial, counting procedure that is dependent on 𝛿 . Be-

cause GGAs are applied randomly, note that the probability of a

generating a particular augmentation is A(𝒈 |𝒈) ≈ 1

|A (𝒈) | . Given
these definitions, we now derive a unifying assumption in terms of

GED between samples. We begin by formally introducing the sepa-

rability and recoverability assumptions, focusing on the recently

proposed, unified version [15]:

Assumption 3.3 (Separability plus Recoverability Assumption,

(Assm. 3.5 in [15])). Let 𝒈 ∈ X and𝑦 (𝒈) be its label, and 𝒈 ∼ A(·|𝒈).
Assume that there exists a classifier ℎ, such that ℎ(𝒈) = 𝑦 (𝒈) with
probability at least 1 − 𝛼 . We refer to 𝛼 as the error of ℎ.

Intuitively, the assumption states that there must exist a classifier

ℎ that is able to associate a sample’s label with its augmentations,

hence enabling recoverability, i.e., representations of augmentations

are close to each other. Meanwhile, by ensuring augmentations of

samples from a class with label A are classified as A and from a

class with label B are classified as B, the assumption simultaneously

enables separability, i.e., representations of samples from different

classes should be dissimilar.

As we will see, the generalization bound will be a function of

𝛼 , the probability that a classifier satisfying Assm. 3.3 associates

augmentations of a class’s samples with another class. As 𝛼 grows

larger, the generalization error bound becomes less tight. There-

fore, it is important to understand how the choice of augmenta-

tion/augmentation strength can influence the error of ℎ. We can

also understand 𝛼 as a trade-off between inter-class GED of samples

and augmentation strength.

Intuitively, ℎ will incur error on augmented samples that can

be generated from a set of natural samples that belong to different

underlying classes, as it is unclear how these samples should be

embedded in a latent space. We now formally define such samples.

First, using Lemma 3.2, we can determine if two augmentations

could have been generated from the same sample.

Corollary 3.4. (Co-occuring augmentations.) Let 𝒈 ∈ X and 𝒈,𝒈′ ∈
X. Then, 𝒈 ∼ A(𝒈) ∧ 𝒈′ ∼ A(𝒈) ⇔ 𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿 , where
𝛿 = min{⌊𝛾 |V𝒈 |⌋, ⌊𝛾 |E𝒈 |⌋ ⌊𝛾 |V𝒈 |⌋, ⌊𝛾 |E𝒈 |⌋}.

Given the above result, we now define inconsistent samples as

follows.

Definition 3.5 (Inconsistent Samples). Let 𝒈 ∈ X, and 𝑦 : X → 𝑟

be a labeling function. Further, let X𝑖𝑛 = {𝒈 |𝒈 ∈ X ∧𝐺𝐸𝐷 (𝒈,𝒈) ≤
𝛿} be the set of natural samples that may have generated𝒈 and𝑌 ∗

𝑖𝑛
=

{𝑦 (𝒈) |𝒈 ∈ X𝑖𝑛} be the set of unique labels. If 𝒈 is an inconsistent

sample, |𝑌 ∗
𝑖𝑛
| > 1.

Essentially, if two augmentations co-occur (see Corr. 3.4) from

two or more different natural samples, such that the samples do
not share the same underlying label, we refer to such samples as

inconsistent.
Now, we assume the behavior of ℎ on inconsistent samples is

fixed such that ℎ(𝒈) = 𝑦, for some fixed 𝑦 ∈ 𝑌 ∗
𝑖𝑛
. This allows

us to use ℎ to induce a 𝑟 -way partition over X, such that each

sample, 𝒈, belongs to a partition, Sℎ (𝒈). Further, because ℎ incurs
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error on inconsistent samples, 𝛼 can be lower bounded by the

ratio of inconsistent to total samples. To this end, we use GED to

identify inconsistent samples by identifying disagreement amongst

partitions as follows.

Lemma 3.6 (Using GED to identify inconsistent samples). Let
𝒈,𝒈′ ∈ X and𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿 such that 𝒈 ∈ S𝑖 ∧𝒈′ ∈ S𝑗 and 𝑖 ≠ 𝑗 ,
where partitions are induced by ℎ. Then, at least one 𝒈̃ ∈ {𝒈,𝒈′} must
be an inconsistent sample.

Note that the above lemma does not rely on ground-truth label

information to identify inconsistent samples, but only GED from

natural samples. Given that the error on inconsistent samples is

irreducible, as it is unclear which 𝑦 ∈ 𝑌𝑖𝑛 is correct, we can lower

bound the error of ℎ as follows:

Corollary 3.7 (Error bound due to Inconsistent Samples). The error
of ℎ can be lower-bounded as

𝛼 ≥
∑𝑟
𝑖

∑
𝒈∈𝑆𝑖 ,𝒈′∉𝑆𝑖 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)

|X| .

Here, the number of inconsistent samples can be approximated

via

∑𝑟
𝑖

∑
𝒈∈𝑆𝑖 ,𝒈′∉𝑆𝑖 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿) and |X| can be estimated

using a combinatorial counting procedure. Thus, the above corol-

lary reflects the fact that error on inconsistent samples cannot be

reduced due to label un-identifiability.

As mentioned before, the generalization bound by HaoChen et

al. [15] for SpecLoss is a function of 𝛼 . Deriving a lower bound

on 𝛼 will allow us to comment exactly when error is likely to

become vacuous. To this end, we need a final definition of partition
dissimilarity that induces a notion of clustering of similar datapoints

in our analysis.

Definition 3.8 (Partition Dissimilarity). Let 𝑆1, . . . , 𝑆𝑟 be an 𝑟 -way

partition of X. Then, we define the partition dissimilarity for a

given partition as

𝜙X (𝑆𝑖 ) =
∑
𝒈∈𝑆,𝒈′∉𝑆 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)∑
𝒈∈𝑆 |{𝒈′ |𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿}| .

Intuitively, we use the partitions induced by ℎ as a proxy for

class labels and co-occurrence as a notion of similarity (see Lemma

3.2). Then, the quality of the partition is determined by the ratio of

the samples that belong to a given partition, but are also similar to

samples from other partitions, to the total number of samples that

are close to the partition. Note that partition dissimilarity is an often

studied term in clustering problem and a general version of con-

ductance, the property used for spectral clustering on a similarity

graph which forms the basis of SpecLoss [15].

We are now ready to state our main result that re-derives the

generalization error of SpecLoss in terms of GGAs, using the def-

initions of co-occurring pairs (Def. 3.4) and dissimilar partitions

(Def. 3.8). Notably, we will decompose bound in terms of the num-

ber of co-occurring augmentation-pairs within the same parti-

tion and the number of pairs that cross partitions, which are de-

fined respectively as, 𝜆 =
∑
𝒈∈𝑆∗,𝒈′∈𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿), and

𝜇 =
∑
𝒈∈𝑆𝑖 ,𝒈′∉𝑆𝑖 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿).

Theorem 3.9 (Generalization Bound for SpecLoss with GGA). As-
sume the representation dimension 𝑘 ≥ 2𝑟 and Assm. 3.7 holds for

𝛼 ≥ 0. Let 𝐹 be a hypothesis class containing a minimizer 𝑓 ∗𝑝𝑜𝑝 of
SpecLoss, L(𝑓 ), which produces a ⌊𝑘/2⌋-way partition of X denoted
by {𝑆∗}. Let its most dissimilar partition have dissimilarity denoted
by 𝜌 ⌊𝑘/2⌋ = min𝑖 𝜙 (𝑆𝑖 ∈ {𝑆∗}). Then, 𝑓 ∗𝑝𝑜𝑝 has a generalization error
bounded as:

E(𝑓 ∗𝑝𝑜𝑝 ) ≤ 𝑂

(
𝛼/𝜌2⌊𝑘/2⌋

)
= 𝑂

(
𝑟

|X|

[
𝜇 + 2𝜆 + 𝜆2

𝜇

] )
,

Discussion. By deriving expressions for 𝛼 and 𝜙 as well as

equivalently representing the original bound in terms of the more

intuitive expressions, 𝜇 and 𝜆, we can gain insights into several em-

pirical and intuitive observations in graph CL. We will study these

points further in Sec. 5 via a synthetic dataset that was motivated

from the analysis above and allows more fine-grained evaluation.

Invariance and Relevance of Augmentations. GGAs assume that

limited changes to a graph’s structure will not alter its semantics

and aggressively increasing augmentation strength will eventu-

ally harm generalization. However, through our analysis, we see

that the generalization error bound is non-decreasing with respect

to 𝛿 when
𝜆2

𝜇 ≤ 𝜇, i.e., the number of cross partition pairs domi-

nates the expression, as this ratio depends on 𝛿 . Indeed, for some

𝛿 ′ = 𝛿 + 𝜖 , where 𝜖 > 0, 𝜇𝛿′ =
∑
𝒈∈𝑆𝑖 ,𝒈′∉𝑆𝑖 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿) +∑

𝒈∈𝑆𝑖 ,𝒈′∉𝑆𝑖 1(2𝛿 ≤ 𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿+𝜖) = 𝜇𝛿+
∑
𝒈∈𝑆𝑖 ,𝒈′∉𝑆𝑖 1(2𝛿 ≤

𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿 + 𝜖). Thus, the number of cross partitions is al-

ways non-decreasing with respect to 𝛿. Thus, we clearly see that
when augmentations are agnostic of the task, their corresponding
invariances yield poor representations with vacuous generalization.

Separability. Our analysis also demonstrates that the success

of a particular augmentation strength is dependent on the GED

between samples belonging to different classes. Given that inter-

class GED is an intrinsic dataset property that proxies dataset sep-

arability, this implies that there are combinations of datasets and

augmentation strengths for which GGAs will necessarily incur

vacuous bounds, even for low augmentation strengths. In such

settings, augmentations that improve recoverability and induce

task-relevant invariances are necessary to improve downstream

task performance. While many works have conjectured that task-

relevant graph augmentations will improve performance, ours is

the first to demonstrate why they are needed. Indeed, in 4, we find

that GGAs are unable to induce such invariances on benchmark

datasets.

Recoverability. As shown in Thm. 3.9, better recoverability will

improve the tightness of the generalization bound. However, we

see that from Coll. 3.7, that recoverability will only decrease as 𝛿

increases and as discussed above, there exist datasets where GGAs

are not amenable. This further motivates the need for task-relevant

augmentations so that the effects of poor augmentations are disen-

tangled from method performance.

4 A CLOSER LOOK AT THE EFFECTIVENESS
OF INVARIANCE TO GGA

In the preceding section, we demonstrated how recoverability and

separability bounds generalization error.

Though computing these properties directly is intractable on

benchmark datasets, our analysis above graph-based learning and
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Figure 1: Invariance vs. KNN Acc. The change in invariance (Inv.)
and accuracy w.r.t. to an untrained model is plotted, where Inv. is
measured according to [19]. Noticeably, Inv. has not significantly
increased for many datasets/methods, improved Inv. does not neces-
sarily entail better performance (see Reddit), and AAGAE/GAE often
sees decreased Inv., which we suspect is due to using a decoder.

prior works on visual learning [17, 18, 20] show that if augmenta-

tions induce invariances that are task-relevant, downstream error

should reduce. This corresponds to meaningfully related samples

having similar representations (recoverable) and unrelated samples

having dissimilar representations (separable). However, by using

augmentation techniques that perturb topology or features con-

strained to a small fraction of the original graph, existing graph SSL

methods assume such perturbations are relevant to the downstream

task. If this is indeed the case, our analysis suggests we should see

improvement in performance with increased invariance. To this

end, we perform the following experiment.

Experimental Setup:We evaluate seven graph SSL methods on seven,

popular benchmark datasets. Specifically, we use the following rep-

resentative algorithms: (i) GraphCL [22], a popular and effective

graph CL method; (ii) GAE, Graph Autoencoder [34] that uses a

reconstruction cost to learn representations; (iii) Augmentation-

Augmented Autoencoder [33], which we adapt to graphs to create

the Augmentation Augmented Graph Autoencoder (AAGAE) that
minimizes the reconstruction error between the reconstruction for

an augmented sample and the original.; (iv) SpecCL, which uses the

SpecLoss [15] for contrastive training; (v) SimSiam [2], a positive-

sample-only framework that uses stop gradient; (vi) BYOL [21],

which avoids negatives samples by using asymmetric branches

alongside a stop gradient operation; and (vii) Untrained represen-
tations, which have been observed to be surprisingly competitive

baselines for graph-based learning [31, 39–41]. To the best of our

knowledge, ours is the first work to evaluate AAGAE and SpecCL

for graph SSL. We use the same augmentations and encoder archi-

tecture as GraphCL. We add a straight-through estimator [42] to

GAE/AAGAE’s decoder for better training. For more experimen-

tal details, including the performance of all methods, please see

appendix D.

Training, invariance, and what standard benchmarks can-
not tell us. To measure whether augmentations have induced in-

variance, we measure recoverability using the representational sim-

ilarity measures introduced by Wang and Isola [19]. Called Align-

ment and Uniformity, the two measures are a generalized version of

the InfoNCE loss and also encompass other contrastive losses, such

as SpecLoss. Formally, alignment is defined as: L
align

(𝑓 ;A) ≜

E(𝒈,𝒈′)∼A(· |𝒈)
[
∥ 𝑓 (𝒈) − 𝑓 (𝒈′)∥2

2

]
. To determine if the invariance

is task-relevant, we determine if improved alignment is indicative

of improved performance with respect to an untrained baseline

model.

Results. Fig. 1 shows the difference in invariance and 𝑘NN with

respect to an untrained model’s accuracy, averaged over 10 seeds.

As can be seen, there is not noticeable correlation between invari-

ance and accuracy, especially with respect to the untrained baseline.

Notably, on the Reddit dataset, all methods have improved invari-

ance, but do not have significantly better kNN accuracy. Overall,

this experiment demonstrates that learning invariance to GGAs

is both difficult and often unrelated to task performance, clearly

indicating the GGAs struggle to induce task-relevant invariances

and do not support recoverable, separable latent spaces needed for

good generalization. Moreover, given that GGAs have unknown

recoverability on standard datasets, and that trained models were

not able to sufficiently outperform untrained baselines, there is

need for new datasets where it is possible to go beyond GGA and

where we can better understand the merits of different graph SSL

paradigms.

5 EVALUATING GRAPH SSL VIA A NEW
SYNTHETIC BENCHMARK

Our analysis indicates the role played by recoverability and separa-

bility under task-relevant invariances plays a dramatic role on gen-

eralization performance. However, given our results that GGAs do

not enable any of these properties and the fact that task-relevance

is difficult to define on existing benchmark datasets, empirical veri-

fication of our claims requires a dataset that directly enables control

over the data generation process. We thus introduce a synthetic

dataset that allows us to illustrate how invariance and class separa-

bility must be jointly considered when designing augmentations.

5.1 Synthetic Data Generation Process
Given that standard benchmark datasets and augmentation prac-

tices are uninformative when evaluating the recoverability and

invariance of augmentations, we propose a synthetic data genera-

tion process that allows us to understand how the data-dependent

assumptions of SSL hold for graph datasets. This process not only

enables oracle augmentations where recoverability is known, but

also allows us some control over dataset separability.

The design of our data generation process is motivated by a

recent theoretical work that seeks to understand how CL, data

augmentation, and data generation processes are related. Using a

latent variable model, Kugelgen et al. [17] show that self-supervised

training with data augmentation is able to recover a style vs. con-
tent partition in the latent representation space. Here, style repre-
sents information that is irrelevant to the downstream task and

can be perturbed (i.e., augmented) without changing sample se-

mantics, while content represents task-relevant information and

should be preserved. The proposed data generation process creates

graph samples that can be decomposed into style vs. content and

allows for control over this trade-off (see Figure 3). While design-

ing content-aware augmentations for arbitrary graph datasets is

a hard problem [39], with oracle knowledge of the content in this

dataset, we can evaluate content-aware augmentations (CAA) with
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Figure 2: Synthetic Dataset Generation. A class-specific motif (shown in red) completely determines the label, and is therefore considered
“content". To vary the amount of style, the size of the background tree graph (shown in blue) is a ratio of the number of “content” nodes. Our
dataset goes beyond binary benchmarks and allows for content-aware augmentations, a critical component to understanding graph SSL.

high recoverability at varying levels of separability, approximated

through different style levels.

Generation Process: The proposed data generation process

has three components: a set of 𝐶 motifs, M, that uniquely deter-

mine 𝐶 classes; a random graph generator, 𝑅𝐵𝐺 (𝑛), parameterized

by the number of nodes (we can equivalently define this based

on number of edges); and 𝜅, the style multiplier, which controls

how much irrelevant information a sample contains. To generate

a sample, we attach a randomly generated background graph (i.e.,
style component) to a motif (i.e., content) according to the style

multiplier. This simple process addresses several limitations often

encountered in graph CL evaluation. Specifically, it (i) allows for

varying levels of content-aware augmentation (i.e., edges that can
be perturbed in the background graph without harming the motif);

(ii) is easily extended beyond binary classification; (iii) contains

relatively large number of samples; and (iv) offers a natural test bed

for GNN size generalization or transfer learning [43].

5.2 Identifying Regimes of Success for GGA and
CAA

Several real graph datasets can be understood through a style vs.

content perspective. For example, in drug discovery tasks [44],

molecules can be split into functional groups (content) and carbon

rings or scaffold structure (style). One may thus ask: how does

varying levels of style vs. content affect the performance of graph

URL algorithms, and how do different algorithms benefit from the

use of content-aware augmentations? To answer these questions,

we conduct the following experiment:

Experimental Setup. Let 𝐶 = 6, 𝜅 = 4 and define 𝑅𝐵𝐺 (𝑛)
through a random tree generator, where 𝑛 is number of the nodes

belonging the motif, scaled by 𝜅. Node features are a constant 10-

dimensional vector. To increase task difficulty, we randomly insert

between 1-3 motif copies into each sample. Using the specified

instaniation of the generation process, we train GraphCL, AAGAE,

GAE, and SpecLoss with content-preserving edge dropping and

random edge dropping at 20% and 60% augmentation strength.

We also evaluate two recently proposed automated augmentation

methods, JOAO [29] and AD-GCL[31]. JOAO is trained with a GGA

prior and an expanded GGA prior that includes content-preserving

edge dropping. AD-GCL is trained using a learnable edge-dropping

augmentor. A 5-layer GIN encoder is used andmodels are trained for

60 epochs using Adam (with a learning rate of 0.01). After training,

all models are evaluated using the linear probe protocol [1] at

varying style ratios. Given that style information is not relevant

to the downstream task, we expect models that have truly learned

invariance to this information will retain strong performance across

different ratios. See appendix D for more model details.

Results. Our results in Figure 3 clearly show the value of CAAs.

We make several observations. (i) Contrastive methods respond the

best to CAAs, yielding high robustness to irrelevant information

(style), showing the direct value of incorporating task-relevance. (ii)

As the amount of style increases, the problem inherently becomes

harder for reconstruction based methods, as the model must learn

to reconstruct increasing amounts of irrelevant information. Indeed,

we see that the performance of all reconstruction-based methods

decreases as style increases. With mild random augmentations,

AAGAE performs comparably to GAE, and with aggressive random

augmentation it performs worse. Content-aware augmentations

significantly improve the performance of AAGAE over baseline

augmentations, but it is unable to match that of contrastive methods.

(iii) The gain from CAA in high-style regimes is less pronounced

for reconstruction approaches than for GCL. This may partially be

attributed to increased difficulty in reconstructing larger graphs. It

may also suggest that other framework components, such as more

expressive architectures [45–49] and sampling strategies [2, 21, 50],

must also be developed before reconstruction-based methods are

able to see similar success to visual SSL and graph CL. (iv) We see in

Figure 3 that automated methods are unable to learn augmentation

strategies that induce style invariance. Indeed, JOAO is unable to
find such a solution even when the augmentation prior includes CAAs.
We suspect this is due to their use of bi-level optimization objectives,

which are known to be difficult to optimize and prone to finding

locally optimal solutions. Overall, this experiment demonstrates

that automated methods can be brittle and discovering meaningful

content-aware evaluations in the wild is challenging for the current

state of the art. This makes the proposed benchmark, where we

can define content-aware augmentations with oracle knowledge,

valuable to evaluate such methods.

5.3 Invariance vs. Separability
We now use our synthetic benchmark to investigate how invariance

balances off with the critical assumption of class separability in the

latent space. Invariance, while desirable as discussed previously, if

considered in isolation could be trivially satisfied by representation
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Figure 3: Style Invariance Across Paradigms: We evaluate the performance of contrastive and reconstruction approaches with CAAs and GGAs
with varying style vs. content ratios. As expected, reconstruction methods perform best in low style regimes, and CAAs improve graph CL
performance. Notably, AD-GCL and JOAO do not learn augmentations that induce style-invariance. JOAO is unable to find such a solution even
when the prior augmentation set is expanded to include CAAs.

collapse, where all graphs are mapped to highly similar representa-

tions and are not meaningful for distinguishing classes.

Experimental Setup. Using a synthetic dataset at 𝜅 = 6, we

train GraphCL with content-preserving edge dropping and random

edge dropping at 20% augmentation strength. We compute an in-

variance score for each natural sample by computing the average

cosine similarity of its representation with that 30 different aug-

mented versions. We compute a separability score by dividing the

maximum cosine similarity to a sample of the same class by the

maximum cosine similarity to a sample of another class.

Results. Generic graph augmentations trade off separability

for invariance by collapsing representations. Figure 4 shows ker-

nel density estimates of the number of samples that have a given

invariance versus separability, using both random and content-

preserving augmentations. Representations from the model trained

using GGA have somewhat higher invariance but much lower sep-

arability scores. This is likely evidence of model collapse; indeed,

with a higher augmentation strength of 60%, we found that using

GGA produced invariance and separability scores very close to 1

for all samples, indicating that all samples had similar representa-

tions (i.e. strong collapse). On the other hand, CAAs help GraphCL

achieve over an order of magnitude higher separability and still

preserve comparably high invariance. We observed similar trends

for SpecLoss.

6 CONCLUSION
In this work, we study the interplay between data-dependent prop-

erties, such as recoverability of augmentations and class separability,

and the efficacy of self-supervised graph representation learning

approaches. We first theoretically obtain the generalization error

bound for GCL with popular, generic graph augmentations and

show that it is linked to the average graph edit distance between

classes. Next, we demonstrate that popular, generic graph aug-

mentations do not induce invariance that is necessarily useful to

the downstream tasks. Finally, to better understand the benefits

of recoverable, (i.e. content-aware ) augmentations, we introduce

a new synthetic data generation process, and identify regimes of

success for GAA and content-aware augmentations. In summary,

our work offers an empirical and analytical framework to develop
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Figure 4: Invariance vs. Separability. On our synthetic data with style-
to-content ratio 𝜅 = 6 and 20% augmentation strength, GraphCL
trained with random augmentations produces representations with
high invariance but low separability, indicating model collapse. In
contrast, using content preserving augmentations lead to almost as
high invariance but much greater separability.

unsupervised graph representation learning algorithms that are

better aligned with data-dependent properties.

REFERENCES
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A

simple framework for contrastive learning of visual representations. In ICML,
2020.

[2] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning.

CoRR, abs/2011.10566, 2020.
[3] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Bar-

low twins: Self-supervised learning via redundancy reduction. arXiv preprint
arXiv:2103.03230, 2021.

[4] Kaiming He, Haoqi Fan, YuxinWu, Saining Xie, and Ross B. Girshick. Momentum

contrast for unsupervised visual representation learning. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020, pages 9726–9735. IEEE, 2020.

[5] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and

Armand Joulin. Unsupervised learning of visual features by contrasting cluster

assignments. In NeurIPS, 2020.
[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr

Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision

transformers. In Proceedings of the International Conference on Computer Vision
(ICCV), 2021.



MLG Workshop at KDD, 2022, Washington, D.C. Trivedi, Lubana, Heimann, Koutra and Thiagarajan

[7] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding.

In ECCV, 2020.
[8] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with

contrastive predictive coding. CoRR, 2018.
[9] R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip

Bachman, Adam Trischler, and Yoshua Bengio. Learning deep representations

by mutual information estimation and maximization. In ICLR, 2019.
[10] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using

self-supervised learning can improve model robustness and uncertainty. In In
Proc. of NeurIPS, 2019.

[11] Hong Liu, Jeff Z. HaoChen, Adrien Gaidon, and Tengyu Ma. Self-supervised

learning is more robust to dataset imbalance. CoRR, abs/2110.05025, 2021.
[12] Linus Ericsson, Henry Gouk, and Timothy M. Hospedales. How well do self-

supervised models transfer? In CVPR, 2021.
[13] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S.

Pande, and Jure Leskovec. Strategies for pre-training graph neural networks. In

ICLR, 2020.
[14] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and

Nikunj Saunshi. A theoretical analysis of contrastive unsupervised representation

learning. CoRR, 2019.
[15] Jeff Z. HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees

for self-supervised deep learning with spectral contrastive loss. CoRR, 2021.
[16] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip

Isola. What makes for good views for contrastive learning? In NeurIPS, 2020.
[17] Julius von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard

Schölkopf, Michel Besserve, and Francesco Locatello. Self-supervised learn-

ing with data augmentations provably isolates content from style. CoRR,
abs/2106.04619, 2021.

[18] Roland S. Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and

Wieland Brendel. Contrastive learning inverts the data generating process. In

ICML, 2021.
[19] Tongzhou Wang and Phillip Isola. Understanding contrastive representation

learning through alignment and uniformity on the hypersphere. In ICML, 2020.
[20] Senthil Purushwalkam and Abhinav Gupta. Demystifying contrastive self-

supervised learning: Invariances, augmentations and dataset biases, 2020.

[21] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H.

Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan

Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos,

and Michal Valko. Bootstrap your own latent - A new approach to self-supervised

learning. In NeurIPS, 2020.
[22] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and

Yang Shen. Graph contrastive learning with augmentations. In NeurIPS, 2020.
[23] Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view repre-

sentation learning on graphs. In ICML, 2020.
[24] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos,

Petar Velickovic, and Michal Valko. Bootstrapped representation learning on

graphs. CoRR, abs/2102.06514, 2021.
[25] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph

contrastive learning with adaptive augmentation. WWW, 2020.

[26] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsu-

pervised and semi-supervised graph-level representation learning via mutual

information maximization. In ICLR, 2020.
[27] Yao-Hung Hubert Tsai, Yue Wu, Ruslan Salakhutdinov, and Louis-Philippe

Morency. Self-supervised learning from a multi-view perspective. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021.

[28] Colin Wei, Kendrick Shen, Yining Chen, and Tengyu Ma. Theoretical analysis of

self-training with deep networks on unlabeled data. In ICLR, 2021.
[29] Yuning You, Tianlong Chen, Yang Shen, and ZhangyangWang. Graph contrastive

learning automated. In ICML, 2021.
[30] Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem,

Gavin Taylor, and Tom Goldstein. FLAG: adversarial data augmentation for

graph neural networks. CoRR, 2020.
[31] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph

augmentation to improve graph contrastive learning. NeurIPS, 2021.
[32] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-

covariance regularization for self-supervised learning. CoRR, 2021.
[33] William Falcon, Ananya Harsh Jha, Teddy Koker, and Kyunghyun Cho. AAVAE:

augmentation-augmented variational autoencoders. CoRR, 2021.
[34] Thomas N. Kipf and Max Welling. Variational graph auto-encoders. CoRR, 2016.
[35] Weiran Huang, Mingyang Yi, and Xuyang Zhao. Towards the Generalization of

Contrastive Self-Supervised Learning. arXiv, abs/2111.00743, 2021.
[36] Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised

Learning Dynamics without Contrastive Pairs. In Proc. Int. Conf. on Machine
Learning (ICML), 2021.

[37] Maria-Florina Balcan, Avrim Blum, and Ke Yang. Co-training and expansion:

Towards bridging theory and practice. In NIPS, 2004.

[38] Nikunj Saunshi, Jordan Ash, Surbhi Goel, Dipendra Misra, Cyril Zhang, Sanjeev

Arora, Sham Kakade, and Akshay Krishnamurthy. Understanding contrastive

learning requires incorporating inductive biases, 2022.

[39] Puja Trivedi, Ekdeep Singh Lubana, Yujun Yan, Yaoqing Yang, and Danai Koutra.

Augmentations in graph contrastive learning: Current methodological flaws &

towards better practices. CoRR, abs/2111.03220, 2021.
[40] Thomas N Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. In ICLR, 2017.
[41] Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. Self-

supervised graph-level representation learning with local and global structure.

In ICML, 2021.
[42] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with

gumbel-softmax. In ICLR, 2017.
[43] Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From

local structures to size generalization in graph neural networks. In International
Conference on Machine Learning, pages 11975–11986. PMLR, 2021.

[44] Marinka Zitnik, Rok Sosič, and Jure Leskovec. Prioritizing network communities.

Nature Communications, 2018.
[45] Ting Chen, Simon Kornblith, Kevin Swersky, MohammadNorouzi, and Geoffrey E.

Hinton. Big self-supervised models are strong semi-supervised learners. In

NeurIPS 2020, 2020.
[46] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are

graph neural networks? In ICLR, 2019.
[47] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. Graph attention networks. In ICLR, 2018.
[48] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Velickovic.

Principal neighbourhood aggregation for graph nets. In NeurIPS, 2020.
[49] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation

learning on large graphs. In NeurIPS, 2017.
[50] Y. Kalantidis, M. Bülent Sariyildiz, N. Pion, P. Weinzaepfel, and D. Larlus. Hard

negative mixing for contrastive learning. In NeurIPS, 2020.
[51] Pinar Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In SIGKDD,

2015.

[52] Nils M. Kriege and Petra Mutzel. Subgraph matching kernels for attributed

graphs. In ICML, 2012.
[53] KarstenM. Borgwardt, Cheng SoonOng, Stefan Schönauer, S. V. N. Vishwanathan,

Alexander J. Smola, and Hans-Peter Kriegel. Protein function prediction via graph

kernels. In Proceedings Thirteenth International Conference on Intelligent Systems
for Molecular Biology, 2005.

[54] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,

and Karsten M. Borgwardt. Weisfeiler-lehman graph kernels. J. Mach. Learn.
Res., 2011.

[55] Nikil Wale and George Karypis. Comparison of descriptor spaces for chemical

compound retrieval and classification. In (ICDM, 2006.

[56] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,

Kuansan Wang, and Jie Tang. GCC: graph contrastive coding for graph neural

network pre-training. In SIGKDD. ACM, 2020.

[57] Zekarias T. Kefato and Sarunas Girdzijauskas. Self-supervised graph neural

networks without explicit negative sampling. CoRR, 2021.
[58] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver J. Woodford, Meng Jiang, and Neil

Shah. Data augmentation for graph neural networks. CoRR, 2020.
[59] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John P. Dickerson, Christoph

Studer, Larry S. Davis, Gavin Taylor, and Tom Goldstein. Adversarial training

for free! In NeurIPS, 2019.
[60] Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, and Philip S. Yu. Graph

self-supervised learning: A survey. CoRR, abs/2103.00111, 2021.
[61] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang.

Generative image inpainting with contextual attention. CoRR, abs/1801.07892,
2018.

[62] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. When does

self-supervision help graph convolutional networks? CoRR, abs/2006.09136, 2020.
[63] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,

and R. Devon Hjelm. Deep graph infomax. In ICLR, 2019.



Understanding Self-Supervised Graph Representation Learning from a Data-Centric Perspective MLG Workshop at KDD, 2022, Washington, D.C.

A REPRODUCIBILITY
For reproducibility, we have included code at https://anonymous.4open.science/r/gcl_recon_22-F44C/. Code is under-development and will

be finalized soon.

B GENERIC GRAPH AUGMENTATIONS AND GRAPH EDIT DISTANCE
The key insight for our analysis in Sec. 3 is that GGAs can be instantiated in a general manner as a composition of graph edit operations.

This allows us to derive a unifying assumption related to recoverability and separability in terms of the graph edit distance (GED) between

samples. Here, we provide proofs and additional discussion for the statements made in Sec. 3. We also discuss how our analysis can be

interpreted with respect to the population augmentation graph (PAG) proposed by HaoChen et al. [15].

Table 2: Notation

Symbol Definition

X The original or natural dataset.

X Set of all augmented data.

𝒈 ∈ X Natural (attributed) graph sample.

𝒈,𝒈′ ∈ X Augmented (attributed) graph samples

E𝒈 Edge set of 𝒈.
V𝒈 Node set of 𝒈.

𝛾 ∈ [0, 1] Augmentation strength. Controls the % of edges or nodes that may be perturbed by the

selected augmentation.

A(𝒈) The set of augmented samples that can be generated from Augmentation, A, given

natural sample 𝒈 and 𝛾 .

A(·|𝒈) Distribution of augmentations given a natural sample, 𝒈.
A(𝒈 |𝒈) Probability of generating 𝒈 from 𝒈 given augmentation A.

B.1 GGA and Graph Edit Distance
Graph edit distance (𝐺𝐸𝐷) is used to capture similarity between two graphs. Intuitively, it captures the cost of making elementary edit

operations on a graph, 𝑔1, to transform it to be isomorphic to another graph, 𝑔2. Formally,

Definition B.1 (Graph Edit Distance (Defn. 3.1)). Let the elementary graph operators (node insertion, node deletion, edge deletion, edge addition),
and the categorical feature replacement operator comprise the set of graph edits. Then,𝐺𝐸𝐷 (𝑔1, 𝑔2) = min(𝑒1,...,𝑒𝑘 ) ∈P (𝑔1,𝑔2)

∑𝑘
𝑖=1 𝑐 (𝑒𝑖 ), where

P (𝑔1, 𝑔2) is the set of paths (series of edit operations) that transforms 𝑔1 to be isomorphic to 𝑔2. Here, 𝑒𝑖 is 𝑖-th edit operation in the path,

and 𝑐 (𝑒𝑖 ) is the cost for performing the edit.

Table 3: Generic Graph Augmentations vs. Graph Edit
Operators. (Reproduced. Table 1.) GGA can be straight-
forwardly expressed using graph edit operators.

Augmentations Graph Edit Operators

Node Dropping Node Deletion

Edge Perturbation Edge Deletion, Edge Addition

Categorical Attribute Masking Categorical Feature Replacement Operator

Sub-graph Sampling Node Deletions

As shown in Table. 1, elementary graph edit operators can be used to straight-

forwardly represent the node dropping, edge perturbation and sub-graph sam-
pling generic graph augmentations [22]. By introducing an additional graph

operator, categorical feature replacement, we are also able to consider distance

with respect to categorical node attributes. This operator performs a “replace-

ment” whenever there is a disagreement between 𝑔1 and 𝑔2’s node attributes.

Then, the GED is the total cost of structural changes and attribute disagree-

ments between two graphs. Here, we assign a unit cost per operation so all

operations are treated equally. Assigning cost to reflect different inductive

biases over augmentations is an interesting direction left for future work. Next,

we briefly discuss some examples of using graph edit operators to represent

GGAs.

Let (𝒈,𝒈) represent the original and augmented graph respectively, where we perform node dropping to obtain 𝒈. Recall that the node
dropping augmentation may only drop up to some fraction of nodes in 𝒈. Then, clearly the minimum cost path can then be found using

only node deletion operators, and the 𝐺𝐸𝐷 (𝒈,𝒈) is bounded by the number of allowed node drops. Similarly, if 𝒈 was obtained through

the edge perturbation augmentation, which randomly adds or removes a fraction of edges, then 𝐺𝐸𝐷 (𝒈,𝒈) is bounded by the number of

allowable edge modifications and can be obtained using only edge addition/deletion operators. (Here, we allow nodes without edges to still

exist, so performing node addition/deletion would not result in a lesser GED.) The sub-graph sampling augmentation extracts a connected

sub-graph that contains at most a fraction of total nodes. The minimum cost path can then be defined using only node deletions, e.g. where
the operator is applied to all nodes not in the sampled sub-graph. Therefore, 𝐺𝐸𝐷 (𝒈,𝒈) is bounded by |𝒈 | − |𝒈 |. As discussed above, the

https://anonymous.4open.science/r/gcl_recon_22-F44C/
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categorical attribute masking augmentation can be recovered by directly applying the categorical feature replacement operator. Then, the

minimum cost path is then the number of differences between the augmented and original samples’ node attributes. We formalize the

relationships between augmentations and GED in the following Lemmas.

Lemma B.2. Allowable augmentations can be expressed using GED. (Reproduction of Lemma 3.2) Let 𝒈 be a natural sample in X, A
be some GGA, 𝒈 ∼ A(·|𝒈) be an augmented sample generated from 𝒈 and 𝛾 be the augmentation strength or the fraction of the graph that GGAs
may modify. Then, 𝛿 ∈ {⌊𝛾 |V𝒈 |⌋, ⌊𝛾 |E𝒈 |⌋} represents the number of discrete, allowable modifications for the specified GGA, so𝐺𝐸𝐷 (𝒈,𝒈) ≤ 𝛿.

Correspondingly, we have 𝒈 ∈ A(𝒈) ⇔ 𝐺𝐸𝐷 (𝒈,𝒈) ≤ 𝛿 .

Proof. Let P be the shortest path comprised of the edit operators defined in Table. 1 for the given GGA, A. Then, given that at most 𝛿

discrete modifications are permitted and each operator has unit cost, len(P) ≤ 𝛿 and

∑
𝑒𝑖 ∈P 𝑐 (𝑒𝑖 ) ≤ 𝛿 . Thus, 𝐺𝐸𝐷 (𝒈,𝒈) ≤ 𝛿. □

Lemma B.3. Upper-bound on Size of Augmentation Set. The size of 𝐴(𝒈) can be upper-bounded through a combinatorial counting process.
For example, to determine 𝐴(𝒈) when the considered augmentation is node dropping, we can delineate all sets of possible nodes with size up-to
𝛾 |V𝒈 |. Formally, the upper-bound on the number of samples generated using node dropping are:

|A(𝒈) | ≤
𝛾 |V𝒈 |∑︁
𝑗=1

|V𝒈 |!
( |V𝒈 | − 𝑗)! 𝑗 !

We note that this value is an upper-bound because isomorphic pairs are treated as two separate graphs. Furthermore, note the size of the
augmentation set grows exponentially with graph size. A similar counting process can be used to determine the number of possible augmented
samples obtained through edge perturbation, sub-graph sampling or feature masking. For example, the edge-dropping augmentation could be

counted as: |A(𝒈) | ≤ ∑ |𝛾E𝒈 |
𝑗=1

|E𝒈 |!
( |E𝒈 |−𝑗)!𝑗 ! .

We further note that because generic graph augmentations (GGAs) perturb the graph randomly, each augmented sample, 𝒈 ∈ A(𝒈), is
equally likely, e.g., A(𝒈 |𝒈) = 1

|A | .

C DETAILS FOR GENERALIZATION ANALYSIS
As discussed in Sec. 2, recent analyses have found that SSL generalization error can be bounded under the assumptions of invariance to

relevant augmentations, recoverability, and separability. Indeed, in Sec. 3, we demonstrated how GGAs and GED influence these properties

by deriving a generalization bound tailored for graph data. At a high-level, to find this bound, we derived expressions for recoverability, 𝛼 ,

and separability, 𝜌 , based on graph edit distance, and then used these expression to recover the SpecCL bound. We then performed some

additional manipulation to derive the final expression presented in 3.9. Here, we provide the details and proofs behind these steps. We begin

by restating the Separability plus Recoverability assumption.

Assumption C.1 (Separability plus Recoverability Assumption, (Reproduction of Assm. 3.3)). Let 𝒈 ∈ X and 𝑦 (𝒈) be its label, and
𝒈 ∼ A(·|𝒈). Assume that there exists a classifier ℎ, such that ℎ(𝒈) = 𝑦 (𝒈) with probability at least 1 − 𝛼 . We refer to 𝛼 as the error of ℎ.

Now, recall from Sec. 3, that ℎ will incur irreducible error on inconsistent samples, which are defined as follows:

Corollary C.2. (Co-occuring augmentations.,Reproduction of Coll. 3.4) Let 𝒈 ∈ X and 𝒈,𝒈′ ∈ X. Then, 𝒈 ∼ A(𝒈) ∧ 𝒈′ ∼ A(𝒈) ⇔
𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿 , where 𝛿 = min{⌊𝛾 |V𝒈 |⌋, ⌊𝛾 |E𝒈 |⌋ ⌊𝛾 |V𝒈 |⌋, ⌊𝛾 |E𝒈 |⌋}.

Proof. Recall, that 𝒈 ∼ A(𝒈) ⇐⇒ 𝐺𝐸𝐷 (𝒈,𝒈) ≤ 𝛿 and 𝒈′ ∼ A(𝒈) ⇐⇒ 𝐺𝐸𝐷 (𝒈′,𝒈) ≤ 𝛿 . Then,𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿 and are co-occurring

augmentations as they both belong to A(𝒈). □

Definition C.3 (Inconsistent Samples, Reproduction of Defn. 3.5). Let 𝒈 ∈ X, and 𝑦 : X → 𝑟 be a labeling function. Further, let

X𝑖𝑛 = {𝒈 |𝒈 ∈ X ∧𝐺𝐸𝐷 (𝒈,𝒈) ≤ 𝛿} be the set of natural samples that may have generated 𝒈 and 𝑌 ∗
𝑖𝑛

= {𝑦 (𝒈) |𝒈 ∈ X𝑖𝑛} be the set of unique
labels. If 𝒈 is an inconsistent sample, |𝑌 ∗

𝑖𝑛
| > 1.

Now, we fix the behavior of ℎ on inconsistent samples such that ℎ(𝒈) = 𝑦, for some fixed 𝑦 ∈ 𝑌 ∗
𝑖𝑛
. Then, ℎ induces an 𝑟 -way partition over

X, such that each sample, 𝒈, belongs to a partition, Sℎ (𝒈). Further, because ℎ will always incur error on inconsistent samples, 𝛼 can be lower

bounded by the ratio of inconsistent to total samples. To this end, we use GED to identify inconsistent samples by identifying disagreement

amongst partitions as follows.

Lemma C.4 (Using GED to identify inconsistent samples, Reproduction of Lemma 3.6). Let 𝒈,𝒈′ ∈ X and 𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿 such that
𝒈 ∈ S𝑖 ∧ 𝒈′ ∈ S𝑗 and 𝑖 ≠ 𝑗 , where partitions are induced by ℎ. Then, at least one 𝒈̃ ∈ {𝒈,𝒈′} must be an inconsistent sample.

Proof. By definition, 𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿 implies that at least one of the following must be true: (i) 𝒈
1
∈ X ∋ 𝑦 (𝒈

1
) = 𝑖 ∧𝐺𝐸𝐷 (𝒈

1
,𝒈) ≤

𝛿 ∧𝐺𝐸𝐷 (𝒈
1
,𝒈′) ≤ 𝛿 or (ii) 𝒈

2
∈ X ∋ 𝑦 (𝒈

2
) = 𝑗 ∧𝐺𝐸𝐷 (𝒈

2
,𝒈) ≤ 𝛿 ∧𝐺𝐸𝐷 (𝒈

2
,𝒈′) ≤ 𝛿. WLOG, assume (i). Now, 𝒈′ ∈ S𝑗 ⇔ ℎ(𝒈) = 𝑗 , so

𝑗 ∈ |𝑌 ∗
𝑖𝑛
|. However,𝐺𝐸𝐷 (𝒈

1
,𝒈) ≤ 𝛿 , so by Lemma 3.2 and Defn. 3.5, 𝑦 (𝒈

1
) = 𝑖 ∈ 𝑌 ∗

𝑖𝑛
. Since, 𝑖 ≠ 𝑗 , |𝑌 ∗

𝑖𝑛
| > 1, 𝒈 must be an inconsistent sample.

Note, if (ii) holds, then 𝒈′ is an inconsistent sample. □
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Note that the above lemma does not rely on ground-truth label information to identify inconsistent samples, but only GED from natural

samples. Given that the error on inconsistent samples is irreducible, as it is unclear which 𝑦 ∈ 𝑌𝑖𝑛 is correct, we can lower bound the error of

ℎ as follows:

Corollary C.5 (Error bound due to Inconsistent Samples, Reproduction of Coll. 3.7). The error of ℎ can be lower-bounded as

𝛼 ≥
∑𝑟
𝑖

∑
𝒈∈𝑆𝑖 ,𝒈′∉𝑆𝑖 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)

|X| .

Here, the number of inconsistent samples can be approximated via

∑𝑟
𝑖

∑
𝒈∈𝑆𝑖 ,𝒈′∉𝑆𝑖 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿) and |X| can be estimated using a

combinatorial counting procedure. Thus, the above corollary reflects the fact that error on inconsistent samples cannot be reduced due to

label un-identifiability.

Partition dissimilarity, which induces a notion of clustering of similar data-points in our analysis, can be defined as the following:

Definition C.6 (Partition Dissimilarity, Reproduction of Defn. 3.8). Let 𝑆1, . . . , 𝑆𝑟 be an 𝑟 -way partition ofX. Then, we define the partition

dissimilarity for a given partition as

𝜙X (𝑆𝑖 ) =
∑
𝒈∈𝑆,𝒈′∉𝑆 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)∑
𝒈∈𝑆 |{𝒈′ |𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿}| .

We can now state the main result that re-derives the generalization error of SpecLoss in terms of GGAs, using the definitions of co-occurring

pairs (Def. 3.4) and dissimilar partitions (Def. 3.8). Notably, we decompose bound in terms of the number of co-occurring augmentation-pairs

within the same partition and the number of pairs that cross partitions, which are defined respectively as, 𝜆 =
∑
𝒈∈𝑆∗,𝒈′∈𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤

2𝛿), and 𝜇 =
∑
𝒈∈𝑆∗,𝒈′∉𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿).

Theorem C.7 (Generalization Bound for SpecLoss with GGA, Reproduction of Thm 3.9). Assume the representation dimension 𝑘 ≥ 2𝑟

and Assm. 3.7 holds for 𝛼 ≥ 0. Let 𝐹 be a hypothesis class containing a minimizer 𝑓 ∗𝑝𝑜𝑝 of SpecLoss, L(𝑓 ), which produces a ⌊𝑘/2⌋-way partition
of X denoted by {𝑆∗}. Let its most dissimilar partition have dissimilarity denoted by 𝜌 ⌊𝑘/2⌋ = min𝑖 𝜙 (𝑆𝑖 ∈ {𝑆∗}). Then, 𝑓 ∗𝑝𝑜𝑝 has a generalization
error bounded as:

E(𝑓 ∗𝑝𝑜𝑝 ) ≤ 𝑂

(
𝛼/𝜌2⌊𝑘/2⌋

)
= 𝑂

(
𝑟

|X|

[
𝜇 + 2𝜆 + 𝜆2

𝜇

] )
,

Proof. The conversion from recoverability (𝛼) and conductance (𝜌) and within partition (𝜇) and across partition pairs (𝜆), can be derived

as follows. We assume that the data distribution is I.I.D and the size of the class partitions are roughly equivalent.

E(𝑓 ∗𝑝𝑜𝑝 ) ≤ 𝑂

(
𝛼/𝜌2⌊𝑘/2⌋

)
= 𝑂

©­­­«
∑𝑟
𝑖

∑
𝒈∈𝑆𝑖 ,𝒈′∉𝑆𝑖 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)

|X|
1[∑

𝒈∈𝑆∗,𝒈′∉𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤2𝛿)∑
𝑥∈𝑆∗ 𝑤𝑥

]2 ª®®®¬
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E(𝑓 ∗𝑝𝑜𝑝 ) ≤ 𝑂

(
𝛼/𝜌2⌊𝑘/2⌋

)
= 𝑂

©­­«
∑𝑟
𝑖

∑
𝒈∈𝑆𝑖 ,𝒈′∉𝑆𝑖 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)

|X|

[∑
𝑥 ∈𝑆∗ 𝑤𝑥

]
2[∑

𝒈∈𝑆∗,𝒈′∉𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)
]
2

ª®®¬
= 𝑂

©­­«
𝑟
∑
𝒈∈𝑆∗,𝒈′∉𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)

|X|

[∑
𝑥 ∈𝑆∗ 𝑤𝑥

]
2[∑

𝒈∈𝑆∗,𝒈′∉𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)
]
2

ª®®¬
= 𝑂

©­­«
𝑟
[∑

𝑥 ∈𝑆∗ 𝑤𝑥

]
2

|X|
[∑

𝒈∈𝑆∗,𝒈′∉𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)
] ª®®¬

= 𝑂
©­­«
𝑟

[∑
𝒈∈𝑆∗,𝒈′∉𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿) + ∑

𝒈∈𝑆∗,𝒈′∈𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)
]
2

|X|
[∑

𝒈∈𝑆∗,𝒈′∉𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)
] ª®®¬

= 𝑂

(
𝑟

|X|

[ [∑
𝒈∈𝑆∗,𝒈′∉𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)

]
2[∑

𝒈∈𝑆∗,𝒈′∉𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)
]

+
2

[∑
𝒈∈𝑆∗,𝒈′∉𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)∑𝒈∈𝑆∗,𝒈′∈𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)

][∑
𝒈∈𝑆∗,𝒈′∉𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)

] +
∑
𝒈∈𝑆∗,𝒈′∈𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)∑
𝒈∈𝑆∗,𝒈′∉𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)

])

= 𝑂

(
𝑟

|X|

[ ∑︁
𝒈∈𝑆∗,𝒈′∉𝑆∗

1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)

+ 2

∑︁
𝒈∈𝑆∗,𝒈′∈𝑆∗

1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿) +

[∑
𝒈∈𝑆∗,𝒈′∈𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)

]
2∑

𝒈∈𝑆∗,𝒈′∉𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)

])

(1)

Now, notice that the above equation can be understood as the number of inconsistent samples vs. the original samples. Let, 𝜆 =∑
𝒈∈𝑆∗,𝒈′∈𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿) and 𝜇 =

∑
𝒈∈𝑆∗,𝒈′∉𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿). Then, we have recovered the bound presented in Theorem 3.9.

𝑂

(
𝛼/𝜌2⌊𝑘/2⌋

)
= 𝑂

(
𝑟

|X|

[ ∑︁
𝒈∈𝑆∗,𝒈′∉𝑆∗

1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)

+ 2

∑︁
𝒈∈𝑆∗,𝒈′∈𝑆∗

1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿) +

[∑
𝒈∈𝑆∗,𝒈′∈𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)

]
2∑

𝒈∈𝑆∗,𝒈′∉𝑆∗ 1(𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿)

])

≈ 𝑂

©­­­­­­«
𝑟

|X|


𝜇︸︷︷︸

inconsistent samples

+ 2𝜆︸︷︷︸
valid samples

+

valid samples︷︸︸︷
𝜆2

𝜇︸︷︷︸
inconsistent samples


ª®®®®®®¬
.

(2)

Recall, that inconsistent samples can be determined through graph edit distance (Defn. 3.5) between augmented samples. Moreover, that

the maximum allowable edit distance between augmented samples is determined by augmentation strength. □

C.1 Connections to the Population Augmentation Graph
The original bound for SpecLoss uses the population augmentation graph (PAG). While we did not use the PAG in our analysis for ease of

exposition, we note that our analysis can be adapted for the PAG as follows:

Definition C.8 (Population Augmentation Graph [15]). Let G𝑝
be the PAG where the vertex set is all augmented data X. For any two

augmented data 𝒈,𝒈′ ∈ X, define the edge weight 𝑤𝒈𝒈′ as the marginal probability of generating 𝒈 and 𝒈′ from a random natural data

𝒈 ∼ PX :

𝑤𝒈𝒈′ := E𝒈∈PX
[A(𝒈 |𝒈)A(𝒈′ |𝒈)] . (3)
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Table 4: Dataset Description

Name Graphs Classes Avg. Nodes Avg. Edges Domain

IMDB-BINARY [51] 1000 2 19.77 96.53 Social

REDDIT-BINARY [51] 2000 2 429.63 497.75 Social

MUTAG [52] 188 2 17.93 19.79 Molecule

PROTEINS [53] 1113 2 39.06 72.82 Bioinf.

DD [54] 1178 2 284.32 715.66 Bioinf.

NCI1 [55] 4110 2 29.87 32.30 Molecule

To extend our analysis to the PAG, we show that connectivity in the PAG is also determined by GED. Then, the definition of inconsistent

samples, and partition dissimilarity (conductance) straight-forwardly follow.

Lemma C.9. Connectivity in the PAG is determined by GED. Let 𝒈,𝒈′ ∈ X, and 𝒈 ∈ X. Then,𝑤𝒈𝒈′ > 0 ⇔ 𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿.

Proof. By Lemma 3.4,𝑤𝒈𝒈′ > 0 ⇔ A(𝒈 |𝒈) > 0∧A(𝒈′ |𝒈) > 0. Moreover, ifA(𝒈 |𝒈) > 0 then, 𝒈 is the augmentation set of 𝒈. If 𝒈 ∈ A(𝒈)
then, 𝐺𝐸𝐷 (𝒈,𝒈) ≤ 𝛿 . Then,𝑤𝒈𝒈′ > 0 ⇔ 𝐺𝐸𝐷 (𝒈,𝒈) ≤ 𝛿 ∧𝐺𝐸𝐷 (𝒈′,𝒈) ≤ 𝛿 , which in turn applies,𝑤𝒈𝒈′ > 0 ⇔ 𝐺𝐸𝐷 (𝒈,𝒈′) ≤ 2𝛿 . □

Corollary C.10 (Conductance according to GGA). Recall, the conductance 𝜙𝐺 of a partition 𝑆𝑖 in a graph 𝐺 measures how many edges
cross partitions relative to total number of edges a node possesses and that A(𝒈 |𝒈) ≈ 1

|A (𝒈) | . Then,

𝜙𝐺 (𝑆𝑖 ) =
∑
𝑥 ∈𝑆,𝑥 ′∉𝑆 1(𝑤𝑥𝑥 ′ > 0)∑

𝑥 ∈𝑆 𝑤𝑥
,

where𝑤𝑥 represents the size of 𝑥 ’s edge-set.

D DATASET GENERATION AND EXPERIMENTAL DETAILS
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Figure 5: Motifs used to determine class labels.

We use the motifs shown in Fig. D to define a 6 class graph classification task. It is important to ensure that the motifs are not isomorphic,

as many GNNs are less expressive than the 1-Weisfeiler Lehman’s test for isomorphism ([46]). For each class, 1000 random samples are

generated as follows: (i) We randomly select between 1-3 motifs to be in each sample. At this time, motifs all belong to the same class, though

this condition could easily be changed for a more difficult task. (ii) We define the number of content nodes, 𝐶𝑛 , as the size of the selected

motif, scaled by the number of motifs in the sample. (iii) For a given style ratio, we determine the number of possible style nodes as 𝑆𝑛 = 𝜌𝐶𝑛
(iv). We define 𝑅𝐵𝐺 (𝑛) using networkx’s 3 random tree generator: networkx.generators.trees.random_tree. We note that other random

graph generators would also be well suited for this task. (v) For additional randomness, we create background graphs using 𝑆𝑛 ± 2, and also

randomly perturb up-to 10% of edges in sample. We repeat this set-up with 𝜌 ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.5, 8.0}
to generate the datasets used in Sec 5.

Experimental Set-up: We follow You et al. [22] for TUDataset experiments. For synthetic datasets we use the following setup. Our

encoder is a 5-layer GIN model with mean pooling. We set input node features to be a constant 10-dimensional feature vector, and a hidden

layer dimension is 32; we concatenate hidden representations for a representation dimension of 160. Models are pretrained for 60 epochs.

Subsequently, we use a linear evaluation protocol and train a linear head for 200 epochs. All models are trained with Adam, lr = 0.01.

E RELATEDWORK
Graph Data Augmentation: Unlike images, graphs are discrete objects that do not naturally lie in Euclidiean space, making it difficult to

define meaningful augmentations. Furthermore, while for images or natural language, there may be an intuitive understanding of what

changes will preserve task-relevant information, this is not the case for graphs. Indeed, a single edge change can completely change the

3
https://networkx.org/documentation/stable/
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Table 5: Selected Graph Contrastive Learning Frameworks. We provide a brief description of augmentations used by selected frameworks. Most
frameworks use random corruptive, sampling, or diffusion-based approaches to generate augmentations.

Method Augmentations

GraphCL ([22]) Node Dropping, Edge Adding/Dropping, Attribute Masking,

Subgraph Extraction

GCC ([56]) RWR Subgraph Extraction of Ego Network

MVGRL ([23]) PPR Diffusion + Sampling

GCA ([25]) Edge Dropping, Attribute Masking (both weighted by central-

ity)

BGRL ([24]) Edge Dropping, Attribute Masking

SelfGNN ([57]) Attribute Splitting, Attribute Standardization + Scaling, Local

Degree Profile, Paste + Local Degree Profile

properties of a molecular graph. Therefore, only a few works consider graph data augmentation. [58] note that a node classification task can

be perfectly solved if edges only exist between same class samples. They increase homophily by adding edges between nodes that a neural

network predicts belong to the same class and breaking edges between nodes of predicted dissimilar classes. However, this approach is

expensive and not applicable to graph classification. [30] argue that information preserving topological transformations are difficult for

the aforementioned reasons and instead focus on feature augmentations. Throughout training, they add an adversarial perturbation to

node features to improve generalization, computing the gradient of the model weights while computing the gradients of the adversarial

perturbation to avoid more expensive adversarial training [59]. This approach is not directly applicable to contrastive learning, where label

information cannot be used to generate the adversarial perturbation.

Graph Self-Supervised Learning: In graphs, recent works have explored several paradigms for self-supervised learning: see [60] for an

up-to-date survey. Graph pre-text tasks are often reminiscent of image in-painting tasks [61], and seek to complete masked graphs and/or

node features ([13, 62]). Other successful approaches include predicting auxiliary properties of nodes or entire graphs during pre-training or

part of regular training to prevent overfitting ([13]). These tasks often must be carefully selected to avoid negative transfer between tasks.

Many contrast-based unsupervised approaches have also been proposed, often inspired by techniques designed for non-graph data. [26, 63]

draw inspiration from [9] and maximize the mutual information between global and local representations. MVGRL ([23]) contrasts different

views at multiple granularities similar to [8]. [22, 24, 25, 56, 57] use augmentations (which we summarize in Table E) to generate views for

contrastive learning. We note that random corruption, sampling or diffusion based approaches used to create generic graph augmentations

often do not preserve task-relevant information or introduce meaningful invariances.
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