
Karate Club: An API Oriented Open-Source Python Framework
for Unsupervised Learning on Graphs

Benedek Rozemberczki
The University of Edinburgh
Edinburgh, United Kingdom

benedek.rozemberczki@ed.ac.uk

Oliver Kiss
Central European University

Budapest, Hungary
kiss_oliver@phd.ceu.edu

Rik Sarkar
The University of Edinburgh
Edinburgh, United Kingdom

rsarkar@inf.ed.ac.uk

ABSTRACT
Graphs encode important structural properties of complex systems.
Machine learning on graphs has therefore emerged as an important
technique in research and applications. We present Karate Club – a
Python framework combining more than 30 state-of-the-art graph
mining algorithms. These unsupervised techniques make it easy
to identify and represent common graph features. The primary
goal of the package is to make community detection, node and
whole graph embedding available to a wide audience of machine
learning researchers and practitioners. Karate Club is designed with
an emphasis on a consistent application interface, scalability, ease of
use, sensible out of the box model behaviour, standardized dataset
ingestion, and output generation. This paper discusses the design
principles behind the framework with practical examples. We show
Karate Club’s efficiency in learning performance on a wide range of
real world clustering problems and classification tasks along with
supporting evidence of its competitive speed.

KEYWORDS
network embedding, graph embedding, representation learning,
network analytics, graph mining

ACM Reference Format:
Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. 2020. Karate Club: An
API Oriented Open-Source Python Framework for Unsupervised Learning
on Graphs. In Proceedings of 16th International Workshop on Mining and
Learning with Graphs (San Diego ’20). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Techniques that extract features from graph data in an unsuper-
vised manner [19, 24, 47] have seen an increasing success in the
machine learning community. Features automatically extracted by
these methods can serve as inputs for link prediction, node and
graph classification, community detection and various other tasks
tasks [19, 24, 25, 30, 42] in a wide range of real world research
and application scenarios. Graph mining tools such as [13, 17, 23]
have contributed to enhancement and development of machine

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
San Diego ’20, 08-24, 2020, San Diego, CA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

learning pipelines. This approach produces features that are natu-
rally reusable on multiple types of tasks. The need for complicated
custom feature engineering is reduced by unsupervised mining
techniques. Recent research [24, 25, 36] has made such feature
extraction highly efficient and parallelizable.

The democratization of machine learning for tabular data was
led by frameworks which made fast paced development possible.
Tools such as [1, 5, 21, 22] are available in general purpose scripting
languages with easy to use consistent interfaces. On the other hand,
current graph based learning frameworks are less mature and of
limited scope [13, 23]. For example, these packages host certain
community detection algorithms, but none for whole graph or node
embedding. In addition, some of these tools [17, 23] have significant
barriers for the end users in terms of installing prerequisites and
custom data structures used for representing graphs.
Present work. We propose Karate Club, an open source Python
framework for unsupervised learning on graphs. We implemented
Karate Club with consistent API oriented design principles in mind
which makes the library end user friendly and modular. The name
of the package is inspired by Zachary’s Karate Club [50] – a network
commonly used to demonstrate network algorithms. The design
of this machine learning tool box was motivated by the principles
used to create the widely used scikit-learn package [5].

The design entails a number of fundamental engineering pat-
terns. Each algorithm has a sensible default hyperparameter setting
which helps non expert practitioners. To further ease the use of
our package, algorithms have a limited number of shared, publicly
available methods (e.g. fit). Models ingest data structures from the
scientific Python ecosystem [13, 39, 40] as input and the generated
output also follows these formats. The inner model mechanics are
always implemented as private methods using optimized back-end
libraries [9, 29, 39, 40] for computing. These principles combined
with the extensive documentation ensure that Karate Club is acces-
sible to a wider audience than the currently available open-source
graph mining frameworks.

Our empirical evaluation focuses on three common graph min-
ing tasks: non-overlapping community detection, node and graph
classification. We compare the learning performance of node and
graph level algorithms implemented in our framework on vari-
ous real world social, web and collaboration networks (collected
from Deezer, Reddit, Facebook, Twitch, Wikipedia and GitHub).
With respect to the runtime, models in Karate Club show excellent
scalability which we demonstrate by the use of synthetic data.
Our contributions. Specifically our work makes the following key
contributions:

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

San Diego ’20, 08-24, 2020, San Diego, CA Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar

(1) We release Karate Club, a Python graph mining framework
which provides a wide range of easy to use community de-
tection, node and whole graph embedding procedures.

(2) We demonstrate with code the main ideas of the API ori-
ented framework design: hyperparameter encapsulation and
inspection, available public methods, dataset ingestion, out-
put generation, and interfacing with downstream learning
algorithms and evaluation methods.

(3) We evaluate the learning performance of the framework on
real world community detection, node and graph classifica-
tion problems. We validate the scalability of the algorithms
implemented in our framework.

(4) We open sourced with the framework a detailed documenta-
tion and released multiple large graph classification datasets.

The remainder of this article is structured as follows. In Section 2
we discuss the covered graph mining techniques. We overview the
main principles behind Karate Club in Section 3 where we included
detailed examples to explain these design ideas. The learning perfor-
mance and scalability of the algorithms in the package are evaluated
in Section 4. We review related data mining libraries in Section 5.
The paper concludes with Section 6 where we discuss future direc-
tions. The source code ofKarate Club can be downloaded from https:
//github.com/benedekrozemberczki/karateclub; the Python package
can be installed from the Python Package Index. Extensive documen-
tation is available at https://karateclub.readthedocs.io/en/latest/
with detailed examples.

2 GRAPH MINING PROCEDURES IN KARATE
CLUB

In this section, we briefly discuss the various graph mining algo-
rithms which are available in the 1.0 release of the Karate Club
package.

2.1 Community detection
Community detection techniques cluster the vertices of the graph
into densely connected groups of nodes. This grouping can be the
final result or an input for a downstream learning algorithm (e.g.
node classification or link prediction).

Karate Club currently contains severalmethods for non-overlapping
and overlapping community detection. Non-overlapping commu-
nity detection is analogous to clustering, and assumes that a node
can only belong to a single group; see, for example, [18, 26, 28, 31].
While overlapping community detection is analogous to fuzzy clus-
tering as nodes have an affiliation with multiple clusters; look for
example [16, 34, 41, 47, 49].

2.2 Node embedding
Node embeddings map vertices of a graph into an Euclidean space
in which those that are deemed to be similar according to a certain
notion will be in close proximity. The Euclidean representation
makes it easier to apply standard machine learning libraries for
node classification, link prediction, clustering etc.

Neighbourhood preserving embedding maintains the proximity of
nodes in the graph when an embedding is created. These methods
implicitly [24, 25, 32] or explicitly [6, 15, 27, 35] decompose the

powers of the adjacency matrix (or a sum of these matrices) to
create the node embedding.

Structural embedding conserves the structural roles of nodes in
the embedding space [2, 10, 14]. Nodes with similar embeddings
have a similar distribution of centrality and clustering coefficient
in their vicinity. Embeddings are distilled by the decomposition of
matrices representing structural feature versus nodes.

Attributed embedding retains the neighbourhood structure and
generic feature similarity of nodes when the embedding is learned.
This learning involves the joint factorization of the node-node
and node-feature matrices with a direct [43, 46] or implicit matrix
decomposition technique [30, 51].

Meta embedding combines information from neighbourhood
preserving, structural and attributed embeddings in order to create
higher representation quality embeddings [44].

2.3 Whole graph embedding and
summarization

Whole graph embedding and summarization techniques create
fixed size representations of entire graphs as points in a Euclidean
space. Those graphs which are close in the embedding space share
structural patterns such as subtrees. These representations are used
for a range of graph level tasks – graph classification, regression
and whole graph clustering.

Spectral fingerprints extract statistics from the eigenvectors and
eigenvalues of the graph Laplacian [8, 36, 38]. Vectors of the de-
scriptive statistics are used as the whole graph representation.

Implicit factorization techniques create a graph – structural fea-
ture matrix [7, 19] by enumerating string features in the graphs.
This matrix is decomposed in order to create whole graph descrip-
tors and feature embeddings jointly.

3 DESIGN PRINCIPLES
When we created Karate Club, we used an API oriented machine
learning system design point of view [5, 22] in order to make an
end-user friendly machine learning tool. This API oriented design
principle entails a few simple ideas. In this section we discuss these
ideas and their apparent advantages with appropriate illustrative
examples in great detail.

3.1 Encapsulated model hyperparameters and
inspection

An unsupervised Karate Clubmodel instance is created by using the
constructor of the appropriate Python object. This constructor has
a default hyperparameter setting which allows for sensible out-of-
the-box model usage. In simple terms this means that the end user
does not need to understand the inner model mechanics in great
detail to use the methods implemented in our framework. We set
these default hyperparameters to provide a reasonable learning and
runtime performance. If needed, these model hyperparameters can
bemodified at themodel instance creation timewith the appropriate
re-parametrization of the constructor. The hyperparameters are
stored as public attributes to allow the inspection of model settings.

We demonstrate the encapsulation of hyperparameters by the
code snippet in Figure 1. First, we want to create an embedding for
a NetworkX generated Erdos-Renyi graph (line 4) with the standard

https://github.com/benedekrozemberczki/karateclub
https://github.com/benedekrozemberczki/karateclub
https://karateclub.readthedocs.io/en/latest/

Karate Club: An API Oriented Open-Source Python Framework for Unsupervised Learning on Graphs San Diego ’20, 08-24, 2020, San Diego, CA

hyperparameter settings. When the model is constructed and fitted
(lines 6-7) we do not change default hyperparameters and we can
print the standard setting of the dimensions hyperparameter (line
8). Second, we decided to set a different number of dimensions, so
we created and fitted a new model (lines 10-11) and we print the
new value of the dimensions hyperparameter (line 12).

1 import networkx as nx
2 from karateclub import DeepWalk
3

4 graph = nx.gnm_random_graph(100, 1000)
5

6 model = DeepWalk()
7 model.fit(graph)
8 print(model.dimensions)
9

10 model = DeepWalk(dimensions=64)
11 model.fit(graph)
12 print(model.dimensions)

Figure 1: Creating a synthetic graph, using a DeepWalk
modelwith standard andmodified hyperparameter settings.

3.2 API Consistency and non-proliferation of
classes

Each unsupervised machine learning model in Karate Club is im-
plemented as a separate class which inherits from the Estimator
class. Algorithms implemented in our framework have a limited
number of public methods as we do not assume that the end user is
particularly interested in the algorithmic details related to a specific
technique. All models are trained by the use of the fit method which
takes the inputs (graph, node features) and calls the appropriate pri-
vate methods to learn an embedding or clustering. Node and graph
embeddings are returned by the get_embedding public method and
cluster memberships are retrieved by calling get_memberships.

1 import networkx as nx
2 from karateclub import DeepWalk
3

4 graph = nx.gnm_random_graph(100, 1000)
5

6 model = DeepWalk()
7 model.fit(graph)
8 embedding = model.get_embedding()

Figure 2: Creating a synthetic graph, using the DeepWalk
constructor, fitting the embedding and returning it.

We avoided the proliferation of classes with two specific strate-
gies. First, the inputs used by our framework and the outputs gen-
erated do not rely on custom data classes. This helps to prevent
the unnecessary growth of the number of classes and also helps
with interfacing with downstream applications. Second, algorithms
which use the same data pre-processing step or algorithmic step (e.g.
truncated random walk, Weisfeiler-Lehman hashing) were built on
shared blocks.

In Figure 2 we create a random graph (line 4), and DeepWalk
model with the default hyperparameters (line 6), we fit this model
(line 7) using the public fit method (line 7) and return the embedding
by calling the public get_embedding method (line 8).

The example in Figure 2 can be modified to create a Walklets
embedding with minimal effort by changing the model import (line
2) and the constructor (line 6) – these modifications result in the
snippet of Figure 3.

Looking at these two snippets the advantage of the API driven
design is evident as we only needed to do a few modifications. First,
we had to change the import of the embedding model. Second, we
needed to modify the model construction and the default hyper-
parameters were already set. Third, the public methods provided
by the DeepWalk and Walklets classes behave the same way. An
embedding is learned with fit and it is returned by get_embedding.
This allows for quick and minimal changes to the code when an
upstream unsupervised model used for feature extraction performs
poorly.

1 import networkx as nx
2 from karateclub import Walklets
3

4 graph = nx.gnm_random_graph(100, 1000)
5

6 model = Walklets()
7 model.fit(graph)
8 embedding = model.get_embedding()

Figure 3: Creating a synthetic graph, using theWalklets con-
structor, fitting the embedding and returning it.

3.3 Standardized dataset ingestion
WedesignedKarate Club to use standardized dataset ingestionwhen
a model is fitted. Practically this means that algorithms which have
the same purpose use the same data types for model training. In
detail:

• Neighbourhood based and structural node embedding tech-
niques use a single NetworkX graph as input for the fit
method.

• Attributed node embedding procedures take a NetworkX
graph as input and the features are represented as a NumPy
array or as a SciPy sparse matrix. In these matrices rows
correspond to nodes and columns to features.

• Graph level embedding methods and statistical graph finger-
prints take a list of NetworkX graphs as an input.

• Community detection methods use a NetworkX graph as an
input.

3.4 High performance model mechanics
The underlying mechanics of the graph mining algorithms were
implemented using widely available Python libraries which are not
operation system dependent and do not require the presence of
other external libraries like TensorFlow or PyTorch does [1, 21]. The
internal graph representations in Karate Club use NetworkX. Dense
linear algebra operations are done with NumPy and their sparse

San Diego ’20, 08-24, 2020, San Diego, CA Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar

counterparts use SciPy. Implicit matrix factorization techniques
[2, 24, 25, 30, 51] utilize the GenSim [29] package and methods
which rely on graph signal processing use PyGSP [9].

3.5 Standardized output generation and
downstream interfacing

The standardized output generation of Karate Club ensures that
unsupervised learning algorithms which serve the same purpose
always return the same type of output with a consistent data point
ordering. There is a very important consequence of this design
principle. When a certain type of algorithm is replaced with the
same type of algorithm, the downstream code which uses the output
of the upstream unsupervised model does not have to be changed.
Specifically the outputs generated with our framework use the
following data structures:

• Node embedding algorithms (neighbourhood preserving, at-
tributed and structural) always return a NumPy float array
when the get_embedding method is called. The number of
rows in the array is the number of vertices and the row index
always corresponds to the vertex index. Furthermore, the
number of columns is the number of embedding dimensions.

• Whole graph embedding methods (spectral fingerprints, im-
plicit matrix factorization techniques) return a NumPy float
array when the get_embedding method is called. The row
index corresponds to the position of a single graph in the
list of graphs inputted. In the same way, columns represent
the embedding dimensions.

• Community detection procedures return a dictionary when
the get_memberships method is called. Node indices are
keys and the values corresponding to the keys are the com-
munity memberships of vertices. Certain graph clustering
techniques create a node embedding in order to find ver-
tex clusters. These return a NumPy float array when the
get_embedding method is called. This array is structured like
the ones returned by node embedding algorithms.

1 import community
2 import networkx as nx
3 from karateclub import LabelPropagation, SCD
4

5 graph = nx.gnm_random_graph(100, 1000)
6

7 model = SCD()
8 model.fit(graph)
9 scd_memberships = model.get_memberships()
10

11 model = LabelPropagation()
12 model.fit(graph)
13 lp_memberships = model.get_memberships()
14

15 print(community.modularity(scd_memberships, graph))
16 print(community.modularity(lp_memberships, graph))

Figure 4: Creating a synthetic graph, clustering with two
community detection techniques and using an external li-
brary to evaluate the modularity of clusterings.

We demonstrate the standardized output generation and inter-
facing by the code fragment in Figure 4. We create clusterings of a
random graph and return dictionaries containing the cluster mem-
berships. Using the external community library we can calculate
the modularity of these clusterings (lines 15-16). This shows that
the standardized output generation makes interfacing with external
graph mining and machine learning libraries easy.

3.6 Limitations
The current design of Karate Club has certain limitations and we
make assumptions about the input. We assume that that the Net-
workX graph is undirected and consists of a single strongly con-
nected component. All algorithms assume that nodes are indexed
with integers consecutively and the starting node index is 0. More-
over, we assume that the graph is not multipartite, nodes are homo-
geneous and edges are unweighted (each edge has a unit weight).

In case of the whole graph embedding algorithms [7, 8, 12, 19, 36,
38] all graphs in the set of graphs must amend the previously listed
requirements with respect to the input. The Weisfeiler-Lehman
feature based embedding techniques [7, 19] allow nodes to have a
single string feature which can be accessed with the feature key.
Without the presence of this key these algorithms default to the
use of degree centrality as a node feature.

4 EXPERIMENTAL EVALUATION
In the experimental evaluation of Karate Club we will demonstrate
two things. First, we will show that the implemented algorithms
have a good performance with respect to embedding and extracted
community quality on a variety of machine learning problems.
Second, we support evidence that those algorithms which in theory
scale linearly with the input size (number of nodes or number of
graphs) scale linearly using our framework in practice. Throughout
these experiments we will always use the standard hyperparameter
settings of the 1.0 release of our package.

4.1 Learning performance
The evaluation of the representation quality focuses on three types
of machine learning tasks. These are: community detection with
ground truth communities, node classification with the node embed-
dings, and whole graph classification with graph level embeddings.

Table 1: Statistics of social networks used for node level al-
gorithms.

Wikipedia
Crocodiles

GitHub
Developers

Twitch
England

Facebook
Page-Page

Nodes 11,631 37,700 7,126 22,470

Density 0.003 0.001 0.002 0.001

Transitivity 0.026 0.013 0.042 0.232

Diameter 11 7 10 15

Features 13,183 4,005 2,545 4,714

4.1.1 Datasets. In order to evaluate the performance of vertex
level algorithms (node embedding and community detection) we

Karate Club: An API Oriented Open-Source Python Framework for Unsupervised Learning on Graphs San Diego ’20, 08-24, 2020, San Diego, CA

used attributed web, collaboration and social networks which are
publicly available on SNAP1 [17, 30]. We decided to use attributed
networks because a large number of algorithms in Karate Club
can exploit the presence of node features. These datasets are the
following:

• Wikipedia Crocodiles: In this graph nodes representWikipedia
pages and edges are mutual links. The vertex features de-
scribe the presence of nouns in the article and the binary
target variable indicates the volume of traffic on the site.

• GitHub Developers: Vertices in this network are developers
who use GitHub and edges represent mutual follower rela-
tionships between the users. Features are derived based on
location, biography and other metadata, the binary target
variable is whether someone is a machine learning or web
developer.

• Twitch England: Nodes of this graph are Twitch users from
England and edges are mutual friendships between them.
Node features were extracted based on the streaming history
of the users while the binary node class describes whether
the user creates explicit content.

• Facebook Page-Page: A network of verified Facebook pages
where nodes are pages and the links between nodes are mu-
tual likes. Features are distilled from the page descriptions
and the target is the category of the Facebook page (Politi-
cians, Governments, Companies, TV Shows).

The descriptive statistics of these node level datasets are summa-
rized in Table 1. As one can see these networks have a large variety
of size, level of clustering and diameter.

Table 2: Statistics of graph datasets used for graph level al-
gorithms.

Nodes Density Diameter
Dataset Graphs Min Max Min Max Min Max

Reddit Threads 203,088 11 97 0.021 0.382 2 27

Twitch Egos 127,094 14 52 0.038 0.967 1 2

GitHub StarGazers 12,725 10 957 0.003 0.561 2 18

Deezer Egos 9,629 11 363 0.015 0.909 2 2

Graph level embedding algorithms were evaluated on a variety
of web and social graph datasets which we collected specifically
for this paper. We made these graph collections publicly available 2.
The graph collections used for predictive performance evaluation
are the following:

• Reddit Threads: Discussion and non-discussion based threads
from Reddit which we collected in May 2018. The task is to
predict whether a thread is discussion based.

• Twitch Egos: The ego-nets of Twitch users who participated
in the partnership program in April 2018. The binary clas-
sification task is to predict using the ego-net whether the
central gamer plays a single or multiple games.

• Github Stargazers: The social networks of developers who
starred popular machine learning and web development

1https://snap.stanford.edu/data/
2https://github.com/benedekrozemberczki/datasets

repositories until 2019 August. The task is to decide whether
a social network belongs to a web or machine learning repos-
itory.

• Deezer Egos: The ego-nets of Eastern European users col-
lected from the music streaming service Deezer in February
2020. The related task is the prediction of gender for the ego
node in the graph.

We listed the size of these datasets with the respective descriptive
statistics in Table 2. It is worth noting that the Reddit Threads
and Twitch Egos both have at least 10 fold more graphs than the
social graph datasets which are widely used for graph classification
evaluation [42]. We would also like to emphasize that the use of
graph kernels would not be feasible on graph datasets which are
this numerous.

Table 3: Mean NMI values with standard errors on the node
level datasets calculated from 100 runs.

Wikipedia
Crocodiles

GitHub
Developers

Twitch
England

Facebook
Page-Page

DANMF [49] .051 ± .001 .083 ± .001 .007 ± .001 .164 ± .001

M-NMF [41] .063 ± .001 .084 ± .001 .004 ± .001 .068 ± .001

NNSED [34] .063 ± .001 .034 ± .001 .004 ± .001 .072 ± .001

SymmNMF [16] .062 ± .001 .074 ± .001 .007 ± .001 .206 ± .001

Ego-Splitting [11] .157 ± .001 .202 ± .001 .223 ± .001 .346 ± .001

EdMot [18] .085 ± .001 .180 ± .001 .008 ± .001 .272. ± .001

LabelProp [28] .119 ± .001 .090 ± .002 .003 ± .001 .320 ± .004

SCD [26] .181 ± .001 .189 ± .001 .169 ± .001 .386 ± .001

GEMSEC[31] .102 ± .001 .127 ± .001 .008 ± .002 .244 ± .001

4.1.2 Community Detection. We evaluate the community detec-
tion performance by running the clustering algorithms on the node
level datasets. In case of overlapping community detection algo-
rithms [11, 16, 34, 41, 47, 49] we assigned each node to the cluster
that has the strongest affiliation score with the node (ties were
broken randomly). The metric used for the clustering performance
measurement is the average normalized mutual information (hence-
forth NMI) score calculated between the cluster membership vector
and the factual class memberships. We report in Table 3 the NMI
averages with the standard errors calculated from 100 experimental
runs.

Looking at Table 3 first we notice that the non-overlapping
community detection techniques [11, 18, 26, 28, 31] materially
outperform the overlapping models which create latent spaces
[16, 34, 41, 47, 49] on every dataset in terms of NMI. Second, those
algorithms which create clusters based on the presence of closed
triangles (SCD [26], Ego-Splitting [11]) have a general strong per-
formance. Finally, on problems where it can be assumed that the
class membership vector is associated with structural properties
(e.g. Wikipedia Crocodiles), the overlapping latent space creating
community detection methods perform poorly in terms of NMI.

4.1.3 Graph classification. In each dataset we created representa-
tions for the graphs and use those as predictors for the downstream

San Diego ’20, 08-24, 2020, San Diego, CA Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar

classification task. We repeated the feature distillation and super-
vised model training 100 times, used 80% of graphs for training and
20% for testing with seeded splits. Using the graph class vectors of
the test set and class probabilities outputted by the logistic regres-
sion classifier we calculated mean area under the curve (henceforth
AUC) values which are presented in Table 4 along with their stan-
dard errors.

Table 4: MeanAUC values with standard errors on the graph
level datasets calculated from 100 seed train-test splits.

Reddit
Threads

Twitch
Egos

GitHub
StarGazers

Deezer
Egos

GL2Vec [7] .753 ± .002 .664 ± .002 .551 ± .001 .504 ± .001

Graph2Vec [19] .804 ± .002 .702 ± .003 .585 ± .001 .512 ± .001

SF [8] .814 ± .002 .678 ± .003 .558 ± .001 .501 ± .001

NetLSD [36] .827 ± .001 .631 ± .002 .632 ± .001 .522 ± .001

FGSD [38] .825 ± .002 .705 ± .003 .656 ± .001 .526 ± .001

GeoScattering [12] .800 ± .001 .697 ± .001 .546 ± .003 .522 ± .003

The results presented in Table 4 show that the representations
created by implicit factorization [7, 19] and spectral finger printing
[8, 36, 38] techniques are predictive on most problems. In addi-
tion, we see evidence that algorithms from the latter group create
somewhat higher quality representations.

Table 5: Mean AUC values with standard errors on the node
level datasets calculated from 100 seed train-test splits.

Wikipedia
Crocodiles

GitHub
Developers

Twitch
England

Facebook
Page-Page

BoostNE [15] .685 ± .001 .845 ± .001 .576 ± .001 .752 ± .001

NodeSketch [45] .722 ± .001 .631 ± .001 .520 ± .001 .579 ± .001

Diff2Vec [32] .832 ± .001 .858 ± .001 .589 ± .001 .873 ± .001

NetMF [27] .866 ± .001 .867 ± .001 .629 ± .002 .946 ± .001

Walklets [25] .875 ± .001 .899 ± .002 .622 ± .001 .973 ± .001

HOPE [20] .870 ± .001 .844 ± .001 .612 ± .001 .909 ± .001

GraRep [6] .888 ± .002 .876 ± .001 .609 ± .001 .952 ± .001

DeepWalk [24] .850 ± .001 .872 ± .002 .597 ± .002 .877 ± .001

NMF-ADMM [35] .747 ± .001 .784 ± .001 .619 ± .001 .937 ± .001

LAP [4] .784 ± .001 .529 ± .001 .511 ± .001 .501 ± .001

GraphWave [10] .517 ± .001 .620 ± .001 .583 ± .001 .613 ± .001

Role2Vec [2] .845 ± .001 .862 ± .002 .601 ± .002 .903 ± .002

BANE [46] .866 ± .002 .570 ± .001 .551 ± .001 .970 ± .002

TENE [48] .907 ± .001 .874 ± .001 .615 ± .001 .886 ± .001

TADW [43] .896 ± .001 .817 ± .001 .612 ± .002 .871 ± .001

FSCNMF [3] .912 ± .001 .856 ± .002 .621 ± .001 .891 ± .001

SINE [51] .904 ± .001 .910 ± .002 .646 ± .001 .979 ± .001

MUSAE [30] .931 ± .001 .903 ± .001 .628 ± .001 .981 ± .001

4.1.4 Node classification. In this series of experiments we evalu-
ated the node classification performance on the node level datasets.
For each graph we learned a node embedding and used the features
of this node embedding as predictors for a downstream logistic
(softmax) regression model. We repeated the embedding and super-
vised model training 100 times, used 80% of the nodes for training
and 20% for testing with seeded splits. Using the target vectors of
the test set and the class probabilities outputted by the downstream
model we calculated mean AUC scores. These average AUC values
are reported in Table 5 with standard errors. The results in Table
5 generally demonstrate that the included neighbourhood based
[4, 6, 15, 20, 24, 25, 27, 32, 35], structural role preserving [2, 10], and
attributed [3, 30, 43, 46, 48, 51] node embedding techniques all gen-
erate reasonable quality representations for this classification task.
There are additional conclusions; (i) multi-scale node embeddings
such as GraRep [6], Walklets, [25], and MUSAE [30] create high
quality node features , (ii) combining neighbourhood and attribute
information results in the best representations [30, 51], (iii) there is
not a single model which is generally superior.

4.2 Scalability
We perform scalability tests for all three types of algorithms (com-
munity detection, node and whole graph embedding). For each of
these categories we investigate the scalability of 4 chosen algo-
rithms. We use Erdos-Renyi graphs where the input size and graph
density can be manipulated directly.

Figure 5 plots runtime against size and density of the clustered
while the average number of edges is fixed to be 10. In the densifica-
tion scenario we clustered a graph with 212 nodes. Non-overlapping
community detection techniques show a remarkable scalability with
respect to graph size increase, and we also see that the densification
of the graph results in longer runtimes.

8 10 12 14 16−7
−5
−3
−1
1

3

5

7

log2 Number of nodes

lo
g 2

Ru
nt
im

e
in

se
co
nd

s

Graph size scalability

3 4 5 6 7 8

1

3

5

7

9

log2 Number of edges per node

lo
g 2

Ru
nt
im

e
in

se
co
nd

s
Graph density scalability

Label Propagation Ego-Net Splitting NNSED SymmNMF

Figure 5: Scalability of the community detection procedures
inKarateClub.We vary the number of nodes and the density
of an Erdos-Renyi graph.

We measured the same way how the average runtime of node
embedding varies with input size changes and densification and
plotted these in Figure 6. These results show that under no prefer-
ential attachment all of the included methods scale linearly with
input size changes. Moreover, implicit factorization runtimes are
unaffected by the densification of the graph.

In case of the whole graph representation we plotted the average
runtime as a function of the number of graphs and their size on
Figure 7. The base graph used for the first plot had 64 nodes and 5
edges per node and for the second plot we used 210 graphs. First, a

Karate Club: An API Oriented Open-Source Python Framework for Unsupervised Learning on Graphs San Diego ’20, 08-24, 2020, San Diego, CA

8 10 12 14 16
−5
−3
−1
1
3
5
7
9

log2 Number of nodes

lo
g 2

Ru
nt
im

e
in

se
co
nd

s

Graph size scalability

3 4 5 6 7 8−1

1

3

5

7

log2 Number of edges per node

lo
g 2

Ru
nt
im

e
in

se
co
nd

s

Graph density scalability

DeepWalk Walklets NetMF BoostNE

Figure 6: Scalability of node embedding procedures in
Karate Club. We vary the number of nodes and the density
of an Erdos-Renyi graph.

takeaway is that the runtime increases linearly with the size of the
dataset assuming that size of the graphs is homogeneous. Second,
the spectral fingerprinting techniques [8, 38] do not scale well when
the size of the graphs is increased which was expected.

6 8 10 12 14 16
−3
−1
1
3
5
7
9
11

log2 Number of graphs

lo
g 2

Ru
nt
im

e
in

se
co
nd

s

Graph count scalability

3 5 7 9 11

1

3

5

7

9

11

log2 Number of nodes

lo
g 2

Ru
nt
im

e
in

se
co
nd

s

Graph size scalability

Graph2Vec FGSD SF GL2Vec

Figure 7: Scalability of graph embedding and summarization
procedures in Karate Club. We vary the number of Erdos-
Renyi graphs and their size.

5 RELATEDWORK
In this sectionwe discuss how the design of our framework is related
to existing machine learning frameworks, what differentiates it
from other graph mining tools.

5.1 API oriented machine learning frameworks
Scikit-learn [5, 22] is a machine learning framework with consistent
and easy to use design. The scikit-learnmodels are characterised by
models with a consistent API, their constructors have encapsulated
sensible hyperparameters and utilize widely used Python data struc-
tures for data ingestion and output generation. This compositional
design of the framework results in a low number of model classes,
reusable model blocks and enables fast deployment. The Karate
Club API draws heavily from the ideas of scikit-learn and the output
generated is suitable as input for scikit-learn’s machine learning
procedures.

5.2 Graph mining libraries
The Karate Club framework is differentiated from other graph min-
ing libraries because of the lightweight prerequisites and the wide
coverage of the learning techniques which we implemented. First,
the SNAP and GraphTool packages both have C++ prerequisites

which have to be pre-compiled and installed. Our framework only
has Python dependencies and builds on top of the NetworkX project.
Second, the SNAP [17] library only covers specific methods which
were created by the authors of the framework. The NetworkX [13]
and GraphTool [23] libraries only provide tools for community de-
tection. Node and whole graph embedding is not supported by these
frameworks.

6 CONCLUSION AND FUTURE DIRECTIONS
In this work we described Karate Club a Python framework built on
the open source packages NetworkX [13], PyGSP [9], Gensim [29],
NumPy [40], and SciPy Sparse [39] which performs unsupervised
learning on graph data. Specifically, it supports community detec-
tion, node embedding, and whole graph embedding techniques.

We discussed in detail the design principles which we followed
when we created Karate Club, standard hyperparameter encapsula-
tion, the assumptions about the format of input data and generated
output, and the available public methods. In order to demonstrate
these principles we included illustrative examples of code. In a series
of experiments on real world datasets we validated that the machine
learning models in Karate Club produce high quality clusters and
embeddings. At the same time we demonstrated on synthetic data
that the linear runtime algorithms scale well with increasing input
size.

As discussed, Karate Club has certain limitations with regards to
the types of graphs that it can handle. In the future we plan to extend
it to operate on directed and weighted graphs. Another aim is to
provide a general framework for unsupervised learning algorithms
on heterogeneous, multiplex, temporal graphs and procedures for
the hyperbolic embedding of nodes [33, 37].

ACKNOWLEDGEMENTS
Benedek Rozemberczki was supported by the Centre for Doctoral
Training in Data Science, funded by EPSRC (grant EP/L016427/1).

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16). 265–
283.

[2] Nesreen K Ahmed, Ryan A Rossi, John Boaz Lee, Theodore L Willke, Rong
Zhou, Xiangnan Kong, and Hoda Eldardiry. 2019. role2vec: Role-based network
embeddings. In Proc. DLG KDD.

[3] Sambaran Bandyopadhyay, Harsh Kara, Aswin Kannan, and M Narasimha Murty.
2018. Fscnmf: Fusing structure and content via non-negative matrix factorization
for embedding information networks. arXiv preprint arXiv:1804.05313 (2018).

[4] Mikhail Belkin and Partha Niyogi. 2002. Laplacian eigenmaps and spectral
techniques for embedding and clustering. In Advances in neural information
processing systems. 585–591.

[5] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jacob VanderPlas, Arnaud Joly, Brian Holt, and
Gaël Varoquaux. 2013. API design for machine learning software: experiences
from the scikit-learn project. ArXiv abs/1309.0238 (2013).

[6] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph rep-
resentations with global structural information. In Proceedings of the 24th ACM
international on conference on information and knowledge management. ACM,
891–900.

[7] Hong Chen and Hisashi Koga. 2019. GL2vec: Graph Embedding Enriched by Line
Graphs with Edge Features. In International Conference on Neural Information
Processing. Springer, 3–14.

[8] Nathan de Lara and Pineau Edouard. 2018. A simple baseline algorithm for graph
classification. In Advances in Neural Information Processing Systems.

San Diego ’20, 08-24, 2020, San Diego, CA Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar

[9] Michaël Defferrard, Lionel Martin, Rodrigo Pena, and Nathanaël Perraudin. [n.d.].
PyGSP: Graph Signal Processing in Python. https://doi.org/10.5281/zenodo.
1003157

[10] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. 2018. Learning
structural node embeddings via diffusion wavelets. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
ACM, 1320–1329.

[11] Alessandro Epasto, Silvio Lattanzi, and Renato Paes Leme. 2017. Ego-Splitting
Framework: From Non-Overlapping to Overlapping Clusters. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’17). 145–154.

[12] Feng Gao, Guy Wolf, and Matthew Hirn. 2019. Geometric Scattering for Graph
Data Analysis. In Proceedings of the 36th International Conference on Machine
Learning, Vol. 97. 2122–2131.

[13] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using NetworkX. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

[14] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato
Basu, Leman Akoglu, Danai Koutra, Christos Faloutsos, and Lei Li. 2012. Rolx:
structural role extraction & mining in large graphs. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data mining.
1231–1239.

[15] Huan Liu Jundong Li, Liang Wu. 2019. Multi-Level Network Embedding with
Boosted Low-Rank Matrix Approximation. In Proceedings of the 2019 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining 2019.
ACM, 50–56.

[16] Da Kuang, Chris Ding, and Haesun Park. 2012. Symmetric nonnegative matrix
factorization for graph clustering. In Proceedings of the 2012 SIAM international
conference on data mining. SIAM, 106–117.

[17] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[18] Pei-Zhen Li, Ling Huang, Chang-Dong Wang, and Jian-Huang Lai. 2019. EdMot:
An Edge Enhancement Approach for Motif-aware Community Detection. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD ’19). 479–487.

[19] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui
Chen, and Yang Liu. 2017. graph2vec: Learning distributed representations of
graphs. (2017).

[20] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric transitivity preserving graph embedding. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery and data mining. 1105–
1114.

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems. 8024–8035.

[22] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825–2830.

[23] Tiago P Peixoto. 2014. The graph-tool python library. figshare (2014).
[24] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[25] Bryan Perozzi, Vivek Kulkarni, Haochen Chen, and Steven Skiena. 2017. Don’t
Walk, Skip!: online learning of multi-scale network embeddings. In Proceedings
of the 2017 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining 2017. ACM, 258–265.

[26] Arnau Prat-Pérez, David Dominguez-Sal, and Josep-Lluis Larriba-Pey. 2014. High
quality, scalable and parallel community detection for large real graphs. In Pro-
ceedings of the 23rd international conference on World wide web. 225–236.

[27] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining. ACM, 459–467.

[28] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. 2007. Near Lin-
ear Time Algorithm to Detect Community Structures in Large-scale Networks.
Physical review E 76, 3 (2007), 036106.

[29] Radim Rehurek and Petr Sojka. 2011. Gensim—statistical semantics in python.
Retrieved from genism. org (2011).

[30] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2019. Multi-scale Attributed
Node Embedding. arXiv preprint arXiv:1909.13021 (2019).

[31] Benedek Rozemberczki, Ryan Davies, Rik Sarkar, and Charles Sutton. 2019. GEM-
SEC: Graph Embedding with Self Clustering. In Proceedings of the 2019 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining 2019.
ACM, 65–72.

[32] Benedek Rozemberczki and Rik Sarkar. 2018. Fast Sequence-Based Embedding
with Diffusion Graphs. In International Workshop on Complex Networks. Springer,

99–107.
[33] Rik Sarkar. 2011. Low distortion delaunay embedding of trees in hyperbolic

plane. In International Symposium on Graph Drawing. Springer, 355–366.
[34] Bing-Jie Sun, Huawei Shen, Jinhua Gao, Wentao Ouyang, and Xueqi Cheng. 2017.

A non-negative symmetric encoder-decoder approach for community detection.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management. ACM, 597–606.

[35] Dennis L Sun and Cedric Fevotte. 2014. Alternating direction method of multipli-
ers for non-negative matrix factorization with the beta-divergence. In 2014 IEEE
international conference on acoustics, speech and signal processing (ICASSP). IEEE,
6201–6205.

[36] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alexander Bronstein, and
Emmanuel Müller. 2018. Netlsd: hearing the shape of a graph. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2347–2356.

[37] Kevin Verbeek and Subhash Suri. 2014. Metric embedding, hyperbolic space, and
social networks. In Proceedings of the thirtieth annual symposium on Computa-
tional geometry. 501–510.

[38] Saurabh Verma and Zhi-Li Zhang. 2017. Hunt for the unique, stable, sparse and
fast feature learning on graphs. In Advances in Neural Information Processing
Systems. 88–98.

[39] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, et al. 2019. SciPy 1.0–fundamental algorithms for scientific
computing in Python. arXiv preprint arXiv:1907.10121 (2019).

[40] Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. 2011. The NumPy
array: a structure for efficient numerical computation. Computing in Science &
Engineering 13, 2 (2011), 22–30.

[41] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.
Community Preserving Network Embedding. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI’17). 203–209.

[42] Pinar Yanardag and S.V.N. Vishwanathan. 2015. Deep Graph Kernels. In Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. 1365–1374.

[43] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Chang. 2015.
Network representation learning with rich text information. In Twenty-Fourth
International Joint Conference on Artificial Intelligence.

[44] Cheng Yang, Maosong Sun, Zhiyuan Liu, and Cunchao Tu. 2017. Fast network
embedding enhancement via high order proximity approximation.. In IJCAI.
3894–3900.

[45] Dingqi Yang, Paolo Rosso, Bin Li, and Philippe Cudre-Mauroux. 2019. NodeSketch:
Highly-Efficient Graph Embeddings via Recursive Sketching. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1162–1172.

[46] Hong Yang, Shirui Pan, Peng Zhang, Ling Chen, Defu Lian, and Chengqi Zhang.
2018. Binarized attributed network embedding. In 2018 IEEE International Con-
ference on Data Mining (ICDM). IEEE, 1476–1481.

[47] Jaewon Yang and Jure Leskovec. 2013. Overlapping community detection at scale:
a nonnegative matrix factorization approach. In Proceedings of the sixth ACM
international conference on Web search and data mining. ACM, 587–596.

[48] Shuang Yang and Bo Yang. 2018. Enhanced Network Embedding with Text
Information. In 2018 24th International Conference on Pattern Recognition (ICPR).
IEEE, 326–331.

[49] Fanghua Ye, Chuan Chen, and Zibin Zheng. 2018. Deep Autoencoder-like Non-
negative Matrix Factorization for Community Detection. In Proceedings of the
27th ACM International Conference on Information and Knowledge Management
(CIKM ’18). 1393–1402.

[50] Wayne W Zachary. 1977. An information flow model for conflict and fission in
small groups. Journal of anthropological research 33, 4 (1977), 452–473.

[51] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. 2018. SINE: Scalable
Incomplete Network Embedding. In 2018 IEEE International Conference on Data
Mining (ICDM). IEEE, 737–746.

https://doi.org/10.5281/zenodo.1003157
https://doi.org/10.5281/zenodo.1003157
http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Graph mining procedures in Karate Club
	2.1 Community detection
	2.2 Node embedding
	2.3 Whole graph embedding and summarization

	3 Design Principles
	3.1 Encapsulated model hyperparameters and inspection
	3.2 API Consistency and non-proliferation of classes
	3.3 Standardized dataset ingestion
	3.4 High performance model mechanics
	3.5 Standardized output generation and downstream interfacing
	3.6 Limitations

	4 Experimental Evaluation
	4.1 Learning performance
	4.2 Scalability

	5 Related Work
	5.1 API oriented machine learning frameworks
	5.2 Graph mining libraries

	6 Conclusion and Future Directions
	References

