
ColdGuess: A General and Effective Relational Graph
Convolutional Network to Tackle Cold Start Cases

Bo He
bhe@amazon.com

Amazon Inc.
US

Xiang Song
xiangsx@amazon.com

AWS AI Education and Research
US

Vincent Gao
vincegao@amazon.com

Amazon Inc.
US

Christos Faloutsos∗
faloutso@amazon.com

AWS AI Education and Research
US

ABSTRACT

Low-quality listings and bad actor behavior in online retail web-
sites threatens e-commerce business as these result in sub-optimal
buying experience and erode customer trust. When a new listing
is created, how to tell it has good quality? Is the method effective,
fast, and scalable? Previous approaches often face three limita-
tions/challenges: (1) unable to handle cold start problems where
new sellers/listings lack sufficient selling histories. (2) inability of
scoring hundreds of millions of listings at scale, or compromise
performance for scalability. (3) has space challenge from large-scale
graph built on giant business size. To overcome these limitations,
we proposed ColdGuess, an inductive graph-based risk detector
built upon a heterogeneous seller-product graph, which effectively
identifies risky seller/product /listings at scale. ColdGuess tackles
the large-scale graph by consolidated nodes, and addresses the cold
start problem using homogeneous influence1. The evaluation on
real data demonstrates that ColdGuess has stable performance
as the number of unknown features increases. It outperforms the
lightgbm2, a commonly used risk detection model in production,
by up to 34 pcp ROC AUC in the cold start case when a new seller
sells a new product . The resulting system, ColdGuess, is effective,
adaptable to changing bad actor behavior, and is already in produc-
tion. This paper belongs to “Application and analysis – Large-scale
graph and modeling”, and in the "Novel research paper" category.

KEYWORDS

Graph Neural Networks, Cold Start Problem, Network Inference

ACM Reference Format:

Bo He, Xiang Song, Vincent Gao, and Christos Faloutsos. 2022. ColdGuess:
A General and Effective Relational Graph Convolutional Network to Tackle

∗On leave from CMU
1See definition of consolidated nodes and homogeneous influence in Section 4.3
2lightgbm is abbreviated as lgbm in the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

Cold Start Cases . In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Detecting low-quality listings and bad actor behavior is an impor-
tant task for e-commerce websites [3, 9]. When a new product
arrives, how to tell it is good-quality? When a bad actor creates
a new account, how to detect it before any fraudulent behavior
endangers customers shopping experience. Is the detection mecha-
nism fast and scalable? Can it score hundreds of millions of listings
at scale? When a new seller is associated with multiple existing
seller accounts through either weak or strong relations, can this
method tell which relation to emphasize? These are the research
problems we focus on in this work.

Traditional machine learning models like logistic regression,
support vector machine[12, 16], and boosting trees [11] are widely
used in risk detection. However, they often face following limita-
tion/challenges:

• unable to model new sellers/offers (the Cold Start Problem).
New sellers/offers lack sufficient histories for traditional
models to identify as risky. As large e-commerce companies
continuously expand to new countries, the cold start problem
becomes more common and critical.

• inability of scoring hundreds of millions of listings at scale,
or compromise performance for scalability.

• non-graph based methods (e.g. logistic regression, boosting
tree, etc.) are not able to leverage seller-seller and seller-
product 3linkage information4. Linkage information has
proven to be valuable as risky sellers/offers are often found
clustered.5 Graph-based method face the challenges of mem-
ory space when applied to large-scale graph with giant e-
commerce business size.

To overcome these limitations, we proposed ColdGuess, a graph
neural network based risk detector which leverages the seller-
seller and seller-product linkage information to identify risky
seller/product /listings at scale. It handles the large-scale graph

3For example, Seller Smith sells Nike shoes. Here Smith is a seller, Nike shoes is a
product. The Nike shoes sold by Smith is an offer listing. In this paper, we use offer,
listings, and offer listings interchangeably.
4e.g., sellers are associated if they share the same information or similar characteristics.
5For example, majority of sellers who share the same information with a risky seller
are also found risky.

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

(a) ColdGuess wins all benchmark models in the cold start case

when new sellers sell new products .

(b) ColdGuess scales linearly: model training time vs graph size.

Figure 1: ColdGuess’s performance and scalability.

by consolidated nodes6, and addresses the cold start problem by
homogeneous influence7 and message passing from existing sell-
ers/products to new sellers/products . As shown in Table 1, there
are many competitors, but none of them has all the features that
ColdGuess offers.

We evaluated ColdGuess and compared it with four competi-
tors8 on a full spectrum of sample data and three simulated cold
start scenarios (i.e. new offers, new sellers, and new sellers who
sell new product). We found that ColdGuess wins with increasing
margins as the severity of cold start cases increases. As shown in
Figure 1, ColdGuess outperforms lgbm by up to 34 percentage

points (pcp) in AUC in the extreme cold start scenario when a
new seller sells a new product .

The main contributions and advantages of ColdGuess are:
• General: The inductive ColdGuess framework can handle
(a) Dynamic heterogeneous graphs built on highly relational
data with tens of millions of nodes, hundreds of millions
of edges, and massive node and edge features. (b) Missing
values in edge feature. In previous approaches to graph mod-
eling, missing edge features cannot be inferred from their
neighbors since propagation only happens on the nodes. To
deal with it, ColdGuess augmented edge features by con-
catenating it with its neighboring edges.

6See definition in Section 4.3
7See definition in Section 4.3
8MetaHIN is not used as it is designed for cold start recommendation. EGNN and
CensNet are not used as they do not work with heterogeneous graphs.

Table 1: ColdGuess matches all specs, while competitors

miss one or more of the features.

Property

Method

lg
bm

[1
1]

SI
G
N
[4
]

RG
CN

[1
9]

G
AT

[2
1]

M
et
aH

IN
[1
5]

EG
N
N
[5
]

Ce
ns
N
et
[1
0]

Co
ld
G
ue

ss
-N

ai
ve

Co
ld
G
ue

ss

Node connectivity
√ √ √ √ √ √ √ √

Heterogeneous info
√ √ √

Edge features
√ √ √

Cold start
√ √ √

• Effective, especially for Cold Start Problem: ColdGuess
achieves stable performance with increasing number of miss-
ing features in cold start scenarios. It outperforms lgbm by
up to 34 pcp AUC in the extreme cold start case where a new
seller sells a new product .

• Fast and Scalable: ColdGuess can scale to a business size
graph with hundreds of millions of edges in inference. It
takes only 2 minutes to make 1MM+ predictions. The train-
ing on a graph with 10MM+ edges takes 40 minutes on a
p3.8xlarge EC2 instance equipped with 4 V100 GPU and
224GB memory. ColdGuess scales linearly with the input
size in both training and inference, as shown in Figure 6.

2 PRELIMINARIES

Notations. The notations used in the following sections are listed
in Table 2.

Graph. A graph is composed of nodes and edges with relations
defining the heterogeneity G = (V, E,R), where V is the set of
nodes, E is the set of edges,R is the set of relations. Each edge 𝑒 ∈ E
belongs to only one relation 𝑟 ∈ R. Let X be the node feature space
such that X = (𝑥1, . . . , 𝑥𝑁)𝑇 where 𝑥𝑖 represents the node feature
of 𝑣𝑖 . Let Y be the edge feature space such that Y = (𝑦1, . . . , 𝑦𝑀)𝑇
where 𝑦𝑖 represents the edge feature of 𝑒𝑖 . LetZ be the label space.

Graph Convolutional Network. GNNs [18, 24] are a series of multi-
layer feed-forward neural networks that propagate and transform
layer-wise features. Among these models, relational graph convolu-
tional network (RGCN) [19] was designed to operate on large-scale
heterogeneous graphs.

3 RELATEDWORK

Cold Start. Cold start problem gains increasing interest in last
few years, and was widely researched in recommendation sys-
tems [2, 13, 14, 25]. Most recent works [8, 15, 22] leverage hetero-
geneous graph to capture richer semantics via higher-order graph
structures and meta information. Hu, Binbin et al. [8] showed that
side information such as meta-path based context is useful to alle-
viate the cold start problem. Lu, Yuanfu et al. [15] leveraged meta-
learning to address cold-start recommendation. However, unlike
user-item recommendation scenarios where users do not directly
connect with other users, there are rich linkage information be-
tween sellers in a seller-product graph in e-commerce. Furthermore,

2

Table 2: Notation and descriptions.

G A graph.
V The set of nodes.
E The set of edges.
R The set of relations.
X The node feature space where 𝑥𝑖 represents the node feature of 𝑣𝑖 ∈ V .
Y The edge feature space where 𝑦𝑖 represents the edge feature of 𝑒𝑖 ∈ E.
H The node embedding matrix where ℎ𝑣 represents the embedding vector of 𝑣 .
Z The defect type label space where 𝑧𝑖 represents the 𝑖-th label vector.
S The set of nodes 𝑣 ∈ V with the node type of Seller.
O The set of edges 𝑒 ∈ E with the edge type of (Seller, Offer, product).
P The set of nodes 𝑣 ∈ V with the node type of product .
𝑙 An offer listing ⟨𝑠, 𝑜, 𝑝⟩ with 𝑠 ∈ S, 𝑜 ∈ O and 𝑝 ∈ P.
𝐿 A set of offer listings.
s, p, o The feature vectors of seller node 𝑠 , product node 𝑝 and offer edge 𝑜 .

unlike edges between users and items which contain little informa-
tion [1, 7], the listing edges in a seller-product graph usually contain
rich information on its selling histories. Our proposed ColdGuess
leverages such linkage information to address cold start problem.
Other than only using GNN, ColdGuess uses homogeneous influ-
ence to further boost the performance and consolidated nodes to
handle the scalability issue.

4 METHOD

4.1 Problem Definition

We use customer complaint types as labels for low-quality listings.
There are eight types of complaints. We formulate this risky listing
detection as a multi-label classification problem because one listing
could have multiple types of complaints.

Problem 1. Given (1) labelled listings L in 1 out of 𝑘 categories,
(2) the numerical and categorical features for sellers, products , and
offers denoted as s, p, o respectively, and (3) Seller-Product graph G,
find a classifier 𝑓 which maximizes the likelihood of offer listing 𝑙
having complaint type 𝑧:

𝑧 = argmax 𝑓 (𝑧 |𝑠, 𝑝, 𝑜,G) (1)

In addition to Problem 1, the classifier should be efficient to
handle large-scale graphs and work effectively with cold start prob-
lems. We summarize the cold start problems into three cases, and
illustrate them in Figure 2.

• New offer case: An existing seller creates a new offer un-
der an existing product . Both seller and product nodes of
that new offer exist in the Seller-product graph. The offer
edge is newly added to the graph, and has limited history
information.

• New seller case: An new seller creates a new offer under
an existing product . Only the product node of the new
offer exists in the Seller-Product graph. The seller node and
offer edge are newly added, and have limited seller and offer
information.

Figure 2: Three cold start scenarios: new offer case (left),

new seller case (middle), new sellers sell new products case

(right).

• New sellers sell new products case: A new seller creates
a new product which was never sold on Amazon. Neither
of the seller nor product nodes are related to any existing
listings on the Seller-product graph. But the seller can be
related to an existing seller9. Therefore, limited information
is known about the seller, the product , and the offer.

In the last two cases, new sellers can be connected with existing
sellers if they possess associated information. The severity of cold
start increases from new offer case to new seller case, and to new
seller sells a new product case.

4.2 Seller-Product Graph

We constructed Seller-Product graph as a heterogeneous graphwith
seller and product nodes. Within the graph, sellers are connected
if they possess associated information. A seller is connected with
an product if the seller sells that product . The resulting graph
G has two node types and nine relations (i.e. eight seller-seller
relations plus a seller-product relation (i.e. offer edge)), as well as
massive features on seller nodes, product nodes, and offer edges.
The product and seller level features are encoded as the node feature
vectors. The offer level features are encoded as edges feature vectors.
Product node features include product type, product ’s selling
history, etc. Seller node features include seller’s orders, selling

9For example, a seller used to sell on European market start her business on US market.
Then her US seller account will be associated with her European seller account.

3

Figure 3: A toy example of an expanded graph with offers

as nodes (left) vs. a consolidated graph with offers as edges

(right)

history, etc. Offer edge features include list price, orders, offer’s
selling history, etc.

We call this graph design as consolidated nodes because we treat
offers as edges instead of nodes. It reduces the number of edges by
half as compared to using offers as nodes.

Why the ’consolidated node’ proposal? Alternatively, we can con-
struct the graph by using offers as nodes (Figure 3 right). An offer
node connects a seller and a product nodes. To predict the com-
plaint type of an offer can leverage the RGCN node classification
framework. We evaluated this alternative set up on 4 test sets over
4 months’ dataset, one for each month, and found: 1) ColdGuess
consistently outperforms in at least 7 out of 9 classes when being
evaluated on the full spectrum of data and cold start cases. It is
superior to RGCN benchmark with increasing margins as the sever-
ity of cold-start cases grows.2) ColdGuess saves GPU memory
space by 65% and computation time by 15% when both methods
are evaluated on a 4-GPU P3.8xlarge EC2. The consolidated nodes
design reduces the graph size without losing offer information as
ColdGuess extracted offer information via an edge embedder10.

4.3 Proposed Method: ColdGuess

ColdGuess contains three modules: 1) A node embedder built on a
3-layer RGCN which encodes raw seller and product node features
into two embedding vectors 𝑒𝑚𝑏𝑠 and 𝑒𝑚𝑏𝑝 . 2) An edge embedder
built on a 2 layer multi-linear perceptron (MLP) which encodes
offer edge features o into an embedding vector 𝑒𝑚𝑏𝑜 3) A final
MLP classifier which concatenates the seller, product , and offer
embedding vectors (𝑒𝑚𝑏𝑠 ∥𝑒𝑚𝑏𝑝 ∥𝑒𝑚𝑏𝑜) and predicts the product
complaint type. The overall model architecture is shown in Figure 4.

Module 1: Node Embedder. It creates the seller and product em-
bedding (𝑒𝑚𝑏𝑠 and 𝑒𝑚𝑏𝑝) using RGCN [19]. Since seller and prod-
uct node features have different dimensions and meanings, we
projected them into the same embedding space before feeding them
into the graph convolution.

Due to the large scale of Seller-Product graph, we take a graph-
based mini-batch approach [6] for propagation. We sampled a batch
of 1024 offer edges and extracted the corresponding ego network
which covers the neighbors 3-hops away from the source edges,
and fed this mini-batch into the 3-layer RGCN module.

Module 2: Edge Embedder. It creates offer edge embedding (𝑒𝑚𝑏𝑜)
via aMLPmodel. It takes an offer’s edge features and its neighboring
edge features as input. Offer edges usually have missing values,
10See Section 4.3 Module 2: Edge Embedder

Figure 4: The overall architecture of ColdGuess

especially in cold start cases. We enrich the offer feature vector
o𝑜 by concatenating it and its neighbors. The neighboring edge is
defined as edges connected to the offer’s head and tail node (i.e.
product and seller nodes). We create an offer feature summary for
both the product node and the seller node as:

o𝑝 = 𝜓 (o1, . . . , o𝑛),where 𝑜𝑖 ∈ N𝑝

o𝑠 = 𝜓 (o1, . . . , o𝑛),where 𝑜𝑖 ∈ N𝑠
(2)

where𝜓 is a aggregation function such as mean, max-pool, etc. 11,
𝑜𝑖 are offer features of edge 𝑖 , N𝑝 and N𝑠 are the sets of an offer’s
neighboring edges connected to its product and seller nodes re-
spectively, o𝑝 and o𝑠 are the summary of feature vectors of offers
connected to product and seller nodes. The final offer feature vector
is defined as o′ = o𝑜 ∥o𝑝 ∥o𝑠 , where ∥ denotes the concatenation
operation. Eventually, o′ is fed into the MLP classifier to generate
the offer embedding 𝑒𝑚𝑏𝑜 .

The concatenation of neighboring offer information with target
offer is a direct offer to offer influence. We call it homogeneous
influence. It is in contrast to the non-homogeneous influence from
offer to offer when using offers as nodes, where information from
an offer node will first pass to a seller/product node and then to
another offer node.

Why the ’homogeneous influence’? homogeneous influence more
effectively keeps offer information as compared to the 2-hop prop-
agation (offer -> seller/product -> offer) when offers are used as
nodes. Some offer features contain strong signals for low-quality
listings. However, they will be averaged out by its neighbors during
propagation in non-homogeneous influence setting. The reduced
signal becomes more difficult for model to detect. Moreover, the
message passing process will blend intermediate seller/product
node information and added noises signals. In the homogeneous
influence method, offer features do not go through the propaga-
tion process and are largely kept. Concatenating neighboring offer
features works for the cold start problem because when there are
no features on a new offer we can borrow the features from its
neighbors.

11We use mean in implementation.

4

Module 3: Final Classifier. This classifier first concatenates 𝑒𝑚𝑏𝑠 ,
𝑒𝑚𝑏𝑝 and 𝑒𝑚𝑏𝑜 as inputs and predict the probability of the offer
listing 𝑙 that will have a defect type 𝑧 via a multi-layer perceptron.

𝑒𝑚𝑏𝑙 = 𝑓 (𝑒𝑚𝑏𝑠 ∥𝑒𝑚𝑏𝑝 ∥𝑒𝑚𝑏𝑜) (3)

where ∥ denotes the concatenation operation and 𝑓 denotes the
MLP layer. Finally it uses sigmoid to get the prediction result.

Train Objective. We train ColdGuessin an end to end fashion
using mini-batches of offer listings 𝐿. We define the cross-entropy
loss as the classification error:

L = − 1
|𝐿 |

∑︁
𝑙 ∈𝐿

𝑧𝑙 log𝑝𝑙 + (1 − 𝑧𝑙) log (1 − 𝑝𝑙) (4)

where 𝑧𝑙 ∈ {0, 1} is the ground-truth for the offer listing 𝑙 and
𝑝𝑙 is the output of the ColdGuess. For a fair comparison with
lgbm , which trained 9 binary models one for each class, in this
paper we trained ColdGuess in the same fashion. In production, we
used the sum of 9 cross entropy loss as the objective function and
trained ColdGuess as one model to predict all classes. It reduces
the inference time without much performance loss except one class
lowered by less than 2% absolute AUC.

We optimize the whole model using stochastic gradient descent.
The loss is back-propagated over the entire framework to update
all the parameters.

4.4 Handling Dynamic Graphs

ColdGuess is designed to be an inductive model which can handle
the dynamic changes of a graph with newly added nodes and edges.
It means no need to re-train the model if there is graph updates in
the inference stage. In the inductive model the same relation types
share the same weights. Therefore, for the newly added nodes in
model inference, given their relations to other nodes, they can par-
ticipate into the propagation with the known weights on relations
we obtained from training stage.

5 EVALUATION

5.1 Evaluation Setup

We conducted extensive evaluation on ColdGuess using real data,
and compared it with three baseline models. For a fair comparison,
all models are trained using the same feature set.

• lgbm We chose lgbm [11] as benchmark because (1) it is a
commonly used production model in risk detection (2) it can
show the value of using graph information.

• SIGN [4] is a graph deep learning architecturewhich sidesteps
the need for graph sampling by using graph convolutional
filters of different sizes that are amenable to efficient pre-
computation. It allows extremely fast training and infer-
ence. We trained SIGN using the same graph as training
ColdGuess. We chose SIGN as benchmark to evaluate the
value of using learnable weights in ColdGuess.

• RGCN [19] is a graph neural network designed for modeling
relational graph data. We chose RGCN as benchmark to
compare the performance between using offers as edges vs.
as nodes.

We also developed a simplified version of ColdGuess:

• ColdGuess-Naive ColdGuess-Naive combines one-hop
graph propagation with lgbm . It first fills the missing seller
features using one-hop graph propagation, and then feeds
the seller features along with product and offer features to
a lgbm model. A seller’s missing features is filled by simply
averaging her connected sellers, with all seller-seller relation
types equally weighted. We do not fill offer/product missing
features using neighboring offers/products because two
products could be totally different things, and test results
shows it under-performs filling missing seller features only.

We used the implementation of lgbm from LightGBM project 12.
We used the implementations of SIGN and RGCN from DGL [23]
and implemented ColdGuess using DGL and PyTorch [17]. We
used Adam optimizer to train our model. For SIGN and ColdGuess,
we chose a 3-layer structure. For RGCN, we chose a 6-layer structure
to collect comparable neighborhood information as ColdGuess.
The embedding dimension of the hidden layers is set to 64.

We chose ROC AUC as the major evaluation metric because
(1) rank-based metrics are robust; (2) it shows the FPR/TPR for all
possible threshold values and (3) unlike PR AUCwhich varies as the
label distribution of underlying data changes, ROC AUC is easier
for comparison across data sets with different label distributions.
All numbers reported in the following sections are presented using
percentage point (pcp) in AUC, notated as %.

5.2 Data Sets

We collected 5 seller-product data sets, including 1 train set and 4
test sets, by taking snapshots of the seller-product database at the
beginning of each month from over 4 consecutive months. Due to
confidential limitations, we do not present the detailed statistics of
these graphs. We present test result of Month 1 in Table 3. The test
results from Month 2 to 4 are similar to Month 1 and shown in the
supplementary material. We constructed a heterogeneous graph
for each month as described in Section 4.2.

We used customer complaint types as labels. There are eight
complaint types based on their root causes, such as expired, de-
fective, damaged, etc. We numbered those complaint types from
Type1 to Type8 for illustration purpose. By adding a Normal type
into the classification, we ended up with nine types.

We compared ColdGuesswith lgbm , SIGN, RGCN andColdGuess-
Naive in four scenarios. Below we explained how each scenario
is generated to reflect the real world problem. In all scenarios, a
complete Seller-Product graph is used for model training.

• Full spectrum of sample data: The graph built on the full
spectrum data is denoted as 𝐺𝑜 .

• New offers case: We created the new offer set by randomly
sampling 25% of offer listings for each of the 4 minority
complaint classes: Type2 , Type6 , Type7 , and Type8 , and
1% of offer listings from the rest of the classes including the
Normal one. In this case, new offer edge features are all set
as missing except the ones known once an offer is created.
The resulting graph is denoted as 𝐺𝑛𝑜 .

• New sellers case: We created the new seller set by first
sampling new offers in the same way as described above.
Secondly, we took the sellers associated with the sampled

12https://github.com/microsoft/LightGBM

5

Figure 5: Performance of ColdGuess, lgbm , ColdGuess-Naive, SIGN and RGCN on a full spectrum of sample data, new offer

case, new seller case, and new seller sell new product case using data of Month1.

new offers as new sellers. Finally, we extracted all the offers
listed under the new sellers as the final new offer set for
evaluation. We did not sampled new sellers directly because
we want to ensure there is enough data in the minority
classes. In this case, the new seller node features and new
offer edge features are all set as missing except the ones
known once a seller registers or an offer is created. The
resulting graph is denoted as 𝐺𝑛𝑠 .

• New sellers sell new products case: We create the data
set for this case by sampling the new offers and sellers in
the same way as described in the New seller case. Given the
sampled new offers, we took their associated products as
new products . Then we extracted all the offers listed under
either the new sellers or new products as the final new offer
set for evaluation. In this case, new product and new seller
node features, as well as new offer edge features are all set
as missing except the ones known once a seller is registered
or an offer or a product is created. The resulting graph is
denoted as 𝐺𝑛𝑠𝑛𝑝

5.3 Performance Evaluation

In this section we investigated the following two questions:
• RQ1: Is ColdGuess effective to handle cold start problems?
• RQ2: Can ColdGuess scale to large graphs with hundreds
of millions of edges?

5.3.1 Effectiveness of ColdGuess.
We compared the performance of ColdGuess with lgbm , SIGN,
RGCN and ColdGuess-Naive on four use cases using𝐺𝑜 ,𝐺𝑛𝑜 ,𝐺𝑛𝑠 ,
𝐺𝑛𝑠𝑛𝑝 respectively. Figure 5 shows that ColdGuess starts winning
with increasing margins as the severity of cold start cases increases
(from the left most figure to the right most figure). ColdGuess
outperforms lgbm , SIGN, RGCN and ColdGuess-Naive by up to
34 %, 11.4 %, 17.3 %, 32.9 % respectively. Table 3 gives the detailed
performance numbers of Month 1, and the numbers of Month 2 to
4 are listed in the supplementary materials.

Full spectrum of data. The 𝐺𝑜 column in Table 3 shows that
ColdGuess and ColdGuess-Naive are on par with lgbm when
being evaluated on the entire data set. SIGN and RGCN slightly

under-perform lgbm . This is because when a node feature is a
strong signal, its value will be averaged out by its neighbors. The
reduced signal makes it more difficult for the model to detect it
as risky. ColdGuess alleviates this issue by concatenating offer
features with offer’s neighboring features through homogeneous
influence. Offer edge features will not be diluted by its neighbors
because aggregation and updates only happen on nodes. However,
ColdGuess still slightly under-performs lgbm when node features
play an important role in some cases. This finding is line with Sergei
et al. [20] that gradient boosted decision trees often outperform
other machine learning methods on tabular data.

New offer case. In this case, new offers’ offer features are set as
missing values except the list price. We filled those missing values
with zeros. The 𝐺𝑛𝑜 column in Table 3 shows that ColdGuess
outperforms lgbm in 8 out of 9 classes by up to 6.5%. Meanwhile,
homogeneous influence brings extra gain to ColdGuess. As shown
in Table 3, ColdGuess outperforms ColdGuess-Naive in 7 out of 9
classes, outperforms SIGN in 8 out of 9 classes, and outperforms
RGCN in 6 out of 9 classes. ColdGuess under-performs lgbm in
Type2 because Type2 ’s top important features are on product
nodes, such as product age, glance view, etc. As mentioned in the
full spectrum of data case, those strong signals are averaged out by
their neighbors and thus makes it hard to learn by GNN.

New seller case. In this case, we set the features of new sellers
and their created offers as missing except the list price. We filled
those missing values with zeros. The 𝐺𝑛𝑠 column in Table 3 show
that ColdGuess outperforms lgbm in all classes by up to 12.3%.
It outperforms ColdGuess-Naive, SIGN and RGCN in almost all
classes by up to 12.3%, 4.3% and 4.7% respectively. The fact that
SIGN and RGCN outperform ColdGuess-Naive indicates that GNN
can improve the performance of cold start cases. In addition to the
benefit of GNN, homogeneous influence brings extra performance
lift to ColdGuess.

New seller sells a new product case. In this case, features of new
sellers, products , and offers are all set to missing values except list
price and product category. The 𝐺𝑛𝑠𝑛𝑝 column in Table 3 shows
that ColdGuess outperforms lgbm in all classes by 9.5-34.1%. It
outperforms ColdGuess-Naive, SIGN and RGCN in all classes by

6

Table 3: ColdGuess wins with increasing margins over

ColdGuess-Naive, SIGN, and RGCN as the severity of cold

starts increases. 𝐺𝑜 , 𝐺𝑛𝑜 , 𝐺𝑛𝑠 , 𝐺𝑛𝑠𝑛𝑝 represent full data, new

offer case, new seller case, and new seller sells new product

case in Month1. We take lgbm as the baseline and present

the performance gains of different methods in ROC-AUC.

Defect Type 𝐺𝑜 𝐺𝑛𝑜 𝐺𝑛𝑠 𝐺𝑛𝑠𝑛𝑝

gains of ColdGuess vs. lgbm
Type1 0.2% 6.4% 6.4% 17.8%

Type2 -0.2% -1.2% 2.2% 16.2%

Type3 -0.2% 1.2% 2.3% 13.8%

Type4 -0.3% 1.4% 3.1% 13.5%

Type5 -0.1% 1.7% 4.5% 9.5%
Type6 1.5% 3.5% 11.2% 12.7%

Type7 -0.1% 1.1% 12.3% 34.1%

Type8 1.2% 0.9% 5.2% 11.9%

Normal -0.4% 1.2% 5.9% 23.2%

gains of ColdGuess-Naive vs. lgbm
Type1 0.6% 5.2% 5.4% 5.2%
Type2 0.3% 0.7% 3.5% 6.2%
Type3 0.0% 0.6% 0.5% 0.5%
Type4 0.0% -0.1% 0.6% 2.4%
Type5 -0.1% 0.3% 1.7% -0.1%
Type6 1.3% 2.4% 5.7% 3.2%
Type7 1.3% 2.8% 0.0% 1.2%
Type8 0.9% 1.4% 3.5% 0.9%
Normal -0.1% 0.2% 0.2% -0.7%

gains of SIGN vs. lgbm
Type1 -0.5% 2.5% 4.6% 12.7%

Type2 -0.4% 1.3% 7.3% 4.8%
Type3 -0.7% -0.7% 1.6% 6.0%
Type4 -0.7% 0.8% 2.5% 7.3%
Type5 -0.8% -0.2% 4.0% 5.8%
Type6 -0.9% 0.5% 6.9% 6.0%
Type7 -0.9% 0.5% 9.0% 26.8%

Type8 0.2% 0.3% 3.2% 9.2%
Normal -0.6% 1.1% 4.8% 15.8%

gains of RGCN vs. lgbm
Type1 -0.5% 2.0% 2.8% 12.6%

Type2 -1.0% 0.0% 4.1% 8.1%
Type3 -0.7% -0.5% -0.1% 11.1%

Type4 -0.6% 0.1% 1.9% 11.0%

Type5 -0.3% 0.4% 4.6% 7.8%
Type6 0.4% 2.1% 7.9% 9.4%
Type7 -0.1% 0.4% 7.6% 16.8%

Type8 1.1% 2.1% 4.3% 2.9%
Normal -0.1% 1.8% 4.6% 23.0%

a The AUC gain over lgbm greater than 10 pcp is black
bolded and underlined, greater than 5 pcp is underlined.

up to 32.9%, 11.4% and 17.3% respectively. Using node connec-
tivity information and GNN improves the model performance of
ColdGuess, homogeneous influence further promotes the model
performance by a considerable margin.

(a) Training time (b) Inference time

Figure 6: ColdGuess scales linearly: training time vs. graph

size (left), and inference time vs. graph size (right)

In summary, thoughColdGuess, lgbm , ColdGuess-Naive, SIGN,
RGCN are tied when being evaluated on the full spectrum of sam-
ple data, ColdGuess outperforms all competitors in three cold
start cases on 4 different datasets. The stable superb performance
of ColdGuess, especially in the New seller and New seller sells a
new product cases, comes from its advantage of leveraging node
connectivity information, graph neural network and homogeneous
influence. ColdGuess outperforming SIGN and RGCN shows that
homogeneous influence can further boost the performance after node
connectivity information and graph neural network are already
used.

5.3.2 Scalability of ColdGuess.
We studied the training and inference scalability of ColdGuess
using graphs of different sizes. All experiments are conducted on
p3.8xlarge EC2 instances equipped with 4 V100 GPU. In model
training, ColdGuess run on labelled offer listings in each epoch.13
In model inference, ColdGuess scores all the offer listings as we
do in the production system. Figure 6a shows that the training
time of ColdGuess on graphs scales linearly from 2.5M edges to
10M edges. Figure 6b presents the inference time of ColdGuess on
graphs scales linearly from 5.6M edges to 110M edges.

5.4 Ablation Study

Table 4 demonstrates the efficacy of each component of ColdGuess.
For easy comparison, we summarize each model’s performance
by aggregating the ROCAUC across nine classes using geometric
mean14. Table 4 compares model performance relative to lgbm in
four evaluation cases.

Node connectivity plus lgbm (i.e. ColdGuess-Naive) outper-
forms lgbm by +0.5% to +2.4% AUC. Node connectivity plus rela-
tion type information (i.e. RGCN) improves the performance of
ColdGuess-Naive in the last two severe cold start cases by +2.5%
to 8.1% AUC15. Consolidating nodes in RGCN plus homogeneous
influence (i.e. ColdGuess) further improves performance of RGCN
by +0.4% to 5.6% AUC. The design decision of consolidating nodes
and using homogeneous influence has the highest impact on the
prediction accuracy(up to 5.6% AUC gain).
13The number of labelled data increases linearly with the number of edges in a graph.
14We tried both geometric mean and harmonic mean for aggregation, and found they
gave similar results
15In non-cold start cases, we observe lgbm works better than graph-based models as
later will average out significant signals in neighbor aggregation. See 5.3.1 for details

7

Table 4: Ablation study shows the efficacy of each component

of ColdGuess. We report model performance relative to

lgbm using ROCAUC.

Method 𝐺𝑜 𝐺𝑛𝑜 𝐺𝑛𝑠 𝐺𝑛𝑠𝑛𝑝

lgbm 0.0% 0.0% 0.0% 0.0%
ColdGuess-Naive 0.5% 1.5% 2.4% 2.3%
RGCN -0.2% 0.9% 4.3% 11.6%
ColdGuess 0.2% 1.8% 5.9% 17.2%

6 CONCLUSION AND FUTUREWORK

In this paper, we proposed ColdGuess, a product risk detector
which deals with highly multi-relational large-scale graph and
addresses the cold start problems via consolidated nodes and ho-
mogeneous influence. ColdGuess enjoys the following advantages
over traditional models:

• General: This inductive framework can handle dynamic
heterogeneous graphs with tens of millions of nodes, hun-
dreds of millions of edges, as well as massive node and edge
features.

• Effective, especially for Cold Start Problems. It outperforms
lgbm in all three cold start scenarios by up to 34 pcp AUC,
and demonstrates stable performance with increased number
of missing values.

• Fast and Scalable:ColdGuess scales linearly with the input
size, as shown in Figure 6. It makes 1MM+ predictions in
less than 2 mins on a 4-GPU P3.8xlarge EC2 instance.

ColdGuess has superior performance in cold start problems. It
is already in production on 4-GPU P3.8xlarge EC2 instance using
AWS Batch, and scores tens of millions of listings on daily basis. It
can reach its maximum capacity of scoring hundreds of millions of
listings in sales/holiday seasons. Our future work includes adding
temporal information so that we can combine multiple months of
data to augment the data size of rare classes in training.

REFERENCES

[1] Nabiha Asghar. 2016. Yelp dataset challenge: Review rating prediction. arXiv
preprint arXiv:1605.05362 (2016).

[2] Ye Bi, Liqiang Song, Mengqiu Yao, Zhenyu Wu, Jianming Wang, and Jing Xiao.
2020. A Heterogeneous Information Network based Cross Domain Insurance Rec-
ommendation System for Cold Start Users. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval.
2211–2220.

[3] Jidong Chen, Ye Tao, Haoran Wang, and Tao Chen. 2015. Big data based fraud
risk management at Alibaba. The Journal of Finance and Data Science 1, 1 (2015),
1–10.

[4] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael
Bronstein, and Federico Monti. 2020. Sign: Scalable inception graph neural
networks. arXiv preprint arXiv:2004.11198 (2020).

[5] Liyu Gong and Qiang Cheng. 2019. Exploiting edge features for graph neural
networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 9211–9219.

[6] William L. Hamilton, Ren Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. Advances in Neural Information Processing Systems
(2017).

[7] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[8] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu. 2018. Leveraging meta-
path based context for top-n recommendation with a neural co-attention model.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 1531–1540.

[9] Xiang Hui, Maryam Saeedi, Zeqian Shen, and Neel Sundaresan. 2016. Reputation
and regulations: Evidence from eBay. Management Science 62, 12 (2016), 3604–
3616.

[10] Xiaodong Jiang, Pengsheng Ji, and Sheng Li. 2019. CensNet: Convolution with
Edge-Node Switching in Graph Neural Networks.. In IJCAI. 2656–2662.

[11] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. Advances in Neural Information Processing Systems 30 (NIPS 2017)
(2017).

[12] Hyun-Chul Kim, Shaoning Pang, Hong-Mo Je, Daijin Kim, and Sung Yang Bang.
2003. Constructing support vector machine ensemble. Pattern recognition 36, 12
(2003), 2757–2767.

[13] Xuan Nhat Lam, Thuc Vu, Trong Duc Le, and Anh Duc Duong. 2008. Addressing
cold-start problem in recommendation systems. In Proceedings of the 2nd inter-
national conference on Ubiquitous information management and communication.
208–211.

[14] Blerina Lika, Kostas Kolomvatsos, and Stathes Hadjiefthymiades. 2014. Facing
the cold start problem in recommender systems. Expert Systems with Applications
41, 4 (2014), 2065–2073.

[15] Yuanfu Lu, Yuan Fang, and Chuan Shi. 2020. Meta-learning on heterogeneous
information networks for cold-start recommendation. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
1563–1573.

[16] VMareeswari and G Gunasekaran. 2016. Prevention of credit card fraud detection
based on HSVM. In 2016 International Conference on Information Communication
and Embedded Systems (ICICES). IEEE, 1–4.

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703 (2019).

[18] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61–80.

[19] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European semantic web conference. Springer, 593–607.

[20] Ivanov Sergei and Prokhorenkova Liudmila. 2021. Boost then convolve: gradient
boosting meets graph neural networks. arXiv preprint arXiv:2101.08543 (2021).

[21] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[22] Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao,
Wenjie Li, and ZhongyuanWang. 2019. Knowledge-aware graph neural networks
with label smoothness regularization for recommender systems. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data
mining. 968–977.

[23] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph library: A graph-
centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 (2019).

[24] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974–983.

[25] Ke Zhou, Shuang-Hong Yang, and Hongyuan Zha. 2011. Functional matrix
factorizations for cold-start recommendation. In Proceedings of the 34th interna-
tional ACM SIGIR conference on Research and development in Information Retrieval.
315–324.

8

7 SUPPLEMENTARY MATERIAL

Table 5, 6 and 7 show that ColdGuess wins with increasing margins
over lgbm, ColdGuess-Naive, SIGN, and RGCN as the severity of
cold starts increases using test sets from Month 2 to Month 4.

Table 5: ColdGuess wins with increasing margins over

ColdGuess-Naive, SIGN, and RGCN as the severity of cold

starts increases. 𝐺𝑜 , 𝐺𝑛𝑜 , 𝐺𝑛𝑠 , 𝐺𝑛𝑠𝑛𝑝 represent full data, new

offer case, new seller case, and new seller sells new product

case in Month 2. We take lgbm as the baseline and present

the performance gains of each model in ROC-AUC.

Defect Type 𝐺𝑜 𝐺𝑛𝑜 𝐺𝑛𝑠 𝐺𝑛𝑠𝑛𝑝

gains of ColdGuess vs. lgbm
Type1 0.1% 5.2% 5.9% 17.6%

Type2 0.1% -0.5% 2.7% 15.9%

Type3 -0.2% 1.3% 2.8% 14.6%

Type4 -0.3% 1.1% 2.8% 12.9%

Type5 -0.1% 1.7% 4.8% 10.1%

Type6 1.7% 2.7% 9.5% 12.9%

Type7 0.4% 1.7% 14.6% 33.7%

Type8 1.9% 2.9% 7.0% 12.7%

Normal -0.4% 1.3% 6.3% 23.8%

gains of ColdGuess-Naive vs. lgbm
Type1 0.4% 3.9% 4.9% 4.7%
Type2 0.3% 0.7% 4.0% 6.4%
Type3 0.0% 0.9% 0.9% 0.7%
Type4 0.0% -0.3% 0.4% 2.2%
Type5 0.0% 0.2% 1.7% 0.0%
Type6 1.5% 2.2% 4.0% 2.8%
Type7 1.4% 2.6% 3.6% 2.1%
Type8 0.9% 2.0% 3.7% 0.3%
Normal -0.1% 0.2% 0.3% -0.9%

gains of SIGN vs. lgbm
Type1 -0.6% 0.8% 4.2% 12.1%

Type2 -0.3% 1.6% 7.8% 5.0%
Type3 -0.5% -0.5% 2.0% 8.0%
Type4 -0.7% 0.9% 2.2% 7.4%
Type5 -0.7% 0.9% 4.7% 6.8%
Type6 -0.7% 0.9% 5.4% 5.2%
Type7 -0.9% 0.7% 11.7% 25.7%

Type8 0.5% 2.3% 4.87% 9.6%
Normal -0.7% 1.5% 5.6% 17.0%

gains of RGCN vs. lgbm
Type1 -0.5% 0.9% 3.0% 13.2%

Type2 -0.7% 0.2% 4.5% 7.4%
Type3 -0.6% -1.1% 0.3% 11.9%

Type4 -0.6% 0.9% 1.9% 10.7%

Type5 -0.3% 1.6% 5.2% 8.6%
Type6 0.7% 1.8% 6.8% 7.8%
Type7 0.0% 6.2% 10.9% 16.0%

Type8 2.1% 2.7% 6.2% 4.7%
Normal -0.1% 2.0% 5.5% 23.98%

a The AUC gain over lgbm greater than 10 pcp is black
bolded and underlined, greater than 5 pcp is underlined.

Table 6: ColdGuess wins with increasing margins over

ColdGuess-Naive, SIGN, and RGCN as the severity of cold

starts increases. 𝐺𝑜 , 𝐺𝑛𝑜 , 𝐺𝑛𝑠 , 𝐺𝑛𝑠𝑛𝑝 represent full data, new

offer case, new seller case, and new seller sells new product

case in Month 3. We take lgbm as the baseline and present

the performance gains of different methods in ROC-AUC.

Defect Type 𝐺𝑜 𝐺𝑛𝑜 𝐺𝑛𝑠 𝐺𝑛𝑠𝑛𝑝

gains of ColdGuess vs. lgbm
Type1 0.2% 5.5% 5.2% 17.3%

Type2 0.3% -0.4% 3.1% 16.6%

Type3 -0.2% 1.1% 2.7% 14.6%

Type4 -0.2% 1.1% 2.6% 12.8%

Type5 -0.1% 1.6% 4.9% 9.8%
Type6 1.0% 1.7% 8.0% 14.5%

Type7 -0.6% 1.9% 12.4% 33.0%

Type8 3.1% 4.3% 12.4% 15.0%

Normal -0.2% 1.5% 6.3% 22.9%

gains of ColdGuess-Naive vs. lgbm
Type1 0.7% 4.4% 4.5% 5.1%
Type2 0.4% 0.8% 4.0% 6.4%
Type3 0.1% 0.9% 0.8% 0.6%
Type4 0.1% -0.4% 0.4% 2.6%
Type5 0.0% 0.4% 2.0% -0.1%
Type6 1.4% 1.7% 2.5% 3.8%
Type7 2.1% 4.1% 4.6% 1.4%
Type8 2.5% 3.4% 8.3% 0.4%
Normal 0.1% 0.4% -0.2% -0.9%

gains of SIGN vs. lgbm
Type1 -0.2% 1.8% 3.6% 11.3%

Type2 -0.2% 1.9% 7.9% 5.7%
Type3 -0.6% -0.8% 1.9% 7.1%
Type4 -0.8% 0.5% 1.4% 7.7%
Type5 -0.6% 1.4% 5.0% 7.6%
Type6 -3.5% -3.0% 2.9% 8.0%
Type7 -0.7% 1.3% 9.4% 25.7%

Type8 0.9% 2.2% 7.2% 11.0%

Normal -0.4% 1.5% 6.4% 16.1%

gains of RGCN vs. lgbm
Type1 -0.3% 1.8% 2.1% 12.1%

Type2 -0.5% 0.9% 4.5% 7.7%
Type3 -0.6% -1.4% 0.1% 11.9%

Type4 -0.5% 0.4% 1.7% 10.6%

Type5 -0.4% 1.7% 5.3% 8.1%
Type6 0.4% 1.4% 3.1% 7.5%
Type7 0.0% 1.1% 8.7% 15.9%

Type8 3.0% 4.7% 11.5% 6.9%
Normal 0.0% 2.0% 6.4% 24.1%

a The AUC gain over lgbm greater than 10 pcp is black
bolded and underlined, greater than 5 pcp is underlined.

9

Table 7: ColdGuess wins with increasing margins over

ColdGuess-Naive, SIGN, and RGCN as the severity of cold

starts increases. 𝐺𝑜 , 𝐺𝑛𝑜 , 𝐺𝑛𝑠 , 𝐺𝑛𝑠𝑛𝑝 represent full data, new

offer case, new seller case, and new seller sells new product

case in Month 4. We take lgbm as the baseline and present

the performance gains of different methods in ROC-AUC.

Defect Type 𝐺𝑜 𝐺𝑛𝑜 𝐺𝑛𝑠 𝐺𝑛𝑠𝑛𝑝

gains of ColdGuess vs. lgbm
Type1 0.2% 5.8% 6.2% 17.5%

Type2 0.1% 0.1% 2.9% 16.5%

Type3 -0.2% 1.8% 3.1% 15.5%

Type4 -0.1% 1.7% 3.5% 12.5%

Type5 -0.1% 2.0% 5.5% 10.0%

Type6 0.9% 2.2% 7.1% 15.1%

Type7 0.5% 2.0% 15.1% 36.0%

Type8 3.8% 5.1% 12.9% 16.7%

Normal -0.4% 1.6% 7.4% 25.4%

gains of ColdGuess-Naive vs. lgbm
Type1 0.6% 4.4% 5.0% 4.5%
Type2 0.5% 1.1% 4.1% 6.2%
Type3 0.0% 1.3% 1.0% 0.6%
Type4 0.1% 0.0% 0.8% 2.2%
Type5 0.0% 0.5% 2.3% 0.1%
Type6 1.4% 2.2% 2.4% 3.4%
Type7 2.8% 3.7% 7.3% 3.2%
Type8 2.7% 3.4% 6.3% 1.4%
Normal 0.1% 0.4% 0.2% -0.8%

gains of SIGN vs. lgbm
Type1 -0.3% 2.1% 4.7% 11.4%

Type2 0.0% 3.1% 8.3% 6.1%
Type3 -0.6% -0.4% 2.5% 8.6%
Type4 -0.8% 1.6% 2.4% 7.9%
Type5 -0.5% 1.7% 5.7% 7.4%
Type6 -4.3% -3.3% 2.2% 10.0%

Type7 0.1% 1.1% 10.9% 28.1%

Type8 1.3% 3.2% 7.4% 12.6%

Normal -0.6% 1.6% 7.1% 17.9%

gains of RGCN vs. lgbm
Type1 -0.3% 2.4% 3.4% 12.9%

Type2 -0.5% 1.6% 4.6% 8.2%
Type3 -0.5% -0.1% 1.0% 13.2%

Type4 -0.3% 1.7% 3.0% 10.8%

Type5 -0.3% 1.8% 6.0% 8.7%
Type6 -0.3% 5.7% 4.8% 9.5%
Type7 0.9% 1.5% 10.6% 17.8%

Type8 3.5% 4.5% 11.0% 7.8%
Normal 0.0% 1.6% 6.9% 25.9%

a The AUC gain over lgbm greater than 10 pcp is black
bolded and underlined, greater than 5 pcp is underlined.

10

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Method
	4.1 Problem Definition
	4.2 Seller-Product Graph
	4.3 Proposed Method: ColdGuess
	4.4 Handling Dynamic Graphs

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Data Sets
	5.3 Performance Evaluation
	5.4 Ablation Study

	6 Conclusion and Future Work
	References
	7 Supplementary Material

