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ABSTRACT
Consider a multi-aspect tensor dataset which is only observed
in multiple complementary aggregated versions, each one at a
lower resolution than the highest available one. Recent work [2]
has demonstrated that given two such tensors, which have been
aggregated in lower resolutions in complementary dimensions, we
can pose and solve the disaggregation as an instance of a coupled
tensor decomposition. In this work, we are exploring the scenario
in which, in addition to the two complementary aggregated views,
we also have access to a graph where nodes correspond to samples
of the tensor mode that has not been aggregated. Given this graph,
we propose a graph-assisted tensor disaggregation method. In our
experimental evaluation, we demonstrate that our proposedmethod
performs on par with the state of the art when the rank of the
underlying coupled tensor decomposition is low, and significantly
outperforms the state of the art in cases where the rank increases,
producing more robust and higher-quality disaggregation.
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1 INTRODUCTION
Consider as our running example amulti-aspect dataset that records
the number of scientific paper publications per publisher (e.g., IEEE,
ACM, SIAM, and Springer) over time and by institution. This can be
represented as a (publisher, time, university) tensor, and analyzing
such a tensor may be able to offer valuable insights to publication
trends over time and space, which can be beneficial to universities
and publishers alike.
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Consider, further, the scenario in which different stakeholders
may observe varying pieces of the data in terms of resolution.
For instance, stakeholder #1 may be able to observe publication
counts from different universities on a yearly basis as opposed to
a more fine-grained monthly basis, resulting in a (publisher, year,
university) tensor. At the same time, stakeholder #2 may be able to
observe monthly publication counts per publisher per country, but
lack the finer university-level granularity, resulting in a (publisher,
month, country) tensor.

Those two stakeholders essentially have access to two comple-
mentary aggregated views of the ideal high resolution tensor. How
can we effectively combine those two views in order to recover the
dataset in the highest available resolution in all its modes? Recently,
a novel tensor method, namely PREMA, was proposed to to solve
such a tensor disaggregation problem [1; 2], by posing the problem
as a variant of coupled tensor decomposition.

In this paper, following the example above, we focus on the fol-
lowing question: “If we also have access to a (publisher, publisher)
graph, can we improve disaggregation performance?”. More specifi-
cally, given such a graph, we extend PREMA [1; 2] to account for
graph Laplacian smoothness in the factor matrix corresponding to
the mode for which we have a graph available. Essentially, we are
ensuring that the rows of that matrix, which, in our running exam-
ple are publisher “embeddings”, are encouraged to obey publisher
similarities defined by our graph. This graph can be either directly
computed from the aggregated data or provided by a domain ex-
pert. In this preliminary work, we directly compute graphs from
the aggregated data.

We conduct experiments on two real-world datasets and we mea-
sure the behavior of our proposed method. We center our analysis
on an important parameter of the problem which is the rank of the
decomposition, which dictates the fidelity of the reconstruction,
since a higher-rank decomposition represents the data more accu-
rately than a lower-rank one. We observe that our proposed graph
assisted tensor disaggregation method performs on par with state
of the art for relatively low ranks. However, as the rank increases,
our proposed method significantly outperforms state of the art,
providing higher fidelity disaggregation while also increasing the
robustness of the disaggregation process to potential overestima-
tions of the “optimal” rank for a given dataset.

2 BACKGROUND
First, we will review the basis of tensor algebra. Tensors are ar-
rays having three or more than three dimensions with indices
(𝑖, 𝑗, 𝑘, ...). For the sake of simplicity, we focus on the three-dimensional
(a.k.a., third-order or three-mode) tensors. Let’s denote a general
tensor Z ∈ R𝐼×𝐽 ×𝐾 consisting of three modes: rows Z(:, 𝑗, 𝑘),
columns Z(𝑖, :, 𝑘), and fibers Z(𝑖, 𝑗, :). The horizontal, lateral,
and frontal slabs of Z are denoted by Z(𝑖, :, :), Z(:, 𝑗, :), and

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


MLG ’22, August 15, 2022, Washington, DC Mariana M Garcez Duarte, Evangelos E. Papalexakis, and Jia Chen

Z(:, :, 𝑘), respectively, for 𝑖 = 1, ..., 𝐼 , 𝑗 = 1, ..., 𝐽 , and 𝑘 = 1, ..., 𝐾 .
Tensor decomposition is the core technique for many tensor-based
methods and the commonly used models are Canonical Polyadic
Decomposition (CPD) (a.k.a., PARAFAC) and Tucker decomposi-
tion [5]. Next, we briefly introduce the CPD model which factors a
tensor into the sum of three-way outer products, i.e.,

Z ≈
𝑅∑︁
𝑟=1

a𝑟 ◦ b𝑟 ◦ c𝑟 (1)

where 𝑅 is the rank of the tensor, a𝑟 ∈ R𝐼 , b𝑟 ∈ R𝐽 , c𝑟 ∈ R𝐾 , and
the three-way outer product is defined as (a𝑟 ◦ b𝑟 ◦ c𝑟 ) (𝑖, 𝑗, 𝑘) :=
a𝑟 (𝑖)b𝑟 ( 𝑗)c𝑟 (𝑘). The factor matrices denoted by A ∈ R𝐼×𝑅 , B ∈
R𝐽 ×𝑅 , and C ∈ R𝐾×𝑅 collect a𝑟 , b𝑟 , and c𝑟 , in their columns, i.e.,

A := [a1, ..., a𝑅], B := [b1, ..., b𝑅], C := [c1, ..., c𝑅] . (2)

We can compactly represent the CPD of a tensor into factors A,B
and C as [[A,B,C]].

3 PROPOSED METHOD
Consider two aggregated tensors, namely X and Y, which are seen
as the two views of the original tensor Z, obtained from the mode
product betweenZ and the aggregation matrices. Specifically,X :=
Z×3W ∈ R𝐼×𝐽 ×𝐷𝐾 where W ∈ R𝐷𝐾×𝐾 represents an aggregation
matrix with 𝐷𝐾 < 𝐾 and ×3 denotes the mode-3 product operator.
Without loss of generality, another view is aggregated from both
the first and second dimensions of X, that is Y := Z×1U×2V ∈
R𝐷𝐼×𝐷 𝐽 ×𝐾 with 𝐷𝐼 < 𝐼 , 𝐷 𝐽 < 𝐽 , U ∈ R𝐷𝐼×𝐼 , and V ∈ R𝐷 𝐽 ×𝐽 . When
the aggregation doesn’t occur in either the first or second dimension
of Y, one can simply set V or U to be an identity matrix. Recently,
a novel algorithm, namely PREMA, was proposed to reconstruct
the original tensorZ given the aggregated tensors X and Y, and
the aggregation matricesW, U, and V [2].

Motivated by PREMA and going beyond it, we introduce a new
graph-assisted tensor disaggregation framework by leveraging the
the advances of graph auxiliary knowledge in preserving the data
structure. In many real applications, besides feature data, one is
often able to have access to its sample-to-sample interaction graph.
Following the running example of the introduction, we may be able
to obtain publisher-publisher relations which can be measured in
a variety of ways, including number of citations between the two
publishers, number of common authors between two publishers
and so on.

Such graph data can be provided by some domain experts or
calculated from feature data. Exploiting such graph information
in many machine learning models such as canonical correlation
analysis and tensor decomposition has shown improvement in their
downstream tasks [4; 6–10].

As a proof of concept, in this work we generate the graph from
the aggregated data directly, and we reserve the investigation of
other types of graphs for future work. Given two views of aggre-
gated tensors X and Y, we first generate a graph similarity matrix,
namely S ∈ R𝐼×𝐼 , from X indicating the interactions between pairs
of horizontal slabs. Specifically, we treat each of the slab as one
node of a graph and vectorize the corresponding matrix and then
calculate the linear or nonlinear similarity between any two node
vectors using the kernel methods, 𝑘-nearest neighbors, and etc.

Algorithm 1: Graph-assisted tensor disaggregation

1: Input: aggregated tensors X and Y; aggregation matricesW,
U, and V; learning rates 𝛼 , 𝛽 , and 𝛾 ; graph regularization
coefficient 𝜇; rank 𝑅; graph similarity matrix S.

2: Calculate graph Laplacian L.
3: Repeat

Update A via Eq. 5
Update B via Eq. 6
Update C via Eq. 7

4: Until the objective is below a threshold or the number of
iterations is beyond another threshold.

5: Output: factor matrices A,B,C.

Next, we develop our new model by introducing the coupled tensor
decomposition while incorporating the graph regularizer in the
latent component matrix A, that is

min
A,B,C

∥X−[[A,B,WC]] ∥2
𝐹 +∥Y−[[UA,VB,C]] ∥2

𝐹 +𝜇Tr(A
⊤LA) (3)

where L := D − S ∈ R𝐼×𝐼 denotes the graph Laplacian with D being
the degree matrix, the first two terms are the tensor decomposi-
tion errors from the two views and the last term promotes graph
smoothness, i.e., if two nodes, say𝑚 and 𝑛, in the graph captured
by the similarity matrix S are close (i.e., the (𝑚,𝑛)th entry of S is
high) then their corresponding latent component vectors (the𝑚-th
and 𝑛-th rows of A) are close in the Euclidean space.

The optimization problem in Eq. (3) is non-convex and NP-hard
in general. To solve it, similar to PREMA, we use a Block Coordinate
Descent (BCD) algorithm which alternatively updates one variable
while fixing the others. After denoting the objective in Eq. (3) as
𝑓 and deriving the partial derivatives of 𝑓 w.r.t. A, B, and C in Eq.
(4) where ⊙ is Khatri-Rao product (a.k.a., column-wise Kronecker),
{X𝑡 } and {Y𝑡 } are mode-𝑡 unfolding of the corresponding tensors,
and ⊤ is matrix transpose, gradient descent technique is adopted
to update the variables in each iteration; see details in Eq.s (5), (6)
and (7) where 𝛼 > 0, 𝛽 > 0, and 𝛾 > 0 represent the learning rates.
The proposed framework is summarized in Alg. 1.

𝜕𝑓

𝜕A
= 2[((WC) ⊙ B)A⊤ −X1]⊤ ((WC) ⊙ B) (4)

+ 2U⊤ [(C ⊙ (VB)) (UA)⊤ −Y1]⊤ (C ⊙ (VB)) + 2𝜇LA
𝜕𝑓

𝜕B
= 2[((WC) ⊙ A)B⊤ −X2]⊤ ((WC) ⊙ A)

+ 2V⊤ [(C ⊙ (UA)) (VB)⊤ −Y2]⊤ (C ⊙ (UA))
𝜕𝑓

𝜕C
= 2W⊤ [(B ⊙ A) (WC)⊤ −X3] (B ⊙ A)

+ 2[((VB) ⊙ (UA))C⊤ −Y3]⊤ (C ⊙ (UA))

A = A − 𝛼 𝜕𝑓
𝜕A

(5)

B = B − 𝛽 𝜕𝑓
𝜕B

(6)

C = C − 𝛾 𝜕𝑓
𝜕C

(7)
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4 EXPERIMENTAL EVALUATION
4.1 Datasets
We evaluate the proposed method using two publicly available
datasets:

• Walmart dataset 1 which represents the weekly sales from
45 Walmart stores and 99 departments across 143 weeks
forming the tensor (stores, departments, weeks) of size 45 ×
99 × 143

• Indian Pines dataset 2 consisting of 145 × 145 pixels and 220
spectral bands which was collected from AVIRIS sensor [3].

4.2 Results
In this subsection we access the performance of our proposed
method in terms of the data disaggregation improvement compared
to the PREMA, that is

Improvement percentage =
PREMA NDE - Our NDE

PREMA NDE
(8)

where NDE abbreviates the normalized disaggregation error, i.e.,

NDE =
∥Z − Ẑ∥2

𝐹

∥Z∥2
𝐹

(9)

in which Z and Ẑ are the real and estimated tensor data and
Ẑ = [[A,B,C]].

Figure 1: Aggregation matrix W ∈ R8×143; blue and yellow
pixels are 0s and 1s; there is only one "1" in each column.

Figure 2: Aggregation matrix U ∈ R3×45; blue and yellow
pixels are 0s and 1s; there is only one "1" in each column.

When applying the proposed method on the Walmart dataset,
the aggregation matrix W is depicted in Figures 1 where almost
1https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/data
2https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#
Indian_Pines

every 7 frontal slabs in Z are summed to generate a new frontal
slab inX viaX = Z×3W ∈ R𝐼×𝐽 ×𝐷𝐾 where 𝐼 = 45, 𝐽 = 99,𝐾 = 143,
𝐷𝐾 = 8, showing that the aggregated tensor X is only of 5.59% of
the original tensor’s size. Another disaggregation matrix U shown
in Figure 2 allows us to randomly divide the 45 horizontal slabs
ofZ into 3 groups and sum each group to form a new horizontal
slab for another disaggregated tensor Y, i.e., Y = Z×1U×2V ∈
R𝐷𝐼×𝐽 ×𝐾 where V is an identity matrix and 𝐷𝐼 = 3. Clearly, the
aggregated tensor Y is only of 5% of the original tensor’s size. For
the graph similarity matrix S, we use X combined with Gaussian
kernel and 𝑘−nearest neighbors. This is realized by following four
steps: 1) extract the first 20 lateral slabs of X forming a sub-tensor
X𝑠 ∈ R45×20×8; 2) take the mode-1 matricization of the subset
of X𝑠 by flattening the tensor along its first mode and obtain a
matrix, namely X𝑠,(1) ∈ R45×160; 3) apply the Gaussian kernel with
bandwidth parameter 0.1 to calculate the similarity between each
pair of rows in X𝑠,(1) and collect all the similarities to the matrix
S̄ ∈ R45×45 ; and 4) keep the top 𝑘 = 6 highest values of each row in
S̄ and zero out the remaining entries forming the graph similarity
matrix S ∈ R45×45. The learning rates 𝛼 , 𝛽 , and 𝛾 of our algorithm
are set the in the same way as them in PREMA; see the details in
Chapter 3.3 of [2]. Both our algorithm and PREMA initialize their
factor matrices by performing CPD on X and Y; the initial A and
B come from X and the initial C is based on Y.

Figure 3: NDE improvement percentage of our algorithmcom-
pared to PREMA for different 𝜇s and ranks using Walmart
dataset; the results show a significant data disaggregation
improvement of our algorithm especially with higher ranks.

We report the average NDE improvement percentage (defined
in Eq. 8) among 20 Monte Carlo runs of our algorithm w.r.t dif-
ferent ranks and graph regularization coefficients 𝜇s in Figure 3.
In Figure 4, we plot the used 𝜇 which are chosen among the can-
didates 0.0001, 0.001, 0.1, 5, 15, 20, 25, 30, 50, 100, 1000 for each
rank when the NDE improvement percentage reaches the highest
as well as their corresponding NDE improvement percentage. From
the results, we can tell that introducing graph regularizer to the
PREMA increases its data disaggregation performance significantly

https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/data
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes##Indian_Pines
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes##Indian_Pines
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Metric
Case

R 50 100 500 1,000 1,500 2,000 3,000 4,000

Improv. Percentage
Case #1 −.1 ± .2 .5 ± 1.1 2.4 ± 1.1 1.2 ± .4 .8 ± .2 .3 ± .11 33.6 ± 8.6 94.9 ± 6.1
Case #2 .2 ± .6 .5 ± .2 3.5 ± 1.1 .7 ± .1 33.7 ± 9.6 96.5 ± 6 99.7 ± .2 98.8 ± 1.2
Case #3 .9 ± .8 .7 ± .3 3.8 ± .4 26.9 ± 9.8 91.1 ± 11.3 95.1 ± 6.9 94.2 ± 7.1 98.8 ± 1.3

Ours (NDE×100)
Case #1 .3 ± .01 .3 ± .05 .5 ± .05 .71 ± .04 1 ± .06 .96 ± .1 1.1 ± .2 3 ± .7
Case #2 .4 ± .03 1.05 ± .6 1.8 ± .2 2.6 ± .2 2.4 ± .6 5.3 ± 2.3 6.4 ± 5.8 3.8 ± 1
Case #3 .9 ± .4 2.44 ± .9 5 ± .6 2.8 ± .9 11.1 ± 7.8 8.1 ± 3.7 7 ± 2.7 6.6 ± 4.6

PREMA (NDE×100)
Case #1 .3 ± .01 .3 ± .05 .51 ± .06 .72 ± .04 1.07 ± .07 .97 ± .1 1.7 ± .4 222 ± 303
Case #2 .4 ± .03 1.06 ± .6 1.9 ± .2 2.62 ± .2 3.8 ± 1.8 946 ± 1376 3182 ± 3001 565 ± 401
Case #3 .9 ± .4 2.46 ± .9 5.2 ± .6 4 ± 1.9 1490 ± 5130 779 ± 1301 962 ± 1662 1398 ± 1517

Table 1: Normalized disaggregation error (NDE) comparison between our algorithm and PREMA for different ranks (R) and
compression rates (a.k.a., Cases): the 2nd panel describes the NDE improvement percentage of ours compared with PREMA,
and the 3rd and 4th panels report the NDE (multiplied by 100) of our algorithm and PREMA, respectively; the situations where
our algorithm’s improvement percentage is significant, our NDE is low, and PREMA’s NDE is very high are in bold; the results
show that our algorithm’s performance is stable w.r.t. the rank and data compression rate.

Figure 4: The highest NDE improvement percentage (the blue
line in a linear scale) and the chosen 𝜇 (the purple bars in a
logarithmic scale) of our algorithm v.s. rank using the Wal-
mart dataset; the candidate 𝜇s are between 10−3 and 103; the
results show that when 𝜇 is properly chosen our algorithm
can achieve remarkably data disaggregation performance.

when 𝜇 is chosen properly, and this advantage is more apparent
when the rank goes up.

Next, we investigate the effectiveness of our algorithm using the
Indian Pines dataset in three cases:
Case #1: two aggregated tensors are obtained by following the sim-
ilar procedure to the Walmart data aggregation but setting 𝐷𝑘 = 22
and 𝐷𝐼 = 15 which makes X ∈ R145×145×22 and Y ∈ R15×145×220

of 10% and 10.34% of the original tensor size, respectively.
Case #2: similar to the Case #1 except setting 𝐷𝑘 = 11 and 𝐷𝐼 = 8
which makesX ∈ R145×145×11 andY ∈ R8×145×220 of 5% and 5.52%
of the original tensor size.
Case #3: similar to the Case #1 except setting 𝐷𝑘 = 8 and 𝐷𝐼 = 5
which makes X ∈ R145×145×8 and Y ∈ R5×145×220 of 3.64% and

3.45% of the original tensor size.

In Table 1, we are showing the NDE Improvement percentage of
our method, the NDE of ours and PREMA for various ranks ranging
from 50 to 4, 000 in the above three different cases where each
result is in the format of mean±standard deviation after 20 Monte
Carlo experiments. Furthermore, we plot four randomly chosen
samples of a single horizontal slab recovery in Figure 5 to visualize
the comparison among the true, ours, and PREMA’s reconstructed
data. We use 𝜇 = 100 for the ranks 𝑅 = 50, 100, 500, 𝜇 = 1, 000 for
𝑅 = 1, 000, 1, 500 and 𝜇 = 100, 000 for 𝑅 > 1, 500. Clearly, when
𝑅 ≤ 1, 000 both our algorithm and PREMA are performing stably
well, i.e., the NDE is no more than 5.2% while our algorithm has
very little NDE improvement. When the rank is large, PREMA’s
performance drops a lot. For example, the NDE of PREMA is 14.9
when 𝑅 = 1, 500 in Case # 3. But, our algorithm has very stable NDE
even when 𝑅 is high. Interestingly, when the rank is large enough
it’s better for our algorithm to choose a large 𝜇, which implies that
the graph regularizer plays a critical role for the data disaggregation
task. It’s also worth to mention that from the Case #1 to Case #2
to Case #3, the compression rate is getting higher and higher and
PREMA is facing the disaggregation challenge with a smaller and
smaller rank. This implies that when the compression rate is low,
both PREMA and our algorithm have prominent performance in a
wide range of ranks. Last but not the least, our method is performing
well in the extreme cases when either the rank is too high or the
compression rate is too low (here, we aren’t assuming the rank can
be infinity high).

5 CONCLUSION
In this paper we introduce a graph-assisted tensor disaggregation
method which leverages graph information to improve the robust-
ness and the fidelity of the reconstruction of a high-resolution
tensor from two complementary disaggregated views. In our exper-
imental evaluation, we observe that our proposed method is able to
operate well in cases where the rank of the underlying decomposi-
tion model is very high, where state of the art runs into instabilities
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(a) 𝑖 = 86, NDE of ours and PREMA are 0.7% and 249%

(b) 𝑖 = 105, NDE of ours and PREMA are 1.07% and 152%

(c) 𝑖 = 4, NDE of ours and PREMA are 1.78% and 273%

(d) 𝑖 = 115, NDE of ours and PREMA are 0.96% and 350%

Figure 5: Four examples for horizontal slab recovery (the size
of each slab is 220× 145) with two different compression rates
(a.k.a., Cases) where 𝑖 is the slab index; NDEs are described in
each case; the first columns are true slabs; the second columns
are the reconstructed slabs from our proposed algorithms;
the third columns are reconstructed slabs from PREMA; the
top two rows are in Case #2; the bottom two rows are in Case
#3; each entry of a slab matrix specifies the color using the
full range of colors in the colormap; the results show that
our algorithm outperforms the state-of-the-art.

and is unable to smoothly improve its performance as the rank
increases. In future work, we intend to investigate extensions to
the model and decomposition algorithm, explore different ways of
estimating the graph from the existing data, and identify different
additional constraints and regularizations that can further improve
tensor disaggregation.
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