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ABSTRACT
Listing triangles is a fundamental graph problem with many appli-

cations, and large graphs require fast algorithms. Vertex ordering

allows the orientation of edges from lower to higher vertex indices,

and state-of-the-art triangle listing algorithms use this to acceler-

ate their execution and to bound their time complexity. Yet, only

two basic orderings have been tested. In this paper, we show that

studying the precise cost of algorithms instead of their bounded

complexity leads to faster solutions. We introduce cost functions

that link ordering properties with the running time of a given algo-

rithm. We prove that their minimization is NP-hard and propose

heuristics to obtain new orderings with different trade-offs between

cost reduction and ordering time. Using datasets with up to two

billion edges, we show that our heuristics accelerate the listing of

triangles by an average of 30% when the ordering is already given

as an input, and 15% when the ordering time is included.

CCS CONCEPTS
• Theory of computation → Design and analysis of algo-
rithms; Graph algorithms analysis; • Mathematics of com-
puting→ Graph algorithms; • Information systems→ Data
mining.
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1 INTRODUCTION
1.1 Context
Small connected subgraphs are key to identifying families of real-

world networks [21] and are used for descriptive or predictive

purposes in various fields such as biology [23, 28], sociology [7, 9]

and engineering [30]. In particular, listing elementary patterns
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such as triangles is a stepping stone to analyzing the structure of

networks and their evolution [17, 27]. This task may seem simple,

but web crawlers and social platforms generate graphs that are

so large that scalability becomes a challenge. Thus, a lot of effort

has been dedicated to efficient in-memory triangle listing. Note

that streaming methods exist for graphs that do not fit in main

memory [4, 10] and that exact or approximate methods designed

for triangle counting [3, 13, 31] can generally not be adapted to

triangle listing.
An efficient algorithm for triangle listing has been proposed

early on in [8]. Based on the observation that real-world graphs

generally have a heterogeneous degree distribution, later contribu-

tions [15, 26] showed how ordering vertices by degree or core value

accelerates the listing. Since then, a unifying description has been

proposed [22] and the method has been successfully extended to

larger cliques [11, 19, 29]. However, only degree and core orderings

have been exploited, but their properties are not specifically tailored

for the triangle listing problem. Other types of orderings benefited

other problems such as graph compression [6, 12] or cache opti-

mization [16, 32]. The main purpose of this work is thus to find

a general method to design efficient vertex orderings for triangle

listing.

1.2 Contributions
In this work, we show how vertex ordering directly impacts the

running time of the two fastest existing triangle listing algorithms.

First, we introduce cost functions that relate the vertex ordering

and the running time. We prove that finding an optimal ordering

to minimize them is NP-hard. Then, we expose a gap in the combi-

nations of algorithm and ordering considered in the literature, and

we bridge it with three heuristics to reduce the corresponding costs.

Our heuristics reach a compromise between their running time and

the quality of the obtained ordering, in order to address two dis-

tinct tasks: listing triangles with or without taking into account the

ordering time. Finally, we show that our resulting combinations of

algorithm and ordering outperform state-of-the-art running times

for either task. We release an efficient open-source implementation

of all considered methods, available at [2].

Section 2 presents state-of-the-art methods to list triangles. In

Section 3, we analyze the cost induced by a given ordering on these

algorithms and propose several heuristics to reduce it; the proofs of

NP-hardness are in appendix. The experiments of Section 4 show

that our methods are efficient in practice and improve the state of

the art.
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Figure 1: Directed triangle with the unified notations pro-
posed in [22]. The edges are directed according to an ordering
𝜋 such that 𝜋𝑢 < 𝜋𝑣 < 𝜋𝑤 .

1.3 Notations
We consider an unweighted undirected simple graph 𝐺 = (𝑉 , 𝐸)
with 𝑛 = |𝑉 | vertices and 𝑚 = |𝐸 | edges. The set of neighbors

of a vertex 𝑢 is denoted 𝑁𝑢 = {𝑣, {𝑢, 𝑣} ∈ 𝐸}, and its degree is

𝑑𝑢 = |𝑁𝑢 |. An ordering 𝜋 is a permutation over the vertices that

gives a distinct index 𝜋𝑢 ∈ J1, 𝑛K to each vertex 𝑢. In the directed

acyclic graph (DAG) 𝐺𝜋 = (𝑉 , 𝐸𝜋 ), for {𝑢, 𝑣} ∈ 𝐸, 𝐸𝜋 contains

(𝑢, 𝑣) if 𝜋𝑢 < 𝜋𝑣 , and (𝑣,𝑢) otherwise. In such a directed graph,

the set 𝑁𝑢 of neighbors of 𝑢 is partitioned into its predecessors

𝑁−𝑢 and successors 𝑁 +𝑢 . We define the indegree 𝑑−𝑢 = |𝑁−𝑢 | and the

outdegree 𝑑+𝑢 = |𝑁 +𝑢 |; their sum is 𝑑−𝑢 + 𝑑+𝑢 = 𝑑𝑢 . A triangle of 𝐺

is a set of vertices {𝑢, 𝑣,𝑤} such that {𝑢, 𝑣}, {𝑣,𝑤}, {𝑢,𝑤} ∈ 𝐸. A

𝑘-clique is a set of 𝑘 fully-connected vertices. The coreness 𝑐𝑢 of

vertex 𝑢 is the highest value 𝑘 such that 𝑢 belongs to a subgraph

of 𝐺 where all vertices have degree at least 𝑘 ; the core value or

degeneracy 𝑐 (𝐺) of𝐺 is the maximal 𝑐𝑢 for 𝑢 ∈ 𝑉 . A core ordering

𝜋 verifies 𝜋𝑢 ≤ 𝜋𝑣 ⇔ 𝑐𝑢 ≤ 𝑐𝑣 . Core value and core ordering can

be computed in linear time [5].

2 STATE OF THE ART
2.1 Triangle listing algorithms
Ortmann and Brandes [22] have identified two families of triangle

listing algorithms: adjacency testing, and neighborhood intersection.
The former sequentially considers each vertex 𝑢 as a seed, and

processes all pairs (𝑣,𝑤) of its neighbors; if they are themselves

adjacent, {𝑢, 𝑣,𝑤} is a triangle. Algorithms tree-lister [14], node-
iterator [26] and forward [26] belong to this category. In contrast,
the neighborhood intersection family methods sequentially con-

siders each edge (𝑢, 𝑣) as a seed; each common neighbor 𝑤 of 𝑢

and 𝑣 forms a triangle {𝑢, 𝑣,𝑤}. Algorithms edge-iterator [26],

compact-forward [15] and K3 [8] belong to this category, as well

as some algorithms that list larger cliques [11, 19, 20].

In naive versions of both adjacency testing and neighborhood

intersection, finding a triangle (𝑢, 𝑣,𝑤) does not prevent from find-

ing triangle (𝑣,𝑤,𝑢) at a later step. The above papers avoid this

unwanted redundancy by using an ordering, explicitly or not. We

use the framework developed in [22]: a total order 𝜋 is defined

over the vertices, and the triple (𝑢, 𝑣,𝑤) is only considered a valid

triangle if 𝜋𝑢 < 𝜋𝑣 < 𝜋𝑤 . This guarantees that each triangle is

listed only once: as illustrated in Figure 1, vertices in any triangle

of the DAG 𝐺𝜋 appear in one and only one of three positions: 𝑢 is

first, 𝑣 is second,𝑤 is third; the same holds for edges: 𝐿 is the long

edge, and 𝑆1 and 𝑆2 are the first and second short edges. It leads to

three variants of adjacency testing (seed vertex 𝑣 or𝑤 instead of 𝑢)

and of neighborhood intersection (seed edge 𝐿 or 𝑆2 instead of 𝑆1).

Choosing the right data-structure is key to the performance of

algorithms. All triangle listing algorithms have to visit the neigh-

borhoods of vertices. Using hash table or binary tree to store them

is very effective: they respectively allow for constant and logarith-

mic search on average. However, because of high constants, they

are reportedly slow in terms of actual running time [26]. A faster

structure is the boolean array used in K3 for neighborhood inter-

section. It registers the elements of 𝑁 +𝑢 in a boolean table 𝐵 so that,

for each neighbor 𝑣 of 𝑢, it is possible to check in constant time if a

neighbor𝑤 of 𝑣 is also a neighbor of 𝑢. This is the structure used

by the fastest methods [11, 22].

In the rest of this paper, we therefore only consider triangle

listing algorithms that use neighborhood intersection and a boolean

array. We present the two that we will study in Figures 2 and 3

with the notations of Figure 1 for the vertices
1
. They initialize

the boolean array 𝐵 to false (line 1), consider a first vertex (line 2)

and store its neighbors in 𝐵 (line 3); then, for each of its neighbors

(line 4), they check if their neighbors (line 5) are in 𝐵 (line 6), in

which case the three vertices form a triangle (line 7). 𝐵 is reset

(line 8) before continuing with the next vertex. The algorithm of

Figure 2 corresponds to L+n in [22]; we call it A++ because of the
two "+" involved in its complexity described in Property 1. The

algorithm of Figure 3 corresponds to S1+n in [22]; we call it A+-.
Their complexities are given in Property 1. Since they depend on

the indegree and outdegree of vertices, the choice of ordering will

impact the running time of the algorithms.

Property 1 (Complexity of A++ and A+-). The complexity of
A++ is Θ(∑𝑢∈𝑉 𝑑+𝑢

2). The complexity of A+- is Θ
(
𝑚 +∑𝑣∈𝑉 𝑑+𝑣𝑑

−
𝑣

)
.

Proof. In both algorithms, the boolean table 𝐵 requires 𝑛 initial

values,𝑚 set and𝑚 reset operations, which is Θ(𝑚) assuming that

𝑛 ∈ O(𝑚). In A++, a given vertex 𝑢 appears in the loop of Line 4 as

many times as it has a successor 𝑤 ; every time, a loop over each

of its successors 𝑣 is performed. In total, 𝑢 is involved in Θ(𝑑+𝑢 2)
operations. Similarly, in A+-, a given vertex 𝑣 appears in the loop of

Line 4 as many times as it has a predecessor 𝑢; every time, a loop

over each of its successors 𝑤 is performed. In total, 𝑣 is involved

in Θ(𝑑+𝑣𝑑−𝑣 ) operations. The term𝑚 is omitted in the complexity

of A++ as

∑
𝑢∈𝑉 𝑑+𝑢

2 ≥ ∑
𝑢∈𝑉 𝑑+𝑢 =𝑚, but not in A+- as

∑
𝑣∈𝑉 𝑑+𝑣𝑑

−
𝑣

can be lower than𝑚. □

2.2 Orderings and complexity bounds
Ortmann and Brandes [22] order the vertices by non-decreasing

degree or core value. In their experimental comparison, they test

all the above methods with degree ordering, core ordering, and

with the original ordering of the dataset. They conclude that the

fastest method is A++ with core or degree ordering: core is faster to

list triangles when the ordering is given as an input, and degree is

faster when the time to compute the ordering is also included.

Danisch et al. [11] also use core ordering in the more general

problem of listing 𝑘-cliques. For triangles (𝑘 = 3), their algorithm

is equivalent to A+-, and they show that using core ordering out-

performs the methods of [8, 15, 20].

1
Note that a third natural variant exists, which would be A- - (or S2+n), but we do not

consider it here since its complexity is equivalent to the one of A++.
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Algorithm A++
1: for each vertex 𝑣 do 𝐵 [𝑣] ← False

2: for each vertex𝑤 do
3: for 𝑣 ∈ 𝑁−𝑤 do 𝐵 [𝑣] ← True

4: for 𝑢 ∈ 𝑁−𝑤 do
5: for 𝑣 ∈ 𝑁 +𝑢 do
6: if 𝐵 [𝑣] then
7: output triangle{𝑢, 𝑣,𝑤}
8: for 𝑣 ∈ 𝑁−𝑤 do 𝐵 [𝑣] ← False

Complexity:

Θ
(
𝑚 +

∑︁
(𝑢,𝑤) ∈𝐸𝜋

𝑑+𝑢
)
= Θ

( ∑︁
𝑢∈𝑉

𝑑+𝑢
2

)
Figure 2: Algorithm A++ (or L+n)

Algorithm A+-
1: for each vertex𝑤 do 𝐵 [𝑤] ← False

2: for each vertex 𝑢 do
3: for𝑤 ∈ 𝑁 +𝑢 do 𝐵 [𝑤] ← True

4: for 𝑣 ∈ 𝑁 +𝑢 do
5: for𝑤 ∈ 𝑁 +𝑣 do
6: if 𝐵 [𝑤] then
7: output triangle{𝑢, 𝑣,𝑤}
8: for𝑤 ∈ 𝑁 +𝑢 do 𝐵 [𝑤] ← False

Complexity:

Θ
(
𝑚 +

∑︁
(𝑢,𝑣) ∈𝐸𝜋

𝑑+𝑣
)
= Θ

(
𝑚 +

∑︁
𝑣∈𝑉

𝑑+𝑣𝑑
−
𝑣

)
Figure 3: Algorithm A+- (or S1+n)

With these two orderings, it is possible to obtain upper-bounds

for the time complexity in terms of graph properties. Chiba and

Nishizeki [8] show that K3 with degree ordering has a complexity

in O(𝑚 · 𝛼 (𝐺)), where 𝛼 is the arboricity. With core ordering,

node-iterator-core [26] and kClist [11] have complexity O(𝑚 ·
𝑐 (𝐺)), where 𝑐 is the core value. These bounds are considered equal
in [22], following the proof in [33] that 𝛼 (𝐺) ≤ 𝑐 (𝐺) ≤ 2𝛼 (𝐺) − 1.
However, we focus in this work on the complexities expressed in

Algorithms 2 and 3 as we will see that they describe the running

time more accurately.

3 NEW ORDERINGS TO REDUCE THE COST
OF TRIANGLE LISTING

3.1 Formalizing the cost of triangle listing
algorithms

In this section, we discuss how to design vertex orderings to reduce

the cost of triangle listing algorithms. For this purpose, we intro-

duce the following costs that appear in the complexity formulas

of Algorithms 2 and 3. Recall that the initial graph is undirected

and that the orientation of edges is given by the ordering 𝜋 , which

partitions neighbors into successors and predecessors.

Definition 1 (Cost induced by an ordering). Given an undi-
rected graph 𝐺 , the costs 𝐶++ and 𝐶+− induced by a vertex ordering
𝜋 are defined by:

𝐶++ (𝜋) =
∑︁
𝑢∈𝑉

𝑑+𝑢𝑑
+
𝑢 𝐶+− (𝜋) =

∑︁
𝑢∈𝑉

𝑑+𝑢𝑑
−
𝑢

The fastest methods in the state of the art are A++ with core or

degree ordering [22], and A+-with core ordering [11]. The intuition
of both orderings is that high degree vertices are ranked after most

of their neighbors in 𝜋 so that their outdegree in 𝐺𝜋 is lower. This

reduces the cost 𝐶++, which in turn reduces the number of opera-

tions required to list all the triangles as well as the actual running

time of A++. In [22], it is mentioned that core ordering performs

well with A+- as a side effect.
To our knowledge, no previous work has designed orderings with

a low 𝐶+− cost and used them with A+-. We will show that such

orderings can lower the computational cost further. Yet, optimizing

𝐶+− or 𝐶++ is computationally hard because of Theorem 1:

Theorem 1 (NP-hardness). Given a graph 𝐺 , it is NP-hard to
find an ordering 𝜋 that minimizes𝐶+− (𝜋) or that minimizes𝐶++ (𝜋).

The result for 𝐶+− was already known [25] but, as far as we

know, no proof has been published. In an online supplementary

material [1], we give a new simpler proof for the hardness of 𝐶+−,
and we prove the result for 𝐶++.

3.2 Distinguishing two tasks for triangle listing
Triangle listing typically consists of the following steps: loading a

graph, computing a vertex ordering, and listing the triangles. Time

measurements in [11, 15, 19] only take the last step into account,

while [22, 26] also include the other steps. We therefore address

two distinct tasks in our study: we call mere-listing the task of

listing the triangles of an already loaded graph with a given vertex

ordering; we call full-listing the task of loading a graph, computing

a vertex ordering, and listing its triangles.

In the rest of the paper, we use the notation task-order-algorithm:

for instance, mere-core-A+- refers to the mere-listing task with core

ordering and algorithm A+-. Using this notation, the fastest methods

identified in the literature are mere-core-A+- in [11], mere-core-A++
and full-degree-A++ in [22].

Withmere-listing, the ordering time is not counted, which allows

to spend a long time to find an ordering with low cost. On the other

hand, full-listing favors quickly obtained orderings even if their

induced cost is not the lowest. For this reason, there is a time-quality

trade-off for cost-reducing heuristics.

3.3 Reducing 𝐶+− along a time-quality trade-off
The goal here is to design an algorithm that takes a graph as input

and produces an ordering 𝜋 with a low induced cost 𝐶+− (𝜋). Be-
cause of Theorem 1, finding an optimal solution is not realistic for

graphs with millions of edges. We therefore present three heuristics

aiming at reducing the 𝐶+− value, exploring the trade-off between

quality in terms of 𝐶+− and ordering time.

3.3.1 Neigh heuristic. We define the neighborhood optimization
method, a greedy reordering where each vertex is placed at the

optimal index with respect to its neighbors, as illustrated in Figure 5.

First notice that changing an index 𝜋𝑢 only affects 𝐶+− (𝜋) if the
position of 𝑢 with respect to at least one of its neighbors changes;

otherwise the in- and outdegrees of all vertices remain unchanged.
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Algorithm Neigh

Input: graph 𝐺 , initial ordering 𝜋 , threshold 𝜖 ≥ 0

1: repeat
2: 𝐶0 = 𝐶+− (𝜋)
3: for each vertex 𝑢 of 𝐺 do
4: sort 𝑁𝑢 according to 𝜋

5: 𝑝0 = position of 𝑢 in its neighborhood

6: 𝑝∗ = argmin𝑝 {𝐶+− (𝑝)}
7: update ordering 𝜋 to put 𝑢 in position 𝑝∗
8: while 𝐶+− (𝜋) < (1 − 𝜖) ·𝐶0

Figure 4: Neighborhood optimization (Neigh heuristic)

Starting from any ordering 𝜋 , Algorithm 4 considers each vertex 𝑢

one by one (line 3) and, for each 𝑝 ∈ J0, 𝑑𝑢 +1K, it computes𝐶+− (𝑝),
the value of 𝐶+− when 𝑢 is just before its 𝑝-th neighbor in 𝜋 . The

position 𝑝∗ that induces the lowest value of 𝐶+− is selected (line 6)

and the ordering is updated (line 7). The process is repeated until

𝐶+− reaches a local minimum, or until the relative improvement is

under a threshold 𝜖 (last line). The resulting 𝜋 induces a low 𝐶+−

cost.

For a vertex 𝑢, sorting the neighborhood according to 𝜋 takes

O(𝑑𝑢 log𝑑𝑢 ) operations; finding the best position takes Θ(𝑑𝑢 ) be-
cause it only depends on the values 𝑑+𝑣 and 𝑑−𝑣 of each neighbor 𝑣

of 𝑢. With a linked list, 𝜋 is updated in constant time. If Δ is the

highest degree in the graph, one iteration over all the vertices thus

takes O(𝑚 logΔ), which leads to a total complexity O(𝐼𝑚 logΔ) if
the improvement threshold 𝜖 is reached after 𝐼 iterations. Notice

that on all the tested datasets the process reaches 𝜖 = 10
−2

after

less than ten iterations.

This heuristic has several strong points: it can be used for other

objective functions, for instance 𝐶++; because it is greedy, the cost
keeps improving until the process stops; if the initial ordering

already induces a low𝐶+− cost, the heuristic can only improve it; it

is stable in practice, which means that starting from several random

orderings give similar final costs; and we show in Section 4 that it

allows for the fastest mere-listing.

In spite of its log-linear complexity, this heuristic can take longer

than the listing of triangles itself in practice, which is an issue

for the full-listing task. We therefore propose the following faster

heuristics in the case of full-listing.

3.3.2 Check heuristic. This heuristic is inspired by core ordering,

where vertices are repeatedly selected according to their current

degree [5]. It considers all vertices by decreasing degree and checks
if it is better to put a vertex at the beginning or at the end of the

ordering. More specifically, 𝜋 is obtained as follows: before placing

vertex 𝑢, let 𝑉𝑏 (resp. 𝑉𝑒 ) be the vertices that have been placed at

the beginning (resp. at the end) of the ordering, and 𝑉? those that

are yet to place. The neighbors of𝑢 are partitioned in 𝑁𝑏 = 𝑁𝑢 ∩𝑉𝑏 ,
𝑁𝑒 = 𝑁𝑢 ∩ 𝑉𝑒 and 𝑁? = 𝑁𝑢 ∩ 𝑉?. We consider two options to

place 𝑢: either just after the vertices in 𝑉𝑏 (𝜋𝑢 = |𝑉𝑏 | + 1), or just
before the vertices in 𝑉𝑒 (𝜋𝑢 = 𝑛 − |𝑉𝑒 |). In either case, 𝑢 has all

vertices of 𝑁𝑏 as predecessors, and all vertices of 𝑁𝑒 as successors.

In the first case, vertices in 𝑁? become successors, which induces

a 𝐶+− cost 𝐶𝑏 = |𝑁𝑏 | · ( |𝑁𝑒 | + |𝑁? |). In the second, the cost is

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

𝑏 𝑐 𝑑 𝑒 𝑎 𝑓 𝑔

Figure 5: Example of update in the Neigh heuristic: vertex 𝑎

is moved to a position among its neighbors that induces the
lowest cost. The tables indicates how the ordering is updated.
The edge in the DAG are reoriented accordingly. Here, the
ordering at the top has 𝐶+− = 9 while the ordering at the
bottom has𝐶+− = 6. For this graph, the optimal cost is 3 (with
ordering 𝑏, 𝑐, 𝑑, 𝑎, 𝑓 , 𝑒, 𝑔).

𝐶𝑒 = ( |𝑁𝑏 | + |𝑁? |) · |𝑁𝑒 |. The option with the smaller cost is selected.

Sorting the vertices by degree requires O(𝑛) steps with bucket sort.

Maintaining the sizes of 𝑁𝑏 , 𝑁𝑒 , 𝑁? for each vertex requires one

update for each edge. Therefore, the complexity is O(𝑚 + 𝑛), or
O(𝑚) assuming that 𝑛 ∈ O(𝑚).

3.3.3 Split heuristic. Finally, we propose a heuristic that is faster
but compromises on the quality of the resulting ordering. Degree

ordering has been identified as the best solution for mere-listing

with algorithm-A++ [22]. We adapt it for 𝐶+− by splitting vertices

alternatively at the beginning and at the end of the ordering 𝜋 .

More precisely, a non-increasing degree ordering 𝛿 is computed,

then the vertices are split according to their parity: if 𝑢 has index

𝛿𝑢 = 2𝑖 + 1 then 𝜋𝑢 = 𝑖 + 1; if 𝛿𝑢 = 2𝑖 , then 𝜋𝑢 = 𝑛 + 1− 𝑖 . Thus, high
degree vertices will have either few predecessors or few successors,

which ensures a low 𝐶+−cost. The complexity of this method is in

O(𝑛) like the degree ordering.

4 EXPERIMENTS
4.1 Experimental setup
4.1.1 Datasets. We use the 12 real-world graphs described in Ta-

ble 1. Loops have been removed and the directed graphs have been

transformed into undirected graphs by keeping one edge when one

existed in either or both directions.
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Table 1: Datasets used for the experiments, ranked by num-
ber of edges. They represent either web networks⋆, social
networks ▲ or citation networks ■.

dataset [source] vertices edges triangles

skitter⋆[18] 1,696,415 11,095,298 28,769,868

patents ■[18] 3,774,768 16,518,947 7,515,023

baidu-baike⋆[24] 2,141,301 17,014,946 25,207,196

pokec ▲[18] 1,632,804 22,301,964 32,557,458

socfba-anon ▲[24] 3,097,166 23,667,394 55,606,428

LiveJournal ▲[18] 4,036,538 34,681,189 177,820,130

wiki⋆[18] 2,070,486 42,336,692 145,707,846

orkut ▲[18] 3,072,627 117,185,083 627,584,181

it-2004⋆[6] 41,291,318 1,027,474,947 48,374,551,054

twitter-2010 ▲[6] 41,652,230 1,202,513,046 34,824,916,864

friendster ▲[18] 124,836,180 1,806,067,135 4,173,724,142

sk-2005⋆[6] 50,636,151 1,810,063,330 84,907,041,475
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Figure 6: Running time of algorithms with respect to the cost
induced by the ordering. Each mark represents an ordering:
circles are for cost 𝐶+− and algorithm A+-, squares are for
cost 𝐶++ and algorithm A++. Each color represents a dataset:
the line of linear regressions and the associated correlation
coefficients 𝑟 show the proportionality between cost and time.

4.1.2 Software and hardware. We release a uniform open-source

implementation [2] of A++ and A+- algorithms, as well as the dif-

ferent ordering strategies that we discussed. Our implementation

allows to run either algorithm in parallel, which is possible because

each iteration of the main loop is independent from the others.

Among orderings however, only degree and Split are easily paral-

lelizable; to be consistent, we use a single thread to compare the

different methods. The code is in c++ and uses gnu make 4 and the
compiler g++ 8.2with optimization flag Ofast and openmp for par-
allelisation. We run all the programs on a sgi ub2000 intel xeon
e5-4650L @2.6 GHz, 128Gb ram running linux suse 12.3.

Regarding the state of the art, the most competitive implementa-

tion available is kClist in c [11], which has already been shown

to outperform previous programs [15, 20]. It lists 𝑘-cliques using a

core ordering and a recursive algorithm that is equivalent to A+- for
𝑘 = 3. We compared our implementation to kClist with various

performance tests and found that ours is 14% faster on average,

presumably because it does not use recursion. Therefore, we only

use our own implementation for A+- in the rest of this paper, to

ensure that the results depend on the combination of ordering and

algorithm, but not on programming differences.

4.2 Cost and running time are linearly
correlated

In order to show that the cost functions 𝐶++ and 𝐶+− are good

estimates of the running time, we measure the correlation between

the running time ofmere-listing and the corresponding cost induced

by various orderings (core, degree, our heuristics, but also breadth-

and depth-first search, random ordering, etc). In Figure 6, we see

that the running time for a given dataset correlates almost linearly

to the corresponding cost: the lines represent linear regressions. It

only presents some of the datasets for readability, but the correlation

is above 0.82 on all of them. In other words, the execution time of

a listing algorithm is almost a linear function of the cost induced

by the ordering, which is why reducing this cost actually improves

the running time, as we will see.

4.3 Neigh outperforms previous mere-listing
methods.

We compare our methods to the state of the art for mere-listing

(core-A+- in [11] and core-A++ in [22]) and for full-listing (degree-

A++ in [22]) in Figure 7. The top charts present the running time

of the three state-of-the-art methods for all datasets, for the mere-

listing task (left) and the full-listing task (right). We can see that

there is no clear winner for mere-listing: both A++ methods have a

very similar duration, but core-A+- can be between 1.4 times faster

and 2.4 times slower depending on the dataset. This explains why

[22] and [11] did not agree on the fastest method.

On the other hand, our heuristics Neigh, Check and Split manage

to produce orderings significantly lower 𝐶+− costs. This translates
directly into short running times for mere-listing with A+-. To
compare our contributions with the state of the art, we take for

each dataset the fastest of the three existing methods. The bottom

left chart of Figure 7 shows the speedup of our methods compared

to the fastest existing one.

4.4 Split outperforms previous full-listing
methods.

For full-listing, the top right chart of Figure 7 compares the three

state-of-the-art methods and shows that degree-A++ is the fastest
for almost all datasets. This result is consistent with the result

reported in [22], that specifically addresses full-listing. The bottom

right chart shows the speedup of our three methods compared to

the fastest state-of-the-art method. Note that the Neigh heuristic is

not competitive here (speedup under one) since its ordering time is

long compared to other methods.

The main result is that Split-A+- is always faster than previous

methods. The speedup compared to existing methods is 1.16 on

average, and it ranges from 1.04 on wiki to 1.50 on it dataset. Check
also gives very good results: on medium datasets, it is a bit slower

than degree-A++, but it outperforms all state-of-the-art methods on

large datasets (it, twitter, friendster, sk), and it even beats Split on
three of them. This hints at a transition effect: the Check ordering

has a lower 𝐶+− value but it takes O(𝑚) steps to compute, while

Split only needs O(𝑛); for larger datasets, the listing step prevails,

so the extra time spent to compute Check becomes profitable.
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Figure 7: Comparison of state-of-the-art methods and speedup of our methods. The top charts show the runtime of the three
state-of-the-art methods; depending on the dataset, the fastest method is not always the same. The bottom charts show the
speedup of our three methods against the fastest existing method of each dataset. On the left, for mere-listing, we see that
our three heuristics consistently outperform the three state-of-the-art methods, and that Neigh or Check are the fastest. On
the right, for full-listing, Neigh is not efficient but Split is always faster than existing methods and Check is faster on bigger
datasets.

CONCLUSION
In this work, we address the issue of in-memory triangle listing in

large graphs. We formulate explicitly the computational costs of

the most efficient existing algorithms, and investigate how to order

vertices to minimize these costs. After proving that the optimiza-

tion problems are NP-hard, we propose scalable heuristics that are

specifically tailored to reduce the costs induced by the orderings.

We show experimentally that these methods outperform the cur-

rent state of the art for both the mere-listing and the full-listing

tasks.

Our results also emphasize a limitation in the possible accelera-

tion: while it is certainly possible to keep improving themere-listing

step, a significant part of full-listing is spent on other steps: comput-

ing the ordering, but also loading the graph or writing the output.

It seems, however, that the mere-listing step takes more importance

as graphs grow larger, which makes our listing methods all the

more relevant for future, larger datasets. A natural extension of this

work is to use similar vertex ordering heuristics in the more general

case of clique listing. Formulating appropriate cost functions for

clique listing algorithms is not straightforward and requires study-

ing precisely the different possibilities to detect all the vertices of a

clique.
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