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ABSTRACT

This article is a work-in-progress paper. In traditional graph con-
volutional networks (GCNs), node feature aggregation in graph
convolutional learning is guided only by topology graphs. In re-
ality, both network topology and node features offer unique and
valuable information. Using topology alone cannot obtain fully and
completely accurate neighborhood information. This paper advo-
cates a representation learning method with output correction for
GCNs (OC-GCN), simultaneously using topological structure and
node features information. Specifically, we use two GCN encoders
to extract node embeddings in feature space and topology space.
Then, determine inconsistent nodes by the pseudo-labels generated
by the two models. Finally, we use the representations of consistent
neighbors to regenerate representations of inconsistent nodes in
feature and topology views. Our experiments have shown that the
OC-GCN can significantly improve the classification accuracy of
inconsistent nodes in feature and topology views. We conducted ex-
tensive experiments on the benchmark datasets and demonstrated
that OC-GCN is substantially better than state-of-the-art baselines
at different label rates.
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1 INTRODUCTION

Inrecent years, graph convolutional networks (GCNs) have achieved
remarkable success on graph-related tasks [3, 13, 21, 23]. The typi-
cal GCN [12] and its classical variants [1, 1, 8, 18] follow a message
passing framework, which learns embeddings through feature ag-
gregation from its topological neighbors.

GCN defines the convolution using a simple linear function of
the graph Laplacian on a topology graph in the semi-supervised
classification task, but this limits its capability to aggregate the
information from nodes with similar features. The improvement of
GCN focus on extracting more information from the topology graph.
GraphSAGE [8] improves the full graph sampling to node-centric
neighbor sampling. GAT [18] introduces the attention mechanism
in message propagation, assigning weights to different neighbors.
MixHop [1] learns by repeatedly mixing feature representations of
the neighborhood at different distances. In fact, both graph structure
and node features contain important information [11]. Recently,
some studies have used both topology graph and feature graph
as input, exploiting both feature and structural information to im-
prove the model’s performance. Wang et al. [12] set up a series
of experiments to demonstrate that MLP [16] and DeepWalk [17]
performed better than GCN when the correlation between node
labels and features or topology structure were strong. [14] pro-
poses a self-supervised graph representation learning method by
maximizing the agreement of embeddings of the same node in the
topology graph and the feature graph. Similarly, [5] proposed a
self-supervised loss function to force the model to learn shared
information about the feature and topological space.

Specifically, we argue that increasing the consistency of the two
views could boost the performance of downstream tasks. In this
paper, we advocate a representation learning method with output
correction for GCNs (OC-GCN). The feature graph is first generated
according to the similarity of node features. Then, with the feature
graph and topology graph, we use two GCN encoders to extract
node embeddings in feature space and topology space. Finally, we
use the neighbors to regenerate the representations of inconsistent
nodes in two views to maximize consistency between feature and
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topology views. To summarize, we outline the main contributions
in this paper as below:

e We are the first to explore output correction by simultane-
ously using topology and node feature information.

e We propose a novel method to correct output, performed
only in the evaluating phase, and can significantly improve
the classification accuracy of inconsistent nodes in feature
and topology views.

e We conduct extensive experiments on a series of datasets
and show that our method can continuously improve the
model’s performance on semi-supervised node classification.

2 RELATED WORKS
2.1 Graph Convolutional Neural Network

Spectral Network [2] migrates the convolution of traditional Eu-
clidean spaces into graph networks. After that, ChebyNet [4] takes
a simplified approximation for the complex Laplacian matrix. Fur-
ther, GCN [12] uses a localized first-order approximation to simplify
the convolution operation. GraphSAGE [8], GAT [18], MixHop [1]
improve the aggregation of neighborhood nodes to extract more
information from the topology graph.

However, these methods only use a single topology graph for
node aggregation and do not fully utilize the rich feature infor-
mation. Recently, some studies have improved the performance of
GNNs by extracting embeddings from both topology graph and
feature graph. Unlike the previous method that uses topology graph
and feature graph to optimize the model during training, this pa-
per introduces a method that only corrects the output during the
evaluating phase.

2.2 Output Correction

Output Correction is to calibrating the outputs of original models
that are likely to be misclassified. Recently, the output correction
has attracted considerable attention in deep learning [7, 9, 22].
However, confidence correction has been rarely studied in deep
graph learning. C&S [10] combines shallow models with correlation
in the label structure during inference. In CaGCN [19], the outputs
are first corrected according to the assumption that the outputs of
neighboring nodes tend to be the same and then generate pseudo
labels. Unlike previous methods, our proposed OC-GCN model
focuses on correcting the inconsistent outputs of the two GCN
encoders during evaluating phase. Then, OC-GCN can constantly
improve the model’s performance by increasing the consistency of
the two views.

3 METHODS

This section will present our proposed method to learn node repre-
sentations and correct output across feature and topology views,
which consists of Multi-view Representation Learning Module,
Node Feature Correction Module, and Output Aggregation Module.
The overall framework is shown in Fig. 1.

3.1 Generating Feature Graph

Following [5, 20], we construct a feature graph based on node
features. Cluster the node features by using KNN to capture the
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underlying structure of nodes in feature space. Then, the similarity
between different feature representations is computed using the
cosine similarity formula:

x,—-xj

1)

) = e

For each node, we choose top k similar nodes to form their
neighbors and finally get the feature graph G = (Af, X) from the

original graph G = (A, X). Note that the difference between G¢
and G is only in the adjacency matrix.

3.2 Multi-View Representation Learning
Module

Given two views of input graph G and G, we use two GCN en-
coders to generate feature representations Zy and topology repre-
sentations Z;, respectively. The I-th layer output can be represented
as:

7 = oD AD I7 el (2)
f s 4 Cr)

Z=o(D 7AD" 37} 6}). (3)

Where @} and @i are the learnable parameters of the I-th layer

for two GCNs, and o () denotes the activation function. A F=Ar+],
A=A+l ﬁf and D represent the degree matrix, D;; = Zj Aij. We
denote the last layer output embedding as Zr and Zrt.

In the training phase, since we have embeddings from two
views, Zr and Zt, which both contribute to the classification,
we concatenate them to get the consensus representation, Z =
contact (Zp, Zt). Convert the output embedding Z to predicted la-
bel Y by utilizing a 2-layer MLP. Let <V}, be the set of training nodes
and Y be the one-hot label matrix, and © is obtained by minimizing
the cross-entropy loss of the label:

L=- ) Yz ()

veVy

3.3 Node Feature Correction Module

We expand the output feature matrices of two GCNs to two times its
dimensionality in the evaluating phase. Then, input the expended
feature matrices into the MLP to obtain the pseudo labels. The
pseudo-labels of node v obtained through the two GCNs are denoted
as Ip(v) and I (v) respectively. MLPs in Node Feature Correction
Module share parameters with that in training phase. The nodes
with the same pseudo labels in the two encoders form the set Vs,
otherwise form the set V.

For each node v € YV}, it is difficult to obtain the correct label
directly using the original output because it gets a different pseudo-
label in the two GCNs. Use 2 to denote the corrected representation
of z. The purpose of output correction is to regenerate the output
for node v € V;. Note that there is no output correction for the
node u € Vs, 2, = z,,. As shown in Fig. 2, the embedding of the
node v € V; is regenerate by aggregating the embeddings of the
neighbouring nodes in V.
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Figure 1: Schematic overview of OC-GCN, which inputs are the graphs G and G’. The cat indicates concatenate operation. The
diagram on the right shows the exact structure of the node feature correction module.

Figure 2: Regenerate the output for nodes in V;. The red
nodes indicate nodes in V; and the blue nodes indicate nodes
in V;. As shown on the right, embedding of node a is regener-
ated by summing the embeddings of the nodes in Vs, which
also in its 2-hop neighbors.

(©)

Zp = Z Zy.
ue Nm(v)NVs

N™(v) represents the set of nodes in the m-hop neighbors of
node v (m was set to 2 in the experiments). The two GCNs con-
struct neighbourhoods for output correction based on Gy and G
respectively. Then, the output of the two views are contacted to
obtain the final embeddings, 7 = contact (ZF, ZT). Finally, convert

the embeddings Z to predicted labels Y through MLP. Algorithm 1
shows the overall algorithm.

4 EXPERIMENT
4.1 Datasets

we conduct extensive experiments on four widely used datasets
including three citation networks (Cora, Citeseer, Pubmed) [12]
and one copurchase network (Amazon Computers) [15]. Table 1
shows an overview of datasets.

Algorithm 1: Main steps of the OC-GCN algorithm
Input

:Node feature matrix X = [x1,...,xn], adjacency
matrix A, node label matrix Y, graph convolution
networks fp, and fp, .

Output: Classification results Y.
1 Step 1: Generating Feature Graph
2 Calculate similarity between x; and x;.

(%)

Build G based on the similarity of feature representations.

'S

Step 2: Training phase

Zr = f, (6r). Zr = i, (6).

Concatenate Zr and Z together, and input them into MLP
to get the classification result.

Update all parameters of the model by minimizing the Equ. 4.

[

=)

N1

o

Step 3: Evaluating phase

©

Obtain pseudo labels in the two encoders.

10 Construct the sets Vs and V.

11 if s then

12 ‘ Output correction according to Equ. 5.

13 end

14 Convert the output embedding Z to predicted label Y.

Table 1: Details of the datasets used in the paper.

Dataset Classes Features Nodes Edges

Cora 7 1,433 2,708 5,429
Citeseer 6 3,703 3,327 4,732
Pubmed 3 500 19,717 44,338

4.2 Baseline and Setup

We compare the proposed method with previous supervised state-
of-the-art methods. The comparison models include: Label Propa-
gation (LP) [24], Graph Convolutional Network (GCN) [12], Graph
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Figure 3: The the accuracy before and after output correction of the insistent nodes in two views.

Sample and Aggregate Network (SAGE) [8], Graph Attention Net-
work (GAT) [18], and Higher-Order Graph Convolutional Archi-
tectures (MixHop) [1]. We also conduct ablation analysis. We use
OC-GCN-w/o to denote the model without output correction for
inconsistent node in two views.

For citation networks, we closely follow the evaluation proto-
col of [12]. For co-purchase network, nodes that are not training
sets are split into 1:9, and each split is used for validation and test,
respectively. In this paper, all models use a 2-layer GCN with the
same hidden layer dimension (nhid1) and output dimension (nhid2)
simultaneously, where nhidl € {512,768} and nhid2 € {128,256}.
We use ReLU as the activation function, and set the learning rate
ranging from 0.0001 to 0.0005. In addition, the dropout rate is 0.5,
weight decay € {5e — 3, 5e —4}. We train the model for a fixed num-
ber of epochs, specifically 200, 200, 500 epochs for Cora, Citeseer,
and Pubmed, respectively. All models are initialized with Glorot
initialization [6], and trained using Adam optimizer on all datasets.
When constructing the feature graph, k is set to be 6, 6, 3 for Cora,
Citeseer and Pubmed, respectively.

4.3 Node Classification Results

In order to evaluate our model more comprehensively, we set up
training sets with different label rates on datasets. For Cora and
Citeseer: {0.5%, 1%, 1.5%, 2%}, for Pubmed: {0.03%, 0.05%, 0.07%,
0.1%}. The results of the semi-supervised node classification for the
different models are summarised in Tables 2 to 4.

Table 2: Classification Accuracy on Cora.

Cora Dataset

Label Rate 05% 1% 15% 2%

LP 57.6 612 624 634
GCN 542 61.0 66.2 728
SAGE 53.6 60.2 652 721
GAT 543 603 665 725

MixHop 55.2 61.1 658 728

OC-GCN 603 642 684 738
GAIN 2.7 3.0 1.9 1.0

We have the following observations: our proposed OC-GCN
consistently outperforms LP, GCN, SAGE, GAT, and MixHop on

Table 3: Classification Accuracy on Citeseer.

Citeseer Dateset

Label Rate 05% 1% 15% 2%

LP 39.6 43.2 455 48.2
GCN 46.6 563 59.8 64.8
SAGE 46.7 564 60.1 65.2
GAT 46.7 56.6 603 65.2

MixHop 48.2 584 61.8 658

OC-GCN 511 60.2 641 672
GAIN 2.7 3.0 2.3 1.0

Table 4: Classification Accuracy on Pubmed.

Pubmed Dateset
Label Rate 0.03% 0.05% 0.07% 0.1%
LP 59.4 61.8 62.3 63.6
GCN 57.2 59.8 63.4 67.6
SAGE 57.5 60.1 63.9 67.6
GAT 57.8 60.4 64.5 67.8

MixHop 58.3 61.0 64.6  68.2

OC-GCN 61.3 62.9 66.3  69.5
GAIN 1.9 1.1 0.9 1.2

all the datasets. It is evident that when labeled data is insufficient,
the performance of the GCN suffers significantly. In some cases,
GCN performs even worse than LP [24] when the training size
is limited. Compared with GCN, OC-GCN achieves a maximum
improvement of 6.1%, 4.5%, and 4.1% for accuracy on Cora, Cite-
seer, Pubmed and Am. Comp, respectively. Furthermore, OC-GCN
achieves an improvement over OC-GCN-w/o, showing the effec-
tiveness of regenerating the representations of inconsistent nodes
in two views.

4.4 Effect of Node Feature Correction

In this section, we calculate the classification accuracy of incon-
sistent nodes in two views before and after the output correction.
In the training phase, training epochs is taken as 100, 100, 200 for
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Cora, Citeseer and Pubmed under different label rates to learn a
label distribution for each node.

In Fig. 3, the accuracy before and after output correction of the
inconsistent samples is drawn separately for Cora, Citeseer, and
Pubmed under different label rates. Models that misclassify are
often samples where classifiers predict different results in feature
and topology views, Only about 40% accuracy on average. The
classification accuracy of inconsistent samples after the correction
improved significantly. The lower the label rate, the more significant
the improvement in accuracy.

5 CONCLUSION

This paper proposes an output correction method across feature
and topology views named OC-GCN. OC-GCN could select incon-
sistent samples in topology graph and feature graph, and correct
their output based on consistent samples in the neighborhood.
The consistency of the feature and structure views is increased by
correcting for inconsistent samples. Experiments on several bench-
marks demonstrate that output correction can significantly improve
the classification accuracy of inconsistent nodes. Our method is
superior to state-of-the-art semi-supervised learning for GCN at
different label rates.
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