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ABSTRACT
Graph Neural Networks (GNNs) have become increasingly popular

for tasks such as link prediction, node classification, and graph

generation. However, a number of models show weak performance

on graphs with low assortativity measure. At the same time, other

graph characteristics may also influence GNN quality. Therefore,

it is extremely important for benchmark datasets to cover a wide

range of different graph properties, which can not be provided by

real-world sources. In this paper, we present a generative model for

attributed graphs based on Block Two-Level Erdős-Rényi model.

Our model allows one to vary larger number of graph structural

characteristics (namely, clustering coefficient, average degree, av-

erage shortest paths length, label and attribute assortativity) in a

wider range. Our attribute generative method can be applied to

any other non-attributed graph generative model with commu-

nity structure and allows to control attribute assortativity corre-

sponding to structure of graph. The experimental study shows

that AL-BTER outperforms ADC-SBM and GenCAT under the as-

sumption of equal importance of desired graph characteristics and

provides wider ranges for attribute assortativity and average short-

est paths and outperforms LFR in terms of clustering coefficient.

GNN performance analysis confirms the sensitivity of the results

to all topological properties except average degree and shows that

benchmark graphs provided by AL-BTER are useful to discover

new regimes of performance of graph convolutional networks.
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1 INTRODUCTION
Nowdays, graph neural networks has become popular deep learn-

ing architecture for solving tasks in many domains, where data

could be presented as interconnected objects. There are many ex-

amples of such data and tasks on them in genetics (classification of

molecules and prediction of protein interactions [25]), social life

(multi-label classification and friendships prediction [23]), research

communities (collaboration prediction [18]), and so on.

Despite the fact that recent studies show state of the art perfor-

mance of graph neural networks for classification and regression

tasks on graph-structured data, some drawbacks of the graph neu-

ral networks has revealed [21]. The main shortcoming is in the

architecture of message passing algorithm, which lies at the core

of graph convolutional network (the most popular architecture

for graph neural networks). Since it involves aggregation of mes-

sages from neighbors, the performance of convolutional networks

increases on graphs with high homophily (by homophily or assor-

tativity we mean a tendency to form relations with similar nodes).

Consequently, convolutional networks show relatively poor perfor-

mance on graphs, where neighbors have tangibly different labels

[12, 19, 21]. Most of the modern benchmark graphs [9, 31] has high

measure of homophily. Moreover, other graph structural charac-

teristics may also influence the performance of GNN as will be

shown in Section 2.1, and they should be taken into account while

developing new benchmarks for GNN comparison.

Traditionally, the quality of graph neural networks has been

measured on real-world networks [9, 11, 31]. However, the ranges

of topological characteristics and attribute/label assortativities for

them are significantly constrained. In turn, the approach based on

the generation of synthetic graphs allows generating sets of graphs

with a predetermined distribution of parameters. There exists a

number of generators with certain inductive biases and a set of

tunable graph properties. However, such generators allow to tune

only small number of parameters. In this study, we are aimed at

developing more flexible generator with larger number of tunable

properties to support more comprehensive and systematic GNN

comparison.

The main contributions of this work are as follows:

(1) we review and summarize graph characteristics which may

influence the performance of graph convolutional networks;

(2) we propose a newAttributed Labeled BTER generator, which

allows to vary all these characteristics;

https://orcid.org/1234-5678-9012
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(3) we propose an attribute generation method with two param-

eters which allows to vary attribute assortativity over any

graphs with community structure;

(4) we show that our generator allows to create graphs with

broader ranges of selected graph characteristics than other

considered generators;

(5) we show that proposed generator is able to create sets of

graph instances resulting in poor performance of convolu-

tional networks, thus allowing to find the borders of appli-

cability of a given neural network architecture.

Notations. Let 𝐺 = (𝑉 , 𝐸) be an undirected graph. 𝑉 = {𝑣𝑖 }𝑛𝑖=1
is the set of nodes, where 𝑛 is the number of nodes. 𝐸 = {𝑒𝑙 }𝑚𝑙=1 ⊂
𝑉 × 𝑉 is the set of edges, where 𝑚 is the number of edges and

(𝑣𝑖 , 𝑣 𝑗 ) is an edge between vertices 𝑣𝑖 and 𝑣 𝑗 . 𝑋 ∈ R𝑛×𝑑 is a matrix

of attributes of nodes, where 𝑑 is the dimension of attribute vector

and 𝑥𝑖 ∈ R𝑑 indicates the attribute vector of node 𝑣𝑖 . Each node 𝑣𝑖
has a label 𝑙𝑖 , list 𝐿 indicates list of labels and 𝐾 is the number of

distinct labels. N(𝑣𝑖 ) is the set of neighbors of node 𝑣𝑖 .

2 RELATEDWORKS
2.1 Graph Properties
Recently, Pei et al. [21] has shown the failure of some graph convo-

lutions on datasets with low assortativity because of the neighbor-

hood aggregation mechanism. To tackle this problem, Geom-GCN

was suggested by Pei et al. [21]. It aggregates not only adjacent

nodes but also those nodes that in latent space are not far from

the considered vertex. Since then, there have been developed some

other methods [4, 12, 13] for tackling disassortative graphs.

However, assortativity is not the only parameter which influ-

ences the performance of graph convolutional networks. Some

other graph properties can also be decisive. For instance, for self-

supervised SuperGAT [13] algorithm, it is shown that the result

depends on the assortativity and average degree of the graph, si-

multaneously. Klicpera et al. [15] conclude that the length of the

average shortest path of a graph may influence the performance in

the manner as assortativity does — if the average shortest path is

long, then few layers of graph convolutional network cannot cover

all nodes, which may be important.

Attribute assortativity also should be considered as features in

many methods act as messages in message passing procedure. In

addition, the clustering coefficient should be addressed, as some

similarity measures of unsupervised loss functions are based on it,

and it can vary for different graphs.

So, properties which should be considered while benchmarking

graph convolutional networks are: average degree davg, average
clustering coefficient c, average shortest paths length asp, label assor-
tativity la, attribute assortativity aa.

We use the definition of label assortativity proposed in [21]:

1

𝑛

𝑛∑︁
𝑖=1

|{𝑣 𝑗 ∈ N (𝑣𝑖 ) : 𝑙𝑖 == 𝑙 𝑗 }|
|N (𝑣𝑖 ) |

. (1)

We define attribute assortativity 𝑎𝑎 similarly to label assortativ-

ity:

1

𝑛

𝑛∑︁
𝑖=1

|{𝑣 𝑗 ∈ N (𝑣𝑖 ) : 𝑐𝑜𝑠 (𝑥𝑖 , 𝑥 𝑗 ) < 𝑞}|
|N (𝑣𝑖 ) |

, (2)

where 𝑞 is a threshold, we set 𝑞 = 0.5, but it can be potentially

chosen to any other number if the problem requires that.

2.2 Parametric Generators
In this paper we consider methods (which we call parametric gen-

erators), which imply building a graph with specific characteristics,

which act as input parameters, for instance, by specifying degree

sequence. Other existing typologies of synthetic graph generators

could be found in [5, 29].

There are two types of parametric generators depending on

whether a generator provides node attribute generation (e. g. [17,

22]) or not [2, 8, 28]. Although we are interested in attributed

graphs, we do not limit our review only to attributed generators as

attributes could be applied over any graph-structured data like in

[26].

By types of supported degree distributions, generators could be

divided into the following classes: providing graphs with power-law

degree distribution [2, 16, 17], providing graphs with any predeter-

mined distribution, and without specification of the parameters of

the degree distribution [8, 28].

Another important graph structure property that should be

considered is the community structure, which means presence of

densely connected sub-regions. Label assortativity depends on label

homogeneity within these regions.

So, for the comparison we select some existing generators which

support:

(1) possibility to tune a community structure;

(2) possibility to specify desired degree distribution and espe-

cially power-law degree distribution;

(3) possibility to control properties of graph with input parame-

ters.

We have chosen three generators to compare with: LFR [16],

ADC-SBM [26], GenCAT [20] as they satisfy all requirements and

significantly differ from each other in the mechanism of edge as-

signment. Further, we will consider only the case of undirected

graphs. Let us briefly describe selected parametric generators.

LFR. This generator assigns every randomly chosen node to a

randomly chosen community if the community size exceeds the in-

ternal degree of the node, otherwise, different community is chosen.

Internal degree of a node is defined by 𝜇. Sizes of communities are

chosen from power law with different exponents. The limitation

of this method is that it is not possible to choose sizes or even the

number of communities. More details of this generator could be

found in [16].

ADC-SBM. This generator draws an edge between two nodes

from Poisson distribution with the parameter equal to the expected

number of edges between communities of nodes, multiplied by

degrees of these two nodes normalized for each group. As long as

we are interested in simple graphs, we remove multi-edges and

self-loops what changes the actual degree distribution. Every node

is supposed to belong to one of feature groups, which are somehow

connected to labels. So features are correlated with labels. All details

about ADC-SBM could be found in [26].

GenCAT. GenCAT generator [20] constructs latent factors based

on predefined matrices by minimizing special loss functions and

generates graphs from these latent factors. Class preference mean,
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Table 1: Functional Properties Of Generators. “Degree dist.” indicates whether generator supports certain degree distribution,
“Tunable K” – the ability to predetermine number of classes, “low label assortativity”, ”low attribute assortativity” – the ability
of a generator to build graphs with low label or attribute assortativity, “Attributes” column indicates whether attributes are
provided by the generator, “Framework” – the presence of framework of a generator in free access

Properties Of Generator
Generator Degree dist. Tunable K low label

assortativity
Attributes low attribute

assortativity
Framework

LFR power law × ✓ × × ✓
ADC-SBM any ✓ ✓ ✓ × ✓
GenCAT any ✓ ✓ ✓ × ✓
AL-BTER any ✓ ✓ ✓ ✓ ✓

class preference deviation, and attribute class correlation matrix

are defined as input parameters. Edges of a graph are constructed

according to probabilities obtained by multiplication of latent fac-

tors. Attributes are generated by multiplying other latent factors.

As long as features here are constructed correlated to labels, they

do not satisfy our need of attribute assortativity, defined in Section

2.1.

There is a variety of other synthetic graph generation methods

(see e. g. comprehensive overview given by Bonifati et al. [5]) but,

to the best of our knowledge, they provide comparable or less

functionality and flexibility against LFR, ADC-SBM, and GenCAT.

All functional abilities of selected generators and our proposed

model, AL-BTER, are listed in Table 1. As we can see, none of con-

sidered generators except suggested AL-BTER are able to provide

all desired characteristics.

2.3 Graph Convolutional Neural Networks
As long as state of the art methods of solving tasks on graphs are

graph convolutional neural networks, we will test some of them on

graphs produced by the proposed model. The general framework

of one convolutional layer can be seen in equation:

ℎ
(𝑘)
𝑖

= 𝐹 (𝑊 (𝑘) · 𝐴𝐺𝐺 (ℎ (𝑘)
𝑗

: {𝑣 𝑗 ∈ N (𝑣𝑖 ) ∪ 𝑣𝑖 })), (3)

where ℎ
(𝑘)
𝑖

is a representation of a node 𝑣𝑖 ,𝑊
(𝑘)

is a weight matrix

of a 𝑘 − 𝑡ℎ layer and 𝐹 is a non-linear function.

We selected six different convolution networks, which are im-

plemented in PyTorch Geometric library:

(1) GCN [14] is the simplest version of graph convolution. Sum

or Mean can serve as AGG function and sigmoid as non-

linear function.

(2) SAGE [10] generalizes the previous convolution by introduc-

ing different weight matrices for the selected vertex and for

its neighbors.

(3) GAT [27] proposes learnable attention for every neighbor

according to the importance of this neighbor for a considered

node.

(4) GIN [30] adds the message from the node itself with the

learnable parameter 1+𝜖 to the sum of messages from neigh-

bors of the node.

(5) APPNP [15]: node representations are transformed according

to personalized PageRank with teleport probability 𝛼 .

(6) FA [4] sums neighbours’ messageswith attention coefficients.

Attention coefficients have meaning of proportion of low-

frequency and high-frequency signals. This convolution is

supposed to perform good results on low-assortative graphs.

3 AL-BTER MODEL
Our generator is based on the BTER model [24], as long as BTER is

built to match the real world networks: its clustering controlling

method provides the correspondence to an assumption, stating that

in real world graphs low degree nodes have much higher clustering

coefficient than higher degree ones. Besides that, it generates graphs

with degree distribution which properly match input distribution.

Our proposed generator, AL-BTER, is an extension of an original

BTER algorithm.

You can find all detailed information on BTER model in original

paper [24], but we highlight some basic ideas of this method here,

and in Section 3.1 we provide the details on proposed AL-BTER

algorithm.

BTER suggests to group nodes according to their degrees. Then,

edges are inserted in each group with Erdős-Rényi model with

properly defined probability to provide different clustering coeffi-

cients. Moreover, two parameters 𝜂, 𝜌 , controlling this probability,

influence the clustering coefficient of a whole graph. One-degree

nodes are handled separately of the other nodes to balance possi-

bilities of two-degree nodes become one-degree due to stochastic

nature of generating edges. Edges between groups are chosen using

Chung-Lu model [7] according to remaining excesses degrees in

expectation.

3.1 Description Of AL-BTER
Wepropose amethod, which uses BTER instances as building blocks

to support tuning of all graph properties from Section 2.1. Pseudo-

code of the described generator is presented by Algorithm 1, and

general scheme can be seen in Figure 1. The source code is available

at: https://anonymous.4open.science/r/AL-BTER.

Step 1. Firstly, we generate the sequence of degrees of all nodes
according to any law. Then, we divide all nodes for predetermined

number of communities uniformly or according to the ratios of

sizes. After that, for every node we divide its degree on in-degree

(number of connections inside one group) and out-degree (num-

ber of connections to groups of different label) according to the
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Figure 1: General scheme of AL-BTER

parameter 𝜇: 𝑑𝑖𝑛 = 𝜇𝑑 , 𝑑𝑜𝑢𝑡 = (1 − 𝜇)𝑑 . If we use power law de-

gree distribution, there are many low-degree nodes. For nodes with

degree less than 𝑘 = ⌈ 1𝜇 ⌉, where ⌈...⌉ means rounded up number,

their in-degree will be one or zero while out-degree will be 𝑘 − 1
or 𝑘 . This leads to many connected components and biased label

assortativity. To overcome this issue, we say for some part of 𝑘-

degree nodes that their in-degree is 𝑘 and out-degree is 0 and vice

versa for remaining of nodes: in-degree is 0 and out-degree is 𝑘 . To

keep the overall assortativity close to 𝜇, the expectancy of number

of nodes for first part is 𝜇 and for another part is (1 − 𝜇).
Step 2. For every cluster and its in-degree nodes we construct

graph with BTER model. Then we construct BTER model using

out-degree of nodes as input degree distribution. BTER is applied

as in original paper, from preprocessing step till phase 2 inclusive..

Modification of BTER. To keep degree sequence satisying to the

correct distribution in BTER model, excess degrees of 75% of one-

degree nodes are set to zero, and degrees of the remaining one-

degree nodes are slightly raised to 1.1. A first part of these nodes

is connected with other nodes. As original BTER builds graphs

with many connected components, and it is not very convenient

to run graph convolutional networks on such graphs, we handle

one-degree nodes a little differently. We suggest to set excesses of

the second part of the one-degree nodes as 0.1 and let all one-degree

nodes to form edges with the rest of the nodes including the second

part of the one-degree nodes. This guarantees that all one-degree

nodes will have at least one edge, but two-degree nodes still may

however lower their actual degree due to stochastic manner of the

generator.

3.2 Attribute Generation
We generate attributes such that attribute assortativity could be con-

trollable for any graph with community structure. For that purpose

we firstly use any clustering algorithm (e.g., Louvain’s algorithm)

on the generated structure to support tuning of intra/inter cluster

connectivity. To each cluster we assign vector 𝑓𝑐 sampled from nor-

mal distribution with zero mean and 𝜎𝑐𝑙𝑢𝑠𝑡𝑒𝑟 deviation. Then, for

each node its attribute is a summation of the vector of the cluster

Algorithm 1 AL-BTER

Input :
{ di } List of nodes’ degrees
{ lk } List of nodes’ labels
Parameters :
𝝁,𝜼, 𝝆,𝝈𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ,𝝈𝑛𝑜𝑑𝑒 ,𝑲

1: procedure btersetup({ di }, { li }, 𝜇, 𝜂, 𝜌, 𝜎𝑐𝑙𝑢𝑠𝑡𝑒𝑟 , 𝜎𝑛𝑜𝑑𝑒 )
2: 𝐺 ← ∅
3: { dini }, { d

out
i } ← separation(𝜇, { di })

4: for 𝑙 ∈ { lk } do
5: 𝐺 ← 𝐺 ∪ BTER( {𝑑𝑖𝑛

𝑖
| 𝑙𝑖 = 𝑙 } , 𝜂, 𝜌)

6: end for
7: 𝐺 ← 𝐺 ∪ BTER( {𝑑𝑜𝑢𝑡

𝑖
} , 𝜂, 𝜌)

8: 𝑋 ← attribute_generator(𝐺,𝜎𝑐𝑙𝑢𝑠𝑡𝑒𝑟 , 𝜎𝑛𝑜𝑑𝑒 )

9: return G,X

10: procedure separation(𝜇, { di })
11: for 𝑑 ∈ { di } do
12: if 𝑑 > ⌈ 1

𝜇
⌉ then

13: {𝑑𝑖𝑛
𝑖
} ← {𝑑𝑖𝑛

𝑖
} ∪ { 𝑟𝑜𝑢𝑛𝑑 (𝑑 · 𝜇) }

14: {𝑑𝑜𝑢𝑡
𝑖
} ← {𝑑𝑜𝑢𝑡

𝑖
} ∪ {𝑑 − 𝑟𝑜𝑢𝑛𝑑 (𝑑 · 𝜇) }

15: else
16: 𝑝 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝜇)
17: if 𝑝 = 1 then
18: {𝑑𝑖𝑛

𝑖
} ← {𝑑𝑖𝑛

𝑖
} ∪ {𝑑 }

19: {𝑑𝑜𝑢𝑡
𝑖
} ← {𝑑𝑜𝑢𝑡

𝑖
} ∪ { 0 }

20: else
21: {𝑑𝑖𝑛

𝑖
} ← {𝑑𝑖𝑛

𝑖
} ∪ { 0 }

22: {𝑑𝑜𝑢𝑡
𝑖
} ← {𝑑𝑜𝑢𝑡

𝑖
} ∪ {𝑑 }

23: end if
24: end if
25: end for
26: return { dini },{ d

out
i }

27: procedure attribute_generator(𝐺,𝜎𝑐𝑙𝑢𝑠𝑡𝑒𝑟 , 𝜎𝑛𝑜𝑑𝑒 )

28: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 (𝐺)
29: for cl ∈ clusters do
30: 𝑓𝑐 ∼ 𝑁 (0, 𝜎𝑐𝑙𝑢𝑠𝑡𝑒𝑟 )
31: for node ∈ cl do
32: 𝑋 [𝑛𝑜𝑑𝑒 ] ← 𝑓𝑐 + 𝑁 (0, 𝜎𝑛𝑜𝑑𝑒 )
33: end for
34: end for
35: return X

and the noise vector, sampled from normal distribution with zero

mean and 𝜎𝑛𝑜𝑑𝑒 deviation. The value of attribute assortativity is

controlled by these two deviations. If 𝜎𝑐𝑙𝑢𝑠𝑡𝑒𝑟 is large and 𝜎𝑛𝑜𝑑𝑒 is

small, then all nodes within one cluster would be very similar while

tangibly different from nodes in other clusters. The general trend

is as follows: as 𝜎𝑛𝑜𝑑𝑒 is bigger, the attribute assortativity is lower,

and as 𝜎𝑐𝑙𝑢𝑠𝑡𝑒𝑟 is lower, the attribute assortativity is also lower.

4 EXPERIMENTAL STUDY
Our model is compared with three other generators, chosen in Sec-

tion 2.2 to investigate the abilities and limitations. Section 4.1 shows

our generator supports comparable or broader ranges of considered

properties than other models. Section 4.2 confirms the sensitivity

of GNN performance to different topological characteristics.
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4.1 Comparative Study of Synthetic Graph
Properties

Graphs are generated with changing of each generator input pa-

rameters, and then the range of obtained graph characteristics is

analysed.

4.1.1 Experimental Setup. We used the same or comparable input

parameters for all generators. In each generator, the power law

degree distribution is constructed with selected power 𝛼 , minimum

𝑑𝑚𝑖𝑛 , and maximum 𝑑𝑚𝑎𝑥 degree of the graph 𝛼 . We constructed

attributes for LFR with our attribute generator for more fair compar-

ison. We constructed power law degree distribution for all parame-

ters. For the uniformity, we decided to vary number of communities,

but not sizes of them. A size of a graph was set to 1000 for each

generator, what seems to be a reasonable trade-off between the

statistical significance of graph properties and the time spent on

constructing a large number of graphs.

In GenCAT class preference mean was constructed as symmetric

matrix where all elements on diagonal are the same and equals 𝜇,

all elements out of the diagonal also the same. Class preference

deviation was generated randomly. To estimate the influence of

deviation on results, we multiplied every element of this matrix

on factor 𝑑𝑒𝑣 . Attribute class correlation matrix was constructed

randomly, but we filled only 𝑝 random elements of the matrix while

varying 𝑝 . In ADC-SBM we considered nested and grouped match

types of feature groups as only they and random match type were

implemented in the framework.

To quantitatively evaluate generation performance of AL-BTER

and comparison models, we compute graph properties listed in

section 2.1: average degree, average clustering coefficient, average
shortest paths length, label assortativity, attribute assortativity. How-
ever multiple metrics makes it difficult to compare the generators

directly. That’s why we proposed a hypervolume metric which

shows within a single value how wide are the ranges of the param-

eters of graphs for different generators. The higher this value is,

the more expressive is a generator in terms of the diversity of the

properties of the synthetic graphs.

The methodology for hypervolume calculation is based on [3],

and consists of the following stages: (i) kernel density estimation by

overlaying hyperbox kernels around each observation, (ii) Monte

Carlo importance sampling the space using these boxes and per-

forming range tests on random points using a recursive partitioning

tree, (iii) calculating the effective number of points using the kernel

density, (iv) calculating the hypervolume value as the ratio of the

density of points to the effective number.

All the listed parameters, except for the average path length,

are normalized to a segment from 0 to 1. To normalize the latter,

we used the fact that the maximum value for the fixed number of

vertices will be reached when the graph is a chain. In this case

average path length can be calculated analytically and is equal to

(n+1)/3.

4.1.2 Results. Ranges for all characteristics of the generated graphs
are presented in Table 2. To compare the ranges, we calculate two

metrics: the difference between maximum and minimum value, and

the difference between ninth and first deciles (to mitigate the effect

Table 2: Ranges Of Output Parameters

method decile characteristics rank

sum

c 𝑑𝑎𝑣𝑔 asp la aa

max 0.54 44.49 5.37 0.98 0.97

Q-9 0.25 34.21 3.10 0.81 0.70

mean 0.14 17.55 2.26 0.40 0.31

LFR Q-1 0.04 3.31 1.31 0.04 0.03

min 0.00 2.13 0.75 0.01 0.007

rank max-min 3 3 2 1 1 10

rank Q9-Q1 4 1 1 1 1 8

max 0.50 29.82 2.48 0.49 0.78

Q-9 0.30 27.60 2.40 0.43 0.26

mean 0.17 26.61 2.33 0.28 0.16

ADC-

SBM

Q-1 0.006 1.86 2.26 0.08 0.04

min 0.00 1.53 2.15 0.03 0.00

rank max-min 4 4 4 4 3(4) 19(20)

rank Q9-Q1 3 4 4 3 3 17

max 0.87 79.62 2.62 0.84 0.78

Q-9 0.77 57.51 2.31 0.37 0.03

mean 0.55 40.04 2.14 0.21 0.03

GenCAT Q-1 0.36 27.66 2.02 0.09 0.00

min 0.23 19.93 1.97 0.04 0.00

rank max-min 1 1 3 3 3(4) 11(12)

rank Q9-Q1 1 2 3 4 4 14

max 0.61 48.72 7.60 0.98 0.96

Q-9 0.37 29.72 3.58 0.87 0.49

mean 0.22 15.75 2.55 0.53 0.34

AL-BTER Q-1 0.05 2.82 2.13 0.21 0.20

min 0.0 1.82 0.0 0.11 0.03

rank max-min 2 2 1 2 2 9

rank Q9-Q1 2 3 2 2 2 11

Table 3: Hypervolume Z Values For Two Sets Of Output Pa-
rameters.

Model 𝑍 (𝑑𝑎𝑣𝑔, 𝑎𝑠𝑝, 𝑐, 𝑙𝑎, 𝑎𝑎) · 10−4 𝑍 (𝑎𝑠𝑝, 𝑐, 𝑙𝑎, 𝑎𝑎) · 10−3

ADC-SBM 0.01 0.09

GenCAT 0.05 0.14

LFR 1.43 4.86

AL-BTER 1.18 5.97

of outliers). Then we calculate ranks of different generators accord-

ing to these two metrics (rank 1 means that a generator provides

the most broad range of a characteristic). One may observe that

AL-BTER provide the lowest values for the sum of ranks, namely, 9,

for max-min metric. Even if it shows worse result for Q9-Q1 metric

than LFR, the latter model does not provide attributes itself. The

other disadvantage is that it reaches the fourth rank on cluster-

ing coefficient while AL-BTER never reaches the last rank. This
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Figure 2: Weighted average F1-score of classification in different ranges of average degree vs average shortest paths

Figure 3: Weighted average F1-score of classification in dif-
ferent ranges of average degree vs average shortest paths

means that AL-BTER is beneficial, compared to other generators,

for the case when all graph properties are equally important during

benchmarking.

Our model has broader ranges of average shortest paths. Ranges

of other properties are comparable to the competitors. The range

of clustering coefficient is the best for GenCAT. However, GenCAT

does not generate graphs with low and moderate clustering coeffi-

cients, while AL-BTER supports all values starting from 0 which

is more suitable for realistic test cases. In other words, we observe

that GenCAT generates only dense graphs which may be seen from

𝑐 and 𝑑𝑎𝑣𝑔 values which restricts the applicability of this generator

for benchmarking purposes.

The results of hypervolume analysis are presented in Table 3.

They indicate that AL-BTER and LFR demonstrate close perfor-

mance while GenCAT and ADC-SBM provide much lower values of

hypervolume. Considering the whole set of graph properties, LFR

has a larger hypervolume than AL-BTER. This advantage, is ex-

plained with better values for a single parameter 𝑑𝑎𝑣𝑔 which may be

seen from the second column in Table 3. However, it can be caused

by not following the power distribution. We tested the hypothe-

sis if degree distribution of a generated graph follows power law

according to Chi-square goodness-of-fit test corrected for sparse

distributions [32]. This hypothesis is rejected with alpha-level of

5 % for ADC-SBM and LFR, and is not rejected for GenCAT and

AL-BTER. So, we also provide values of hypervolume calculated for

a subset of parameters without 𝑑𝑎𝑣𝑔 . In these conditions, AL-BTER

has larger value than the competitors, showing that AL-BTER is

beneficial for graphs with small to moderate densities.

4.2 Graph Neural Networks Performance
To identify the influence of values of graph characteristics on the

performance of classifiers, we generated the dataset of synthetic

graphs with evenly varying properties and then tested several graph

convolutional networks. Hyper-parameters, including number of

layers, size of hidden layers, learning rate, and dropout, were opti-

mized by Optuna framework [1].

A weighted average F1-score is used as a quality metric since the

classification is not binary. The results of node classification task

with six graph convolutional networks mentioned in Section 2.3

(averaged over the rest of characteristics) are shown in Figures 2,3,

4. A vertical line separates the area of topological characteristics,

which can and can not be achieved by any other generator, except

AL-BTER. For example, in Figures 2,3 to the right of this line are

values of length of average shortest paths, which can be generated

only by AL-BTER.

In Figures 2,3 we may observe that huge influence on the quality

of node classification by GNN in our experimental setting is im-

posed by length of average shortest paths. At the same time, there

is no influence of average degree parameter. We may observe (i)

gradual increase of weighted average F1-Score to 1 with an increase

of average shortest path, (ii) a sharp decrease of performance from

near 1 to 0.65-0.7 for 𝑎𝑠𝑝 = 7 and the minimum value of average

degree. The second case is the case of chain-like graphs which, thus,

should be considered as a special case for GNN testing.

Our study confirms that modern GNN works better on label-

assortative data (see Figure 4). The results also confirm the sensi-

tivity of the performance to the values of clustering coefficient (in

general, the higher is better except for highly disassortative graphs

where all methods provide constantly bad results). It is interesting

that the absolute values of weighted average F1-Score are consistent

between different GNNs with sligtly difference.
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Figure 4: Weighted average F1-Score of classification in different ranges of label assortativity vs clustering coefficient

To check if the wider ranges of 𝑎𝑠𝑝 and 𝑎𝑎 provided with AL-

BTER may lead to new insights about the applicability of GNNs, we

analyze the dependence of performance on the length of average

shortest paths for different values of attribute assortativity (Figure

5 is for GAT, Figure 6 is for all convolutions). One may see that

for the range of 𝑎𝑎 (0.2-0.4) there exists quality transition for high

𝑎𝑠𝑝 converging to the values of weighted average F1-Score larger

than 0.9. The behavior of the weighted average F1-Score for a

varying attribute assortativity is also interesting because three

regimes may be distinguished: (i) low relatively stable performance

(0.4-0.55 on average) for border values of 𝑎𝑎, namely, 0.1, 0.5; (ii)

performance which is sensitive to the values of 𝑎𝑠𝑝 and depends on

it in a non-linear way (𝑎𝑎 ∈ [0.2; 0.4]; (iii) high stable performance

for 𝑎𝑎 ∈ [0.7; 0.8].
It is worth to mention that investigation of only single regime

e.g. regime (iii) may lead to overly optimistic feeling about the

performance of GNN. One may see also that wider range of 𝑎𝑠𝑝 of

AL-BTER allows to observe qualitatively different behavior of GNN

for different values of 𝑎𝑎. Thus, we underline the sensitivity of GCN

models to 𝑎𝑠𝑝 and 𝑎𝑎 characteristics with a possibility of non-linear

quality dynamics. Thus, AL-BTERmay be recommended as a choice

if one is aimed to test the influence of attribute assortativity and

average shortest paths on the results.

Figure 5: Weighted average F1-score of classification depend-
ing on average shortest paths for different attribute assorta-
tivity (GAT model)

5 CONCLUSION
In this study, we summarize graph properties which may influence

the performance of graph neural network architectures, and report

a lack of parametric generators which support tuning of all desired

properties.

We introduced a novel graph generator, AL-BTER, consisting of

blocks of nodes with the same label each constructed with BTER

model. This method provides flexible generation of community

structure and graphs with arbitrary degree distributions including

power-law. In contrast to other parametric generators, we also fo-

cus on the attribute assortativity coefficient which represents the

homophily property regardless of labels. In AL-BTER, an attribute

generation method was introduced that allows to vary assortativity

in a controlled way in graphs with community strcuture. In the

experimental study, we have shown that our method outperforms

the competitors for the case of equal importance of graph properties

and provides wider ranges for average shortest paths while keeping

ranges of other parameters comparable to other benchmark gener-

ators. Hypervolume analysis has shown that our method is more

expressive in terms of the variety of generated graph properties

than ADC-SBM and GenCAT, and that it is preferable to LFR for

small to moderate graph densities.

The experimental study with benchmark graphs confirmed the

dependence of performance of graph convolutional networks on all

of the chosen properties except for the average degree. A number

of conclusions can be made from these experiments: (i) chain-like

topology may lead to sharp quality decrease, (ii) special methods

for disassortative graphs are needed since low label assortativity

leads to poor performace independent on the other characteristics,

(iii) the performance for varying attribute assortativity may have

different regimes including non-linear dependencies on the values

of average shortest path of a graph. Thus, we underline the need

for more systematic testing of GNNs in a more systematical way

using more expressive benchmark datasets to avoid over-optimistic

conclusions about their performance and the borders of their ap-

plicability. Further research is this area may include study of GNN

extrapolation for a varying graph sizes and experimenting with

graphs with arbitrary degree distributions (as not all domain graphs

are necessarily scale-free, see e.g. [6]).
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a) attribute assortativity=0.1 b) attribute assortativity=0.3 c) attribute assortativity=0.5

Figure 6: Weighted average F1-score of classification task for different GNNs on graphs with evenly varying average shortest
paths while fixing attribute assortativity
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