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ABSTRACT
It is widely believed that society is becoming increasingly polarized

around important issues, a dynamic that does not align with com-

mon mathematical models of opinion formation in social networks.

In particular, measures of polarization based on opinion variance al-

ways decrease over time in models like the popular DeGroot model.

Complementing recent work that seeks to resolve this inconsistency

by modifying opinion models, we instead resolve the inconsistency

by proposing changes to how polarization is quantified.
We present a natural class of group-based polarization measures

that capture the extent to which opinions are clustered into distinct

groups. Using theoretical and empirical arguments, we show that

these group-based measures display interesting, non-monotonic dy-

namics, even in the simple DeGroot model. In particular, for natural

social networks, group-based metrics can increase over time, and

thereby correctly capture perceptions of increasing polarization.

Our results build on work by DeMarzo et al., who introduced

a group-based polarization metric based on ideological alignment.

We show that a central tool from that work, a limit analysis of

individual opinions under the DeGroot model, can be extended to

the dynamics of other group-based polarizationmeasures, including

established statistical measures like bimodality.

We also consider local measures of polarization that operational-

ize how polarization is perceived in a network setting. In conjunc-

tion with evidence from prior work that group-based measures

better align with real-world perceptions of polarization, our work

provides formal support for the use of these measures in place of

variance-based polarization in future studies of opinion dynamics.

1 INTRODUCTION
Polarization of individual opinions and beliefs has become a topic of

intense interest in recent years, especially in relation to politics [9],

and politically sensitive issues like climate change [44] and public

health [28, 34]. Polarization is often believed to threaten social

stability; for example, it has been blamed for legislative deadlock

[6, 7], decreased trust and engagement in the democratic process [37,

39], and hindered responses to crises like the COVID-19 pandemic

[28]. In response to its impact, there is growing interest in using

mathematical models of opinion dynamics to formally study how

polarization arises and evolves. Such models provide simple rules

for how an individual’s opinion on a topic changes in response to

influence from that individual’s social connections. Mathematical

models of opinion dynamics offer a useful abstraction for studying

important real-world phenomena [5]. For example, they have been

used to study the impact of biased assimilation [12, 32] and the

effect of outside actors
1
on polarization [8, 24, 31, 46, 50].

1
Actors like news agencies, social media companies, advertisers, and governments can

influence opinions in a social network by swaying the strength of social connections,

possibly by promoting or hiding social media posts, creating fake user accounts and

content, or running advertisements. By modeling these actions mathematically within

To continue effectively leveraging such models, we first need to

address a basic and important question:

How should the broad and imprecise concept of polarization
be quantified in mathematical models of opinion dynamics?

Surprisingly, this question has received little attention. Most prior

work defaults to quantifying polarization based on the overall vari-
ance of societal opinions (opinions are typically encoded as real

valued numbers) [8, 17, 24, 43]. While mathematically convenient,

any variance-based approach faces a basic challenge: standard mod-

els of opinion formation in social networks, like the ubiquitous

DeGroot learning model [15], predict gradual convergence of opin-

ion variance towards zero over time. This inevitable decrease stands

in contradiction to the fact that, qualitatively, polarization is con-

sidered to exhibit far more interesting dynamics. For example, it

is widely believed that polarization is currently increasing across

the globe on a variety of issues [9, 44], and that its dynamics have

been impacted by forces such as the rise of social media [48].

1.1 Our Approach and Main Results
Given the shortcomings of opinion variance as a measure of po-

larization, we address the central question of how to best quantify

polarization by evaluating metrics through a dynamic lens. In partic-
ular, our goal is to identify natural metrics whose dynamics under

simple models of opinion formation, like the DeGroot model, agree

with observed dynamics of polarization in society.

Towards this end, we introduce a class of group-based metrics

for polarization. We use “group-based” to reference the idea of a

measure that is high when there are well-separated groups of indi-

viduals with different opinions. We formalize this notion in Section

2 by assuming shift- and scale-invariance, hich are properties that

naturally align with axiomatic treatments of clustering [38]. For

now, we leave “group-based” as an intuitive definition and illustrate

with an example. Consider the following opinion vectors on a six

node social network (each entry is one individual’s opinion):

a = [−1,−.6,−.2, .2, .6, 1] b = [.5, .5, .5,−.5,−.5,−.5]

While a has larger variance than b (2.8 vs. 1.5), b would have higher

polarization under a group-based measure, since opinions are more

clearly clustered into two groups. This cluster structure could be

quantified, for example, by any statistical measure of bimodality,

like Sarle’s bimodality coefficient (see Def. 3 formore details). Sarle’s

coefficient is equal to (𝛾2 + 1)/𝜅, where 𝛾 is skewness and 𝜅 is

kurtosis, and evaluates to 0.58 for a, but a higher value of 1 for b.
In this work we explore two main types of group-based polar-

ization measures:

Statistical Measures (Section 4) This class includes functions
that, like Sarle’s bimodality coefficient, measure group structure

an opinion dynamics framework, researchers can better understand how susceptible

networks are to adversarial attacks [3, 26] and how “filter bubbles” emerge [11, 48].



in an opinion distribution by looking at moments beyond the sec-

ond (i.e., beyond variance). For example, the bimodality coefficient

incorporates third and fourth moment information.

Local Measures (Section 5) This class includes metrics that take

into account local social connections on perceptions of group-

structure. For example, we study local agreement, defined as the

average percentage of an individuals social connections who agree

on a particular topic (i.e., have an opinion on the same side of

the mean). Networks with high local agreement may appear more

polarized to individuals, who feel isolated in opinion bubbles.

We show that these group-based measures behave very differ-

ently than variance-based measures, exhibiting interesting, non-

monotonic dynamics even in the simple DeGroot model. In par-

ticular, we prove that any group-based measure converges to a

value that depends on the structure of the underlying social network
governing the opinion dynamics. So, instead of always converging

to zero like variance-based measures, group-based measures can

increase over time for certain networks. Our work builds on a result

of DeMarzo, Vayanos, and Zwiebel [16], who study a group-based

metric that we call “ideological alignment”. Their work is based on

an analysis of the limiting behavior of each individual’s divergence

from the mean opinion under the DeGroot opinion dynamics model.

We show that this analysis extends to other measures.

Moreover, we demonstrate empirically that increases in group-

based polarization are not only possible, but actually common in

natural synthetic and real-world social networks. A sample result

for average local agreement measure (discussed in Section 5) ap-

pears in Figure 1. We conclude that group-based measures not only

have the capacity to model interesting dynamics, but also better

align with perceptions of increasing polarization in reality.

For specific group-based measures, we provide additional theo-

retical support for increasing polarization over time. For example,

in Section 4, we give a heuristic analysis for the limiting Sarle’s

bimodality of opinions in stochastic block-model graphs. We show

that the equilibrium value of this measure under the DeGroot dy-

namics is large for social networks with a small number of commu-

nities, a reasonable assumption of real-world networks. In Section

5, we also show that average local agreement in a social network

converges to a value that depends on the second eigenvalue of

the normalized adjacency matrix D−1A. Polarization increases to a

larger value when this eigenvalue is close to 1, which is empirically

the case in a variety of real-world social network graphs.

1.2 Conclusions and Recommendations
Our findings provide formal support for using group-based mea-

sures to quantify polarization in mathematical models of opinion

dynamics. The unrealistic monotonic dynamics of variance-based

measures have led past studies to abandon simple opinion models

like the DeGroot dynamics, and to adopt alternative, more compli-

cated models to mathematically recover interesting polarization dy-

namics. For example, the Friedkin-Johnson dynamics [23], bounded

confidence model [42], and geometric models have all seen recent

2
NYU and Stanford are graphs from the Facebook100 data set [51]. 5-SBM is a five com-

munity Stochastic Block Model graph on 1000 nodes with intra- and inter-community

edge probabilities equal to 𝑝 = .1 and 𝑞 = .01, respectively. Geometric is a proximity

graph with 1000 nodes on the unit square with 𝑟 = .1, generated using NetworkX [30].
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Figure 1: Number of iterations of DeGroot’s model vs. twomeasures
of polarization in synthetic and real-world social networks.2 Dot-
ted lines plot opinion standard deviation, a variance-based mea-
sure, while solid lines plot average local agreement, a natural group-
based measure, discussed in Section 5. In contrast to standard de-
viation, for all networks the group-based measure increases over
time, which is consistent with real-world perceptions of how polar-
ization can evolve. This finding provides evidence that the group-
based measure may be a more appropriate method for quantifying
polarization than the variance-based one.

attention [25, 31]. A central conclusion of our work is that, alterna-

tively, it may be the definition of polarization, not the model, that

lacks richness for understanding societal polarization. By turning

from variance-based to natural group-based polarization measures,

we see interesting dynamics even in the simplest models.

Beyond our work, the recommendation to use group-based mea-

sures is also supported by empirical evidence that these measures

are more aligned with how individuals perceive polarization in

society than variance-based metrics [20]. In particular, research

suggests that perceived polarization does not correlate with signifi-

cant absolute differences in opinion (which drive overall opinion

variance) [10, 41]. Instead, it has been argued that perceptions of

polarization stem from perceptions of group-structure [41]. In fact,

even the origin of the term “polarization” in the physical sciences

suggests a group-based interpretation [1]. While sociological and

psychological arguments for how to best quantify polarization are

beyond the scope of this paper, the initial alignment between prior

work and our findings is promising.

1.3 Relation to Prior Work
Prior results have largely defaulted to variance-based measures

with the exception of Guerra et al. [29] who introduce a commu-

nity boundary measure of polarization. As mentioned, our work is

most closely related to that of DeMarzo, Vayanos, and Zwiebel [16],

whose limit analysis we adopt (providing a new proof in Section

3). The main novelty of our work over [16] is two fold. First, we

show that the limit analysis has implications for a wider class of

group-based polarization measures beyond “ideological alignment”.

In particular, it implies convergence of any group-based polariza-

tion metric to a graph dependent value, which can be large. Second,

for different group-based measures, we provide experimental evi-

dence and novel theoretical arguments to show these measures will
converge to large values for natural social network graphs.
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2 PRELIMINARIES
GraphNotation. The DeGroot opinion dynamics model studied in

this work is based on representing social connections via aweighted,

undirected social graph, which we denote𝐺 = (𝑉 , 𝐸).𝐺 has |𝑉 | = 𝑛

nodes and |𝐸 | = 𝑚 edges, possibly including self-loops. Let A be

the adjacency matrix of 𝐺 , with 𝐴𝑖 𝑗 = 𝐴 𝑗𝑖 > 0 if there is an edge

between 𝑖 and 𝑗 , and𝐴𝑖 𝑗 = 𝐴 𝑗𝑖 = 0 otherwise. LetN(𝑖) ⊆ {1, . . . , 𝑛}
denote the set of neighbors of node 𝑖 , which includes all 𝑗 for which

𝐴𝑖 𝑗 ≠ 0. If𝐺 contains a self-loop at node 𝑖 then𝐴𝑖𝑖 > 0 and 𝑖 ∈ N (𝑖).
Let 𝑑𝑖 =

∑
𝑗 ∈N(𝑖) 𝐴𝑖 𝑗 denote the degree of node 𝑖 and let D be a

diagonal matrix containing 𝑑1, . . . , 𝑑𝑛 on its diagonal.

Vector Sign Normalization. For a non-zero vector x, let [x]±
denote the vector sign(𝑥𝑖 ) · x, where 𝑥𝑖 is the first non-zero entry

in x. That is, [x]± is equal to either +x or −x, with the sign chosen

to ensure that the first non-zero entry is positive.

2.1 DeGroot Opinion Dynamics
Mathematical models of opinion dynamics have been studied for

decades in economics [35] , applied math [47], computer science

[13], and a variety of other fields [27]. We refer the reader to the

survey in [5]. Such models typically view society as a graph, where

nodes represent individuals and edges represent social connections

of various strength. Simple rules and procedures then define how

an individual’s opinion on an issue (represented as a single discrete

or continuous value, or as a vector) evolves over time.

We focus on one of the earliest and most elegant models of

opinion formation: the DeGroot opinion dynamics [15, 22]. This

model is based on the idea that opinions on a topic, encoded as

continuous values, propagate through the social graph via simple

averaging. Nodes incorporate the beliefs of their neighbors into

their own opinion over time. We formally describe the model below.

Definition 1 (DeGroot Opinion Dynamics). Let 𝐺 = (𝑉 , 𝐸)
be a weighted, undirected graph with 𝑛 nodes,𝑚 edges, adjacency
matrix A, and degree matrix D. For time steps 𝑡 = 0, 1, . . . ,𝑇 , we
associate the nodes of 𝐺 with an opinion vector z(𝑡 ) ∈ R𝑛 containing
numerical values that represent each individual’s current view on an
issue. Starting with a fixed vector of initial opinions z(0) , opinions
under the DeGroot model evolve via the update:

𝑧
(𝑡+1)
𝑖

=
1

𝐷𝑖𝑖

∑
𝑗 ∈N(𝑖)

𝐴𝑖 𝑗𝑧
(𝑡 )
𝑖

, or equivalently, z(𝑡+1) = D−1Az(𝑡 ) .

The DeGroot model generalizes to directed graphs, but we con-

sider the undirected case for simplicity.

Convergence to Consensus. Like many other models of opinion

dynamics, it is well known that the DeGroot dynamics converges

to consensus in the limit. Formally, we have:

Fact 1. If 𝐺 is a connected, undirected, non-bipartite graph then,

z∗ = lim

𝑡→∞
z(𝑡 ) =𝑐 · ®1 where 𝑐 =

𝑛∑
𝑖=1

𝑑𝑖∑𝑛
𝑗=1

𝑑 𝑗
𝑧
(0)
𝑖

.

Note that 𝑐 is equal to the degree-weighted average opinion at time 0.

As discussed, a common approach to measuring polarization on

a single issue at time 𝑡 is to consider the overall opinion variance:

Var[z(𝑡 ) ] = ∥z(𝑡 ) − mean(z(𝑡 ) ) · ®1∥2

2

Of course, if all opinions converge to the same constant value 𝑐 ,

as guaranteed by Fact 1, opinion variance eventually converges to

zero. While this asymptotic observation only speaks to the model’s

behavior after a very long time, in the short term, variance also

tends to decrease monotonically with 𝑡 , a fact that can be proven

rigorously for regular graphs [12].

2.2 Group-based Polarization
In this work, we study group-based polarization metrics, which

we broadly define to include any function with three properties:

invariant to a shift in mean opinion, invariant to sign flips, and

invariant to scaling. Formally:

Definition 2 (Group-based Polarization). Let 𝑓 (𝐺, z) be a
function that maps an 𝑛-node graph 𝐺 and vector of opinions z ∈ R𝑛
to a measure of polarization. Then 𝑓 (𝐺, z) is “group-based” if:

(1) 𝑓 (𝐺, z) = 𝑓 (−z),
(2) 𝑓 (𝐺, z) = 𝑓 (z + 𝑐®1) for any z and scalar 𝑐 , and
(3) 𝑓 (𝐺, z) = 𝑓 (𝑐z) for any non-zero scalar 𝑐 .

While variance many other measures depend only on z, the
local measures studied in Section 5 do depend on the underlying

social network which is why we include 𝐺 as a parameter to 𝑓 .

Variance-based measures of polarization satisfy properties (1) and

(2) of Defn. 2, but not (3). The last property reflects the fact that

group structure should depend on relative differences in opinions

instead of absolute differences. I.e. an opinion vector would be

considered polarized if we have two groups whose mean opinions

are further apart than opinions within each group, regardless of

absolute opinion difference. The resulting requirement of scale-

invariance has also appeared in axiomatic treatments of clustering

objectives [38], which are closely related to group-based measures.

3 LIMIT ANALYSIS
While Fact 1 implies that any variance-based measure of polariza-

tion converges to zero, this is not true for the group-based measures.

Since they are both shift and scale invariant, they are insensitive to

both the mean opinion (this is also true of variance-based measures)

and to constant rescaling of the opinions. As such, to analyze these

measures, we prove a separate convergence result for the mean-

centered, normalized opinion vector, which was also observed in

[16]. In particular, we study the vector:

z(𝑡 ) − mean(z(𝑡 ) ) · ®1
∥z(𝑡 ) − mean(z(𝑡 ) ) · ®1∥2

.

We show that, under mild conditions, in the DeGroot model this

vector converges to a fixed function of the second eigenvector of

the normalized social network adjacency matrix, D−1A. We give a

full proof below, which uses simpler arguments than [16].

Theorem 1. Let𝐺 be a connected graph with adjacency and degree
matrices A and D. Let v1, . . . , v𝑛 and 𝜆1, . . . , 𝜆𝑛 be the eigenvectors
and eigenvalues of D−1A, in order of magnitude. I.e., |𝜆1 | ≥ . . . ≥
|𝜆𝑛 | . Let z(0) , . . . , z(𝑡 ) be a sequence of opinion vectors updated via
the DeGroot opinion dynamics as in Definition 1. Let z̄(𝑡 ) = z(𝑡 ) −
mean(z(𝑡 ) ) · ®1 be the mean-centered opinion vector at time 𝑡 , and let

3



v̄2 = v2 − mean(v2) · ®1. If |𝜆2 | ≠ |𝜆3 | and ⟨D1/2v2, 𝑧
(0) ⟩ ≠ 0 then:

s̄∗ def

= lim

𝑡→∞
[z̄(𝑡 ) ]±

∥z̄(𝑡 ) ∥2

=
[v̄2]±
∥v̄2∥2

.

Recall that for a non-zero vector x, [𝑥]± denotes [𝑥]± = sign(𝑥𝑖 ) · 𝑥 ,
where 𝑥𝑖 is the first non-zero entry in x.

Theorem 1 holds under two mild assumptions. First, we require

that z(0) has non-zero inner product with D1/2v2. This holds with

probability 1 whenever z(0) involves any isotropic random com-

ponent. Second, we require that |𝜆2 | ≠ |𝜆3 |, which will hold for

any natural social network, as it can be guaranteed by assuming

some randomness in the edges of the network
3
. Under these condi-

tions, Theorem 1 shows that the normalized opinions converge to

a vector s̄∗ that depends on the social graph 𝐺 (through its second

eigenvector) but does not depend on the initial opinion vector z(0) .

Proof. From the linear algebraic form of the DeGroot update

rule, we have that:

z(𝑡 ) = (D−1A)𝑡 z(0) = D−1/2

(
D−1/2AD−1/2

)𝑡
D1/2z(0) . (1)

Let D−1/2AD−1/2 = VΣV𝑇
denote the eigendecomposition of the

symmetric normalized adjacency matrix D−1/2AD−1/2
. Σ is a diago-

nal matrix that contains real-valued eigenvalues identical to those of

D−1A. V is an orthogonal matrix whose columns contain eigenvec-

tors v′
1
, . . . , v′𝑛 where v′

𝑖
= D1/2v𝑖/∥D1/2v𝑖 ∥2. The eigenvalues of

the normalized adjacency matrix of an undirected graph always lie

in [−1, 1] and, since A is connected, there is exactly one eigenvector

with eigenvalue 𝜆1 = 1.
4
It can be verified that the corresponding

eigenvector of D−1/2AD−1/2
is equal to v′

1
= D1/2®1/∥D1/2®1∥2.

We expand (1), using that (D−1/2AD−1/2)𝑡 = VΣ𝑡V𝑇
since V is

orthogonal. For 𝑖 = 1, . . . , 𝑛, let 𝑐𝑖 = ⟨v𝑖 ,D1/2z(0) ⟩. We have that:

z(𝑡 ) = D−1/2 ·
(
𝑐1𝜆

𝑡
1
v1 + 𝑐2𝜆

𝑡
2
v2 + ... + 𝑐𝑛𝜆𝑡𝑛v𝑛

)
,

and thus z̄(𝑡 ) = z(t) − mean

(
z(𝑡 )

)
equals:

z̄(𝑡 ) = 𝑐1𝜆
𝑡
1
D−1/2v′

1
− mean

(
𝑐1𝜆

𝑡
1
D−1/2v′

1

)
· ®1

+ . . . + 𝑐𝑛𝜆𝑡𝑛D−1/2v′𝑛 − mean

(
𝑐𝑛𝜆

𝑡
𝑛D−1/2v′𝑛

)
· ®1.

Note thatD−1/2v′
1
is a scaling of the all ones vectors, so the first term

in the sum above is zero. Letting v̄𝑖 = D−1/2v′
𝑖
−mean(D−1/2v′

𝑖
) · ®1,

we are left with:

z̄(𝑡 )

∥z̄(𝑡 ) ∥2

=
𝑐2𝜆

𝑡
2
v̄2 + 𝑐3𝜆

𝑡
3
v̄3 + . . . + 𝑐𝑛𝜆𝑡𝑛 v̄𝑛

∥𝑐2𝜆
𝑡
2
v̄2 + 𝑐3𝜆

𝑡
3
v̄3 + . . . + 𝑐𝑛𝜆𝑡𝑛 v̄𝑛 ∥2

.

We first note that ∥v̄𝑖 ∥2 > 0 for all 𝑖 = 2, . . . , 𝑛. To see why this is

the case, observe that to have ∥v̄𝑖 ∥2 = 0, it must be that v′
𝑖
= 𝑐D1/2®1

for some constant 𝑐 . However, this cannot be the case because v′
𝑖

is orthogonal to v′
1
= 𝑐D1/2®1. Combined with our assumption that

𝑐2 = ⟨D1/2v2, 𝑧
(0) ⟩ ≠ 0, it follows that ∥𝑐2v̄2∥2 ≥ 0. Then, by our

assumption that |𝜆2 | ≠ |𝜆3, we have |𝜆2 | > |𝜆𝑖 | for all 𝑖 = 3, . . . , 𝑛.

3
Informally, suppose we are given a fixed adversarial example network with |𝜆2 | =
|𝜆3 |. A small random perturbation of the edges in the network will ensure that the

second and third eigenvalue are no long exactly equal with high probability.

4
We follow the convention that an eigenvalue equal to −1 would be denoted as 𝜆2 .
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Figure 2: Heat map of “binary opinion profiles” across𝑚 = 4 differ-
ent issues by iteration of the DeGroot model. Each row corresponds
to one of 2

𝑚 difference opinion profiles, and the color at time 𝑡 indi-
cates the number of nodes whose current opinions match that pro-
file. As predicted by Corollary 2, all individuals eventually sort into
just two profiles, leading to perfect ideological alignment.

So, for any 𝜖 > 0, there is some 𝑡 such that ∥𝑐3𝜆
𝑡
3
v̄3+. . .+𝑐𝑛𝜆𝑡𝑛 v̄𝑛 ∥2 ≤

𝜖 ∥𝑐2v̄2∥2. We conclude that:

lim

𝑡→∞
[z̄(𝑡 ) ]±

∥z̄(𝑡 ) ∥2

= lim

𝑡→∞

[𝑐2𝜆
𝑡
2
v̄2 + . . . + 𝑐𝑛𝜆𝑡𝑛 v̄𝑛]±

∥𝑐2𝜆
𝑡
2
v̄2 + . . . + 𝑐𝑛𝜆𝑡𝑛 v̄𝑛 ∥2

=
[𝑐2𝜆

𝑡
2
v̄2]±

∥𝑐2𝜆
𝑡
2
v̄2∥2

.

This proves the theorem since

[𝑐2𝜆
𝑡
2
v̄2 ]±

∥𝑐2𝜆
𝑡
2
v̄2 ∥2

=
[v̄2 ]±
∥v̄2 ∥2

for any 𝑐2, 𝜆2. □

3.1 Implications for Ideological Alignment
In the work of DeMarzo, Vayanos, and Zwiebel [16], Theorem 1 is

used to explain a phenomenon involving multiple opinion vectors,
each defined for a different issue. They call the phenomenon “uni-

dimensional opinions”, but we prefer the terminology ideological
alignment. Ideological alignment occurs when large groups of in-

dividuals simultaneously differ in opinion on many issues [4, 19].

Also refereed to as “party sorting” [20], this phenomenon is well-

documented in the real-world, and there is strong survey-based

evidence that it has increased in recent years [40, 49]. Since it ac-

centuates differences between groups, ideological alignment has

likely contributed to increased perception of polarization [4].

Theorem 1 provides striking mathematical support for the emer-

gence of ideological alignment. In particular, an immediate corollary

of the result is that, in the limit, individuals will perfectly sort into

exactly two groups that simultaneously disagree on all issues –i.e.,
for each issue, the members of one group will all have opinions

on the opposite side of the mean as the other group. We formalize

their observation from [16] in Corollary 2.

Corollary 2. Consider a social graph𝐺 and𝑚 different initial
opinion vectors 𝑧 (0)

1
, · · · , 𝑧 (0)𝑚 satisfying the assumptions of Theorem 1.
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Apply the DeGroot opinion dynamics to each vector for 𝑡 steps to obtain
opinions z(𝑡 )

1
, · · · , z(𝑡 )𝑚 , and let s(𝑡 )

𝑖
= sign(z(𝑡 )

𝑖
− mean(z(𝑡 )

𝑖
) · ®1).

Consider the matrix S(𝑡 ) = [s(𝑡 )
1

, . . . , s(𝑡 )𝑚 ]. In the limit as 𝑡 → ∞,
S(𝑡 ) will only contain two unique rows.

Each row of S(𝑡 ) corresponds to a single node (individual) in𝐺 .

It contains {+1,−1} entries indicating if that individual has opinion
below or above the mean for each of the𝑚 topics at time 𝑡 . The row

can thus be viewed an individual’s “binary opinion profile”. The

takeaway from Corollary 2 is that, while there are 2
𝑚

possible opin-

ion profiles, for large enough 𝑡 , just two will dominate, becoming

adopted by every individual. We visualized this alignment for four

social networks in Figure 2. Opinions were initialized randomly,

so the rows of S(0) are distributed evenly between all 2
𝑚

possible

binary opinion profiles. However, as 𝑡 increases, we eventually see

convergence to a state where S(𝑡 ) has just two unique binary rows.

The number of iterations until convergence varies by network.

While an interesting phenomenon, one limitation of ideological

alignment as a polarization measure is that, like variance-based

measures, it converges to the same extreme state for all social

networks – albeit to a state that is fully polarized instead of a

fully in consensus. In contrast, the other group-based measures of

polarization discussed in this paper converge to network dependent
quantities, so their dynamics naturally differ within different social

structures and can be impacted by outside influences that effect

that structure, like social media or propaganda.

3.2 Implications for Group-Based Polarization
The foundation of our work is the insight that Theorem 1 actu-

ally has implications on the limiting behavior of any group-based

measure of polarization. Formally:

Corollary 3. Let 𝑓 (𝐺, z) be a group-based polarization metric ac-
cording to Definition 2 that is continuous with respect to the argument
z ∈ R𝑛 . If the conditions of Theorem 1 hold, then

lim

𝑡→∞
𝑓 (𝐺, z(𝑡 ) ) = 𝑓 (𝐺, v2)

where z(𝑡 ) and v2 are as defined as in Theorem 1.

Corollary 3 implies that, unlike variance-based measures which

always converge to zero, under the mild assumptions of Theorem 1,

any group-based measure of polarization converges to a value that

depends on the social graph 𝐺 . At the same time, the value does

not depend on the starting opinions z(0) . With Corollary 3 in place,

we next analyze several different group-based measures.

4 STATISTICAL MEASURES
We start with statistical measures that, like variance, consider only

the numerical values in an opinion vector z, without taking into ac-
count the ordering of entries or their structure with respect to𝐺 . For

example, the following common statistical measure of bimodality

incorporates 3
rd

and 4
th
moment information from z:

Definition 3 (Sarle’s Bimodality Coefficient). Consider an
opinion vector z and let z̄ denote z̄ = z−mean(z). Then the bimodality
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Figure 3: Opinion bimodality 𝛽 (z) plotted by iteration of DeGroot’s
opinion dynamicsmodel run on the same 5 block SBMgraph, initial-
ized with five randomly generated starting opinion vectors. As pre-
dicted by Corollary 3, in all cases opinion bimodality converges to a
fixed non-zero equilibrium bimodality that depends on the graph.

𝛽 (z) is written in terms of the skewness 𝛾 and kurtosis 𝜅 as follows:

𝛽 (z) = 𝛾2 + 1

𝜅
where 𝛾 =

mean(z̄3)
mean(z̄2)3/2

and 𝜅 =
mean(z̄4)
mean(z̄2)2

.

The bimodality coefficient of Definition 3 has been used as a

measure of opinion polarization, e.g. in [18], where it was compared

against variance-based measures. The measure lies between 0 and 1,

with 1 indicating maximum polarization. However, even a random

isotropic vector r (e.g., a vector with i.i.d. random Gaussian entries)

will have bimodality 𝛽 (r) ≈ 1/3, since the skewness of a normal

random variable is 0 and the kurtosis is 3. Accordingly, we consider

a vector of opinions “polarized” if the bimodality is larger than 1/3.

We demonstrate Corollary 3 in Figure 3.We generate a Stochastic

Block Model (SBM) network [2, 33] on 𝑛 = 1000 nodes with five

communities (blocks). The probability of an edge within a block is

𝑝 = 1/10 and the probability of an edge between blocks is 𝑞 = 1/100.

We then initialize five random starting opinion vectors, each with

i.i.d. standard normal entries. We plot the bimodality of opinions

as they evolve via the DeGroot dynamics. By 1000 iterations, there

is clear convergence to the bimodality of the second eigenvector

of the SBM, which, at .658, is much larger than the bimodalities of

the starting opinions around 1/3. So, while bimodality evolves in a

highly non-monotonic way, it ultimately increases over time.

1
st
Quartile Median 3

rd
Quartile

.805 .917 .952

Table 1: Statistics of equilibrium Sarle’s bimodality coefficient for
100 college social networks from the Facebook100 data set [51]. No-
tably values tend close to the maximum coefficient of 1.

Increases in bimodality are even more pronounced in real-world

social networks. We ran a similar experiment for 100 college social

networks from the Facebook100 data set [51] and observed that

for all but five networks, bimodality increases under the DeGroot
dynamics with random starting opinions. The median and quartiles

of the equilibrium bimodality (computed directly from the second

eigenvector of each network) are included in Table 1. We conclude

that the simple bimodality coefficient offers a clear contrast with

variance-based measures of polarization that decrease over time.
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An informal analysis of SBM graphs offers theoretical support

for increases in bimodality in natural social networks with a small

number of well connected communities. Specifically, we argue that

any SBM with a small number of blocks typically has equilibrium

bimodality greater than 1/3. We thus expect increasing bimodality

under the DeGroot model if opinions are randomly initialized.

Observation 1. For a 𝑘-block SBM graph, the equilibrium bi-
modality is approximated by the sample bimodality of a normal
random variable when 𝑘 samples are taken, which has expected value
greater than 1/3 for small 𝑘 .

We sketch a proof of Observation 1: While the true bimodality

of the normal distribution is 1/3, the empirical bimodality com-

puted from a finite number of samples tends to be an over-estimate.

While it is difficult to obtain an exact expression for the expected

sample bimodality, the sample kurtosis has expectation 3
𝑘−1

𝑘+1
[36].

It is thus an underestimate for small 𝑘 , explaining the overesti-

mate of bimodality, which depends on the inverse kurtosis. Now

consider the expected normalized adjacency matrix D̄−1/2ĀD̄−1/2

of an SBM graph, where D̄ = E[D] and Ā = E[A]. The top 𝑘

eigenvectors of D̄−1/2ĀD̄−1/2
can be spanned by ®1 as well as 𝑘

block indicator vectors, each which is 1 for the nodes in a single

community, and 0 for all other nodes. Since the actual normalized

adjacency matrix D−1/2AD−1/2
can be viewed as a perturbed ver-

sion of D̄−1/2ĀD̄−1/2
, we roughly expect its first 𝑘 eigenvectors to

also be spanned by ®1 and the 𝑘 block vectors – a formal statement

could be made by appealing to the Davis-Kahan perturbation theo-

rem [14]. Moreover, the 2
nd

through the (𝑘 − 1)st eigenvalues of
D̄−1/2ĀD̄−1/2

are all the same, so we roughly expect the second

eigenvector of D−1/2AD−1/2
to be a random linear combination of

the 𝑘 block indicator vector, plus some scaling of ®1 (which has no

impact on bimodality). If the random linear combination is isotropic,

the second eigenvector will look exactly like 𝑘 samples from a ran-

dom Gaussian distribution, each repeated 𝑛/𝑘 times. This vector

has the same bimodality as 𝑘 random Gaussian samples.

Observation 1 is visualized in Figure 4, which was generated

by computing the equilibrium opinion bimodality for 100 random

𝑘-SBM graphs with 1000 and 2000 nodes. While it approaches 1/3

as 𝑘 increases, equilibrium bimodality is much larger for small 𝑘 .

We also plot the sample bimodality of 𝑘 i.i.d Gaussian samples (also

computed using 100 trials), which as predicted by Observation 1,

correlates well with the observed bimodality of the 𝑘-SBM.

5 LOCAL MEASURES
Another interesting class of group-based polarization measures are

those that take into account local structure of the social graph 𝐺 .

Such measures are motivated by the fact that individuals are most

heavily exposed to the opinions of their social connections – i.e.,

their neighborhood in 𝐺 . Individuals likely also have a sense of

the overall mean opinion in 𝐺 (e.g., from the news), but do not

simultaneously sense all opinions in a social network.

In this section we introduce and study one such measure, which

we call average local agreement that takes these considerations into
account. In particular, we define the local agreement of a vertex

𝑖 to be the ratio of 𝑖’s neighbors whose opinion falls on the same

side (above or below) the mean opinion mean(z) as 𝑖 . We posit that
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Figure 4: Average equilibrium bimodality of 𝑘-SBM graphs with
intra- and inter-community edge probability .3 and .02. Bimodality
converges to that of a random normal variable for large 𝑘 , which is
1/3, but as predicted in Observation 1, can be larger for small 𝑘 .

high local agreement correlates with high perceptions of polarization,
as individuals who feel more isolated in a group, away from those

differing opinion, tends to experience feelings of polarization [41].

We formally define average local agreement below. We use

sign(x) to denote the operation that rounds every entry of a vector

x to +1 or -1, taking the convention that if 𝑥𝑖 = 0, [sign(x)]𝑖 = +1.

Definition 4 (Average Local Agreement). Let𝐺 be a social
network on 𝑛 nodes and let z ∈ R𝑛 be an opinion vector. Let s =

sign(z − mean(z) · ®1). The average local agreement L(𝐺, z) equals:

L(𝐺, z) = 1

𝑛

𝑛∑
𝑖=1

1

𝑑𝑖

∑
𝑗 ∈N(𝑖)

1[𝑠𝑖 = 𝑠 𝑗 ]

where s = sign(z − mean(z) · ®1), N(𝑖) denotes the neighborhood of
node 𝑖 , and 1[·] evaluates to 1 if the expression in brackets is true,
and to 0 otherwise.

Like bimodality, average local agreement is a group-based mea-

sure, so by Corollary 3, we have that in the DeGroot dynamics, un-

der the assumptions of Theorem 1, lim𝑡→∞ L(𝐺, z(𝑡 ) ) = L(𝐺, v2),
where 𝑧 (𝑡 ) and v2 are as defined as in the theorem.

1
st
Quartile Median 3

rd
Quartile

.904 .947 .960

Table 2: Statistics of the equilibrium average local agreement,
L(𝐺, v2) for the Facebook100 data set [51].

Average local agreement is bounded between [0, 1] and we ex-

pect a value of 1/2 for randomly initialized opinions. So, any value

above 1/2 is considered “polarized”. As shown in Table 2, we ob-

serve very high average local agreement in the limit for real-world

social networks. For all but two of the 100 networks in the Face-

book100 data set, this measure of polarization converged to a value

above .6, and was typically well above .9. In Figure 5 we also vi-

sualize local agreement over time for a random 5-SBM graph and

a random geometric graph, as well as the Swarthmore Facebook

graph (chosen for its small size). In all cases, “bubbles” of high local

agreement visibly emerge, with average local agreement increasing

to .785, .954, and .941 for the three graphs, respectively.
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Figure 5: A visualization of local agreement by number of DeGroot
iterations for three social networks. Nodes are colored blue for indi-
viduals with ≥ 2/3 of their neighbors on the same side of the mean
opinion, and red otherwise. The last column shows the normalized
differences from the mean opinion at equilibrium (s̄∗ from Theo-
rem 1). In all cases, strong clusters of high local agreement emerge,
which may lead to increased perceptions of opinion polarization.

To better understand the steep increase in this group-based po-

larization metric theoretically, we show that for an unweighted,

regular graph 𝐺 , average local agreement has a simple linear alge-

braic form. Ultimately, the following claim will help us relate the

measure to spectral properties of the underlying social graph 𝐺 .

Claim 1. Let 𝐺 be an unweighted 𝑑-regular graph with no self-
loops. Let z be a vector of opinions and let s = sign(z − mean(z) · ®1).
Then, the average local agreement L(𝐺, z) equals:

L(𝐺, z) = s𝑇 As
2𝑛𝑑

+ 1

2

where s = sign(z − mean(z) · ®1).

Proof. For a node 𝑖 , let 𝑝𝑖 =
∑

𝑗 ∈N(𝑖) 1[𝑠 𝑗 = +1] denote the

number of nodes in N(𝑖) that are on the positive side of the mean

and let 𝑞𝑖 =
∑

𝑗 ∈N(𝑖) 1[𝑠 𝑗 = −1] denote the number of nodes on

the negative side of the mean. Let 𝑎𝑖 denote the number of nodes in

N(𝑖) that agree with node 𝑖 (i.e., are on the same side of the mean)

and let 𝑏𝑖 denote the number of nodes that disagree. We can write:

𝑎𝑖 =

{
𝑝𝑖 if 𝑠𝑖 = +1

𝑞𝑖 if 𝑠𝑖 = −1

𝑏𝑖 =

{
𝑝𝑖 if 𝑠𝑖 = −1

𝑞𝑖 if 𝑠𝑖 = +1

Observe that the 𝑖th entry of As equals 𝑝𝑖 − 𝑞𝑖 , and thus:

s𝑇 As =
𝑛∑
𝑖=1

𝑠𝑖 (𝑝𝑖 − 𝑞𝑖 ) =
𝑛∑
𝑖=1

𝑎𝑖 − 𝑏𝑖 .

Next note that 𝑎𝑖 + 𝑏𝑖 = 𝑑 and thus 𝑛𝑑 =
∑𝑛
𝑖=1

𝑎𝑖 + 𝑏𝑖 . So we have

s𝑇 As + 𝑛𝑑 =
∑𝑛
𝑖=1

2𝑎𝑖 . Dividing by 2𝑛𝑑 gives the result because

L(𝐺, z) = 1

𝑛

∑𝑛
𝑖=1

𝑎𝑖
𝑑
. □

With Claim 1 in place, we make the following observation:

Observation 2. For an unweighted graph𝐺 , we can approximate
the equilibrium average local agreement lim𝑡→∞ L(𝐺, z(𝑡 ) ) by

lim

𝑡→∞
L(𝐺, z(𝑡 ) ) ≈ 𝜆2

2

+ 1

2

,

where 𝜆2 is the second eigenvalue of𝐺 ’s normalized adjacency matrix.
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Figure 6: Average equilibrium local agreement plotted against the
second normalized adjacencymatrix eigenvalue for several random
graphs generated with NetworkX [30], and for the NYU and Stan-
ford Facebook graphs. The values closely align with the linear rela-
tionship predicted by Observation 2 (plotted as a solid line).

According to this claim, we expect high equilibrium local agree-

ment – i.e., increasing polarization – in graphs with second eigen-

value close to 1, which includes any social network with strong

community structure. For example, the Facebook100 networks had

an average second eigenvalue of .871. Observation 2 predicts that

this would lead to a mean equilibrium average local agreement of

≈ .936, which is extremely close to the observed mean of .948.

To establish Observation 2, again assume that𝐺 is 𝑑-regular with

no self-loops. Note that for a regular graph, the second eigenvalue

of D−1A is equal to that of D−1/2AD−1/2
. By Corollary 3, we have

that lim𝑡→∞ L(𝐺, z(𝑡 ) ) = L(𝐺, v2). And by Claim 1:

L(𝐺, v2) =
sign(v𝑇

2
)A sign(v2)
2𝑛𝑑

+ 1

2

=
sign(v𝑇

2
)D−1/2AD−1/2

sign(v2)
2𝑛

+ 1

2

Observation 2 then immediately follows by noticing that

sign(v𝑇
2
)D−1/2AD−1/2

sign(v2) ≈ 𝑛v𝑇
2

D−1/2AD−1/2v2 = 𝑛𝜆2 .

The approximation is exact if all entries in the unit vector v2 have

magnitude 1/
√
𝑛. It tends to hold a close approximation in other

networks, which can be formalized via well-known connections

between balanced cut problems and the second eigenvector [45].

In Figure 6, we confirm the relationship described in Observation

2 by examining a variety of random graphs with widely varying sec-

ond eigenvalue. The correlation between average local agreement

and second eigenvalue in the Facebook100 data set is statistically

significant (𝑝 = 5𝑒−5
) with a Pearson correlation of 𝑟 = .392.

Finally, we comment on the rate at which average local agree-

ment converges to its equilibrium value. Since this rate depends on

how quickly the normalized difference vector converges to 𝑠∗ under
the DeGroot model, we expect it to scale linearly with the inverse

of the second eigenvalue gap,
|𝜆2 |− |𝜆3 |

|𝜆2 | . We confirm this relationship

on the Facebook100 data set, where we see a statistically signifi-

cant (𝑝 = 7𝑒−6
) correlation between inverse second eigengap and

average number of iterations until convergence to the final average

local agreement when starting with a random opinion vector. The

Pearson correlation coefficient of the relationship is 𝑟 = .451.
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In contrast, the rate at which the opinion vector converges to z∗

depends inversely on the first eigengap |𝜆1 |− |𝜆2 |
|𝜆1 | . As such, when the

second eigengap is large compared to the first, we expect local agree-

ment to increase more quickly than opinion variance decreases,

which might contribute to perceptions of growing polarization.

6 FUTURE DIRECTIONS
In this paper, we established that natural group-based polarization

measures display interesting dynamics under the standard DeGroot

opinion formation model. Unlike heavily studied variance-based

measures, we showed empirically and theoretically that group-

based measures can increase over time, and often do increase quite

significantly in natural social networks. We leave a number of ques-

tions for future research. As discussed, recent work onmathematical

models of opinion dynamics has sought to understand the impact

of outside actors (who can modify the graph𝐺 is some way) on indi-

vidual opinions and polarization [3, 25]. There is little work on how

such modifications impact group-based polarization, and if they can

accelerate its emergence. Another challenging empirical question

it to determine the “right” group-based measure of polarization for

use in opinion dynamics studies – i.e., to better understand what

measures best align with perceived polarization in the real-world.

There is some evidence for the value of ideological alignment as a

meaningful polarization metric [21, 40], but statistical measures of

bimodality and “local” metrics have received less attention.
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