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ABSTRACT
Identifying substitutable pairs or groups of products is key to build-
ing relevant product assortment for brick-and-mortar stores as well
as to efficiently handle out-of-stock scenarios. In this work, we
describe the unique challenges with a retailer’s data to identify sub-
stitutable product pairs from a large catalog and nationwide store
transactions. We apply some of the well established approaches in
data mining and machine learning to customer store purchase data
and product attributes data to generate networks of substitutable
products. This paper presents a novel application of substitutable
product networks integrated with an assortment optimization en-
gine that was developed in-house to select the optimal assortment of
products for the stores. The outcomes from a large scale experiment
conducted across 120 stores within United States demonstrates a
unit sales lift in excess of 11%. In another set of tests, we analyze
the performance of various algorithms for product substitution and
fulfillment when customers encounter out-of-stock scenario while
shopping for groceries for same day delivery.

KEYWORDS
Product Substitutes, Data Mining, Graph, Assortment Optimization

ACM Reference Format:
Amit Pande, Aparupa Das Gupta, Kai Ni, Rahul Biswas, Sayon Majumdar.
2020. Substitution Techniques for Grocery Fulfillment and Assortment
Optimization Using Product Graphs . In Proceedings of 16th International
Workshop on Mining and Learning with Graphs (MLG ’20). August 22–27,
2020, San Diego, CA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/1122445.1122456

1 INTRODUCTION
Traditional brick-and-mortar stores continue to dominate the gro-
cery shopping experience, but e-grocery is growing in popularity.
According to a recent study, a quarter of American households
are buying food online and total U.S. online grocery sales will
rise to nearly $30 billion by 2021 [1]. To compete with tech-savvy
retailers such as Amazon, stores are beefing up delivery options
for customers, such as same-day grocery delivery, in-store pickup
and drive-up services. These efforts are designed to improve the
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customer experience, which help to improve engagement and re-
tention.

At the heart of all this is the strategic decision to focus on the
idea of using stores as hubs. The traditional retailers realized that
instead of closing all the stores and fighting behemoths like Amazon
for online turf, it is much more convenient to use stores-as-a-hub
and fulfill the orders from there. Fulfillment via stores is signifi-
cantly cost-efficient than via the fulfillment centers. This is the key
to improving digital performance of Krogers, Walmart and Target.
Making stores the hub for fulfillment implies challenges for plan-
ning assortment for the customers as well as handling the scenarios
when a customer is looking for an out-of-stock (OOS) product. OOS
happens all the time in digital fulfillment, however, in the scenario
of store-based fulfillment, the frequency of OOS increases. In the
case of online purchases, the order can be fulfilled by any of the
distribution center. However, for same-day fulfillment via stores in
the form of store-pickup or drive-up or home delivery, the inven-
tory is transient. While the digital customer is placing an order for
mangoes, another customer might have bought the entire crate of
mangoes from the stores and it is not ticketed yet. Or a reportedly
fresh product might be found to be stale when the shopper goes to
pick it up. The overall inventory level in stores is lower than fulfill-
ment centers. In all these scenarios, recommending substitutable
products to the customers are of paramount importance.

Product recommendation is a well-studied part of customer per-
sonalization experience in digital retail for decades. The old Collab-
orative Filtering or k-Nearest Neighbor based approaches can be
naively used for product substitution recommendations with some
success. Content based approaches [2, 4, 11] use semantic content
such as product description, attribute data and reviews to define
similar and substitutable products. Collaborative filtering [9, 13]
is a context based approach which selects information based on
the interest and opinion of other users. Item-to-item collaborative
filtering matches each of the user’s purchased and rated products to
similar products, then combines those similar products to generate
recommendations. Since customers view similar products before
shopping the product they like, co-viewed products form the crux
to recommend similar or substitutable products to the customer.
However, store sales data lack knowledge of other products cus-
tomer looked at in the aisles and considered before making the
final purchase. In the digital domain, newer algorithms [7, 16] use
visual cues to recommend similar products to customers. Other ap-
proaches [10] combine both content based and co-purchase based
signals from online interaction of customers.

Stores, unlike digital, have limited shelf space and a retailer has
to intelligently select its assortment to satisfy the local demands.
Determining the best product mix and inventory size are of strate-
gic importance to a retailer looking to cash in on store fulfillment.
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Assortment planning refers to the problem of selecting the right
set of products to offer to a group of customers to maximize the
revenue that is realized when customers make purchases according
to their preferences. It is a trade-off between the shelf space and the
products we want to show to the customers locally. Substitutability
is a key factor in deciding the right cohort of products within a
category. Assortment planning is mostly seen as an optimization
problem [5]. Some earlier works like by Kök et al. [8] use the multi-
nomial logit demand model to determine substitutes. None of the
past work leverages graphs and machine learning techniques for
product substitutions and its impact on assortment planning.

To the best of our knowledge, this is one of the few works lever-
aging machine learning techniques for product substitutions in
assortment optimization formulations as well as same-day delivery
substitutions. The main contributions of this work are as follows:

(1) This work discusses the data challenges as well as related
performance of context based and content based recommen-
dations for product substitutes based on product descriptions
and store purchases.

(2) A novel technique to build product substitution graphs using
customer store trips has been introduced.

(3) A Graph Convolutional Network (GraphSWAG) with unsu-
pervised loss is used to integrate two data sources (product
description and product co-purchase behavior) and gener-
ate improved substitutions. Embeddings based on product
attribute descriptions were also generated as a baseline.

(4) Performance evaluation of algorithms is done for online
grocery delivery OOS scenarios. GraphSWAG outperforms
other product recommendation techniques in different sub-
stitution scenarios and scales well.

(5) The substitutable product networks were integrated to a
store assortment planning exercise done over 120 stores for
cookies and crackers assortment. Lift obtained in units sold
and total transactions was in excess of 11% .

The rest of the paper is organized as follows: Section II gives an
insight on data and challenges in processing it. Sections III and IV
give details of product substitution techniques followed by their
evaluation for grocery OOS scenarios in digital fulfillment. Section
V gives a short summary of Assortment Optimization experiments
and key results. Section VI concludes the work and gives direction
for future work.

2 DATA CHALLENGES AND MOTIVATION
Traditional brick-and-mortar retailers derive a major chunk of their
revenue from store sales. This translates to billions of transactions
every year by customers. Of the entire population of customers, a
significant portion still use cash, checks or other non-identifiable
payments. Only a subset of customers enroll in loyalty program
or add their cards to their wallets and are uniquely identifiable.
For this work, we needed to leverage the data available from the
uniquely identifiable customer base. This limited the size of the
population selected for identifying substitutable products.

In order to generate networks of substitutable products, we par-
titioned the product catalog by categories. For instance, within
grocery and essentials, there are about 300 different categories such
as crackers, cookies, milk and yogurt. This partitioning step is very

Table 1: Customer Cookie Purchase Across Store Trips

CustomerID Transaction Date Product Description Product ID
6034 2019-01-16 Oreo Double Stuf Cool Mint 15.25oz 123
6034 2019-01-20 Oreo Double Stuf Cool Mint 15.25oz 123
6034 2019-02-02 Oreo Double Stuf Cool Mint 15.25oz 123
6034 2019-02-19 Oreo Double Stuf Cool Mint 15.25oz 123
6034 2019-02-19 Oreo Original 14.3oz 234
6034 2019-02-28 Oreo Double Stuf Cool Mint 15.25oz 123
6034 2019-03-29 Oreo Thins Mint 10.1oz 345
6034 2019-03-29 Oreo Original 14.3oz 234
6034 2019-06-19 Oreo Thins Mint 10.1oz 345

helpful because it limits the scope of substitution. The likelihood
of substitution from cookies to milk is almost zero. Hence, we can
build sub networks for each category. This facilitates computation
of networks in parallel across several categories at the same time.
Due to product differentiation and varied offerings across differ-
ent geographical locations, each of these categories comprised of
several products.

It is difficult to infer substitution data from a customer’s store
trip behavior. In online world, it is easier to infer substitution based
on similar products a customer viewed or added to cart before pur-
chasing a product. This has been exploited a lot to build a sequence
of user product interactions which is used for context based recom-
mendation algorithms. Accurately tracking a customer’s interac-
tions with products using cameras may invoke privacy concerns
from customers. Thus, this approach was dropped and we took
a more realistic approach to look at the customer’s behavior. A
significant portion of store transactions is done by identified cus-
tomers (identified through loyalty program or usage of credit card
transactions). We looked at store purchases of identified customers
and built offline sessions. We used transactions of over 100 million
customers for the past one year to create offline sessions. For in-
stance, we created a session for a given customer that comprised
of all past purchases for last one year. Such sessions were created
for each category. In Table 1, we show a snapshot of a customer’s
purchases from the cookie category in 2019. We observe that across
the four trips that he made to the stores he bought Oreo Double
Stuf Cool Mint, Oreo Original , Oreo Thins Mint. So the purchase
session for this customer within cookies category for this snapshot
of data would comprise the IDs [123, 234, 345].

In Figure 1 we show three subnetworks of the complete graph
of substitutable cookies, (i) traypacks/ multi-packs/ variety packs/
munch packs , (ii) TimTams, and (iii) Just Cookies. The length of
the edges is proportional to the Association Score, that we describe
in the next section, shared by the two products. Here, we observe
that the three clusters of substitutable products do not share any
edges indicating they are not to be considered as substitutable.

The structured attribute data for products in the catalog comprise
of information regarding brand, flavor, health and wellness related
attributes and other product features including product titles that
were provided by the vendors in the catalog. Instead of behavioral
data, it is tempting to just use product-attribute dataset (which also
has full coverage over range of groceries) and use them to recom-
mend substitutable products. However, using pure attribute data
may not lead to accurate results. Without going into the mathemat-
ics (which we shall discuss in later sections), we show some cookies
and their substitutable counterparts, identified using store sessions
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Figure 1: Substitutable product subnetworks for cookies cat-
egory. Smaller distance indicate highly substitutable prod-
ucts.

in Figure 2. Pepperidge Farm’s Pirouette Creme Filled Wafers differ
slightly in flavors (Chocolate Fudge versus Chocolate hazelnut).
Using store-sale signals, we also infer that Archer Farm’s Creme-
Filled Rolled Wafer are highly substitutable but attribute based
methods fail to capture this nuance. Similarly, some sugar cookies
were found to be substitutable with Valentine’s day special cookies
although product description doesn’t mention the occasion/name
’Valentine’.

Apart from the catalog and transaction data other sources of
data like product reviews were very sparse.

3 ALGORITHMS TO IDENTIFY
SUBSTITUTABLE PRODUCTS

We leveraged purchase sessions to create the network of substi-
tutable products for every category by evaluating the metric asso-
ciation score (AS) defined by the equation

AS(A→ B) =
|A ∩ B |N

|A| |B |
(1)

where |A∩B | is the total number of customers who buy both product
A and product B and |X | is the total number of customers who buy
only product X. This metric is also called the lift as defined by [15]
and is commonly used for market basket analysis. Let N be the
total number of customers in the transaction dataset. Dividing both
numerator and denominator by N , we get

AS(A→ B) =
P(A ∩ B)

P(A)P(B)
(2)

We can infer that two products A and B are substitutable ifAS(A→
B) > 1 since that implies P(A|B) > P(A) by applying conditional
probability given by equation 3 as

P(A ∩ B) = P(A|B)P(B) = P(B |A)P(A) (3)

Pirouette Crème Filled Wafers
Chocolate Fudge Cookies

Pirouette Crème Filled Wafers
Chocolate Hazelnut Cookies

Chocolate Hazelnut
Crème-Filled Rolled Wafers

Valentines Day Sugar Cookies Valentine Conversation Hearts
Sugar Cookie

Be Mine Sugar Cookie

Figure 2: Left - Original Cookies, Middle andRight - Cookies
with high association score from purchase sessions. Middle
column cookies have high score from attribute based algo-
rithms too but Right column cookies have low score from
attribute based approaches

In other words if the customer has bought product B then that
increases the chance of buying product A. Note that the definition
of basket in our context is the set of all products purchased by a
customer from a single category over last one year. This makes the
approach applicable for identifying substitutable products. Other
approaches like mining negative associations [14] could also poten-
tially be used for identifying substitutes. For our use case we keep
the minimum support and confidence values as defined in [15] at
zero.

Behavioral based approaches using browsing and co-purchasing
data have been used in the past for identifying substitutable prod-
ucts. For the given retailer the customer traffic in store is signifi-
cantly larger than the traffic on the website especially for certain
categories like grocery and essentials. Hence, we applied Item-
to-Item Collaborative Filtering [9] on store purchase behavior of
customers for those categories. We created sessions out of consec-
utive store visits of customers in which they bought any product
from a given category. The association score metric was used for
item-to-item Collaborative Filtering to obtain pairs of products that
could be deemed as substitutable. So if a given product is out of
stock then we recommend the product with the highest association
score metric to the customer as a substitute, provided that product
is available in that store. We also tried other metrics like Jaccard
similarity coefficient J (A,B) = |A∩B |

|A∪B | and the results were similar.
The primary drawback with purchase behavior based graph is

the low coverage of products in the graph. In order to generate
graphs with full coverage we leveraged the product attribute data
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from the catalog and applied techniques from machine learning
and data mining. We describe them in the following sections.

3.1 Simhash for Substitutes
Locality sensitive hashing (LSH) is a well established technique that
hashes similar products into the same bucket with high probability.
We implemented Simhash [4], one of the fastest LSH algorithms.
Corresponding to each product, we have data which comprises
the title of the product and a list of key-value pairs where the
attribute name is the key and there is a value associated with that
attribute name. We represented a shingle by each word in the title
of the product and each of the key-value pair so each product was
represented by a set of shingles. We hashed each shingle by MD5
hash function then used Simhash to reduce the dimension of the
representation of products to a 64-bit hash string. The edge weights
were evaluated as the inverse of the hamming distance between
the hash strings of a pair of products.

3.2 Word2vec
Word2Vec is a group of models used for efficiently learning a stan-
dalone word embedding from a text corpus [11]. The product title
and product attributes are considered as a sentence. Each attribute
name and value is considered as a word. Next, a word2vec model
(CBOW), the window size and other parameters are chosen using
empirical evidence in performance metrics. This gives a unique
representation to each attribute of a product. Once we obtain these
embeddings, we take the mean of the embeddings of each attribute
that is present to obtain the embedding for the product. This is called
as word2vec model (w2v) in subsequent sections. The similarity
between generated embeddings are then used to form networks of
substitutable products.

Human Judgement and Attribute Weights
Based on empirical experiments, we observed that all attributes did
not contribute equally to the notion of substitutability. In fact the
key attribute for substitutability would vary based on the category
in consideration. For instance, among razors, the retailer carries
products from the same brand but targeting different genders so
one has to ensure that if the customer was looking for Venus razors,
they are not recommended Gillette for men since both the products
share the same brand name. Hence, the attribute gender is very
important for this category. However, for another category such as
feminine products, this attribute is implicit. In order to capture the
impact of such key attributes, we manually identified and created
weights for those attributes with the help of business product own-
ers and human judgement tools. The weights were used to generate
recommendations using Simhash algorithm (simhash) and to build
weighted word2vec models (w-w2v). For simhash, the hash string
was created using the weights so that two items that share the same
key attribute value are closer to each other after dimension reduc-
tion. We performed a weighted average of word2vec embeddings
of the attributes to obtain product embedding in the later case.

We also tried other NLP based approaches like tf-idf but it ig-
nored the importance of common key attributes like gender so the
solution was less accurate for recommending substitutes. Also other
similarity measures like Jaccard Similarity for sets of attributes or

Cosine Similarity for vector representation of product attributes
are computationally more expensive than other techniques.

3.3 GraphSWAG
GraphSWAG is a Graph Convolutional Network (GCN) suitable
for weighted graphs [12]. GCNs are generalization of Convolu-
tional Neural Networks for graphs. SWAG is capable of learning
embeddings for nodes in web-scale graphs and deployed to gener-
ate recommendations for millions of product recommendations at
Target.

Sampling is an important first step in Graph Convolutional Net-
works. As opposed to computer vision, where convolutional neural
networks can use pixel proximity as a feature, GCNs do propa-
gation guided by the graph structure. Therefore, for any given
node, we need to efficiently select its neighbors for convolution. In
the algorithm, the neighbor function, N (v) denotes sampled set of
neighbors for any given nodev ∈ V . In our use case of product sub-
stitutes, the larger the weight of the edge, higher the chances that
the corresponding neighbor should be selected in sampling. After
sampling, the selected neighbors need to be aggregated to their cor-
responding nodes for information clustering. The aggregation step
is similar to convolution over nearby pixels in images and has the
goal of aggregating information from neighboring nodes. However,
a node’s neighbors have no particular or natural ordering in graphs.
Aggregators are used to aggregate all the neighboring nodes at the
same distance. The mean aggregator, for example, would take an
element-wise weighted mean of vectors in N (v). We start with a
random input embedding (or embedding generated from word2vec
like models on product descriptions) for a node v . Let us call it h0v .
A neighbor vector can be generated for each node as following:

hk
N(v) ← πk ({s(u,v)

γ hk−1u ,∀u ∈ N(v)}) (4)

Here hk
N(v) is the neighbor vector obtained for node v . π is the

aggregator and s(u,v) denotes edge weight between nodes u and v ,
determined using product substitution graphs discussed earlier and
γ is a scalar. The node embedding for k-th iteration is given by:

hkv ← σ (Wk · CONCAT(hk−1v , hk
N(v))) (5)

Hereσ is the softmax function andW is a trainable model parameter.
The model parameters can be learned using standard stochastic
gradient descent and back-propagation techniques. We apply a
graph-based loss function to the output representations, zu ,∀u ∈
V , and train the parameters Wk of the aggregator functions for
k ∈ {1, . . . ,K} via stochastic gradient descent. The graph-based loss
function encourages nearby nodes to have similar representations,
while enforcing that the representations of disparate nodes are
highly distinct. Cosine similarity on the generated embeddings
gives us the list of recommended substitutable products.

We trained two SWAG models, one based on online customer
transactions (SWAG(o)) and considering all the grocery products
as a single graph. However, in the second flavor, we trained SWAG
based on substitutions-subgraphs based on store purchase graphs
described earlier. In tuning the second flavor (SWAG(s)), we also ob-
served that the neighbors required for aggregation must be small (3-
10) instead of the larger number we considered in online graphs[12].
All the subgraphs were fed to the model as a single graph input,
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(a) OOS substitutions on Same Day Grocery Delivery page (b) Substitutions on Product Display Page

Figure 3: Customer is recommended similar/substitutable products when the desired product is locally out of stock.

along with word embeddings which serve as node embeddings for
the graph model. Hyperparameter tuning was done using Skopt [6]
and the objective was set to improve the click rate for the dataset.

4 DIGITAL GROCERY FULFILLMENT
Figure 3 shows some snapshots of a customer browsing the web-
site for grocery delivery and encountering OOS scenarios. In such
scenarios, it is imperative that a retailer recommends customers
substitutable products. We use such scenarios to evaluate the per-
formance of the algorithms discussed in the previous sections.

We generated three different datasets for evaluation. Dataset
1 (Sessions) involved data from one month of customer grocery
browsing sessions on the website. This dataset was huge but not
exactly indicative of substitutions. We took the first product in
session as seed product and considered other products in browse
sessions as substitutes. However, it is possible that the customer
was exploring different products (not similar) before he made a
final choice. The main benefit of this dataset was its sheer size in
order of tens of millions. The dataset had around 37M customer in-
teractions. Dataset 2 (OOS) considers the scenarios as above where
the product desired by the customer online is actually out of stock
and the website recommends substitutable products. This dataset
was smaller than dataset 1 and snapshots are shown above for such
scenarios in Figure 3. The dataset had around 33M customer inter-
actions. Dataset 3 (offline) involved the real-world scenarios where
customers ordered something using same-day delivery service and
it was found to be OOS after order was placed. A substitute was
chosen by the customer using the App or employee interaction.
This data was relatively new, small and highly personalized. We
were able to access data across 1434 brick and mortar stores and it
had 30K such transactions. The data contained the product id that
was requested by the customer and the alternate product id that
was selected in its place due to the requested product being out of
stock in store. We report the offline evaluation of the approaches

discussed in the previous section. Similar trends were obtained in
online evaluation.

4.1 Measurements
HitRate@topN is defined as the percentage of times, one of the top-
N recommendation was selected by the customer. Figure 4 shows
the performance of substitution algorithms for various values of N.
Although a customer usually sees only top N ∼ 5 − 10 recommen-
dations, location specific unavailability of assortment (particularly
in groceries) implies that a large number of recommendations may
not be available in the stores at the time of purchase and hence
not filtered out to the guests. The results are shown in Figure 4.
DCG or Discounted Cumulative Gain is calculated with all products
being given equal relevance (=1). When there is a hit at rank i, we
increase the gain by log(2)

log(2+i) . The average values are reported in
Figure 5. The following key observations can be made:

(1) Store session based Behavioral algorithm leveraging item-
item collaborative filtering fared poorly in all the scenarios.

(2) Weighted word2vec algorithm fared better than naive w2v
algorithm. However, the generation of weights required hu-
man feedback, which limits its scalability compared to others.

(3) SimHash performed exceptionally well for the three datasets.
However, computing pairwise hamming distance is more
expensive than nearest neighbor for embeddings. Like w-
w2v, it also requires human feedback.

(4) GraphSWAG(s) trained on store data performed poor on
sessions dataset but outperformed GraphSWAG(o) on real
substitution tasks in OOS and offline dataset.

(5) SWAG(o) performed well for sessions dataset since it con-
sidered similar data for training. Sessions dataset has false
positives due to customer browse behavior which was well
captured by SWAG(o) but not by SWAG(s).

(6) SWAG(s) outperformed other algorithms for OOS and offline
datasets. It was able to efficiently boost the performance over
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Figure 4: Hitrates of different algorithms for real-world datasets. w2v indicates word2vec, w-w2v implies weighted word2vec,
SWAG(o) refers to SWAG trained on graph obtained from online browse sessions while SWAG(s) refers to GraphSWAG trained
on store sessions described earlier.

N=5 N=10 N=25
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

D
C

G

(a) Sessions dataset

N=5 N=10 N=25
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

D
C

G

Behavioral
Simhash
w-w2v
w2v
SWAG(o)
SWAG(s)

(b) OOS dataset

N=5 N=10 N=25
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

D
C

G

(c) Offline dataset

Figure 5: Discounted cumulative gain of different algorithms for real-world datasets. w2v indicates word2vec, w-w2v implies
weighted word2vec, SWAG(o) refers to SWAG trained on graph obtained from online browse sessions while SWAG(s) refers to
GraphSWAG trained on store sessions described earlier.

both behavioral and attribute based methods by combining
the two in an unsupervised setting.

(7) Figure 5 shows that SWAG as well as w-w2v ranked relevant
recommendations slightly higher than others, and did signifi-
cantly better than behavioral graph based recommendations.

5 APPLICATION OF ITEM SUBSTITUTES FOR
ASSORTMENT OPTIMIZATION

The Assortment Optimization model aims to maximize the revenue
from sales by selecting the right subset of products from the catalog
to display on the store shelves. Figure6 shows the components
of the engine. The core of the engine is an optimization model
that generates assortment recommendation for a given category
and a given store by taking the following inputs: 1. Product Sets:
Due to supply chain constraints, all products in the catalog are
not available at all store locations. Every store has its own product
set that is treated as its universal set and a subset of products
is recommended by the assortment optimization model, 2. Sales
forecast: The sales forecast of all the products in product set for
the planning horizon, 3. Product stickiness: Product stickiness is
a measure of customer loyalty that a particular product drives for
the store, 4. Business rules: These are constraints like retaining
products that are deemedmandatory or belong to self owned brands.

These business rules translate to constraints in the optimization
model, 5. Product substitutes: When a product is absent from the
inventory, customers may purchase alternate products instead of
this particular product, and hence the demand is transferred to
substitutes.

5.1 Assortment Optimization Model
In this paper, we focus on two categories from the grocery division,
cookies and crackers to describe the results from the model and the
store tests that were conducted. In the model, we used behavioral
product substitution network graph instead of earlier discussed
techniques such as weighted word2vec or GraphSWAGmodel as an
input to the optimization problem to represent product substitution.
This was preferred for the following practical reasons:

(1) Although behavioral model performed poorly than weighted
word2vec and GraphSWAG model in online substitutions,
it is entirely possible that the behavior of store customers
is entirely different than the online customers. The store
customers see a curated assortment and hence their behavior
and expectations are vastly different than online customers.

(2) Since behavioral graph was locally trained on store’s cus-
tomers’ historical purchase behavior, it was more reliable to
translate its scores as probabilities for the AO project.
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Top Sellers Selected Fair Sellers Dropped Low Sellers Selected
#1, #2, #3 ... #162, #164, #165, #166, #167, #168, #170, #171,
#172, #173, #175, #177, #178, #181, #182, #184, #185

#163, #169, #174, #176, #179,
#180, #183, #186

#187, #188, #189, #190, #191,
#194, #195, #204

Table 2: Model recommendations for cookie assortment in a sample store. Cookies are numbered by sales volume. It can be
seen that the model picks up a few low selling cookies for the assortment to allow substitutability and demand transfer.

Figure 6: Simplified Assortment Optimization Engine Archi-
tecture

(3) In the first iteration of AO involving huge capital in the form
of store A/B tests, we were biased to use explainable models
instead of using a black-box deep learning model whose
scores cannot be easily explained to other stake holders
(site merchants, store leaders). Inspired by the success of the
experiment, we plan to implement deep-learning models in
subsequent tests.

Let N denote the number of unique products that a given store
shelf can carry and xi be a binary variable denoting whether prod-
uct i is selected in the assortment. Let wi j be the edge weight
between products i and j in the substitution product network for
this category. Let pi j denote the proportion of customers who could
potentially substitute product i with product j if product i is out-of-
stock. This is given by pi j = wi j/

∑
j (wi j ).

Note that wi j < 1 implies P(i |j) < P(i), i.e., if the customer
bought product j then that reduces the chance of that customer
buying product i . Hence, we assume those pairs of products are
non substitutable (i.e. pi j = 0). We denote by si the forecasted sales
in dollars for product i in the projected time frame for which the
assortment planning is being executed.

We formulate the Assortment Optimization model as follows:

max
i

N∑
i=1

xisi +
N∑
i=1

N∑
j=1

sipi jx j (1 − xi ) (6)

subject to the constraints

MinProductCount ≤
N∑
i=1

xi ≤ MaxProductCount (7)

xi ≥ loyaltyi − loyaltythreshold (8)

Equation 6 represents the objective function for maximizing rev-
enue. If a certain product i is not available, i.e. xi = 0, the objective
function captures the fraction of its sales which could potentially
transfer to other substitutable products within the category. Equa-
tion 7 represents the business constraints on the maximum and
minimum number of products to be selected in the assortment
respectively. Constraint 8 ensures that if a product exceeds the
threshold on the loyalty/stickiness metric then it is included in the
assortment. Similarly, all other business rules can also be added as
constraints in the optimization problem. The above formulation is
an integer programming model that was implemented in GAMS
and solved by CPLEX which is a large scale commercial solver [3].

Table 2 presents the results after running this model on cookies
category for a single store with shelf space for 186 unique cookies.
Due to supply chain constraints only 408 cookies from a total of
over 2000 cookies were available from that category for this store.
We removed all other constraints apart from maximum and min-
imum product count constraints. As shown in Table 2, the final
recommendation generated by the assortment model included most
of the top selling products in the list. Only 8 products from low
sales ranked products were dropped and replaced by 8 other prod-
ucts which were ranked even lower in forecasted sales but could
potentially absorb the demand from all other products that were
not being selected.

The forecasted sales were generated from models that did not
capture the interactions of demand across products that were on
display for sale at the same time. Hence, when the projected sales
forecast are large in value they overshadow the impact of substi-
tutability. Only for products with low sales, we perceive an impact
due to substitutability.

5.2 Hypothesis Testing in Stores
In the digital space the sheer high and tracked volume of visitors
is sufficient to perform any A/B test with enough confidence on
a given primary metric. In case of brick and mortar stores, it is
difficult to assess the total number of customers visiting a given
store. It is therefore impossible to compute certain primary metrics
such as conversion as in digital counterpart. The stores are further
categorized into markets, groups and regions. First and foremost,
sensitivity analysis is done to understand the impact of sample
size, Ns , on minimum detectable difference. In case of physical
brick and mortar stores, the Ns is approximated as the product of
total number of stores (where the actual test takes place) NSTORES
and duration of test in weeks NWEEKS . The minimum detectable
difference ∆ on the primary metric is inversely proportional to

the Ns given as follows: Ns = 2
(
z1−α + z1−β

)2 σ 2

∆2 ,where z is the
standard z-score, σ is the population standard deviation. We can
further determine the minimum detectable difference for a range
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Figure 7: Contour plots ofminimumdetectable difference as
a function of NSTORES and NWEEKS

Metric Market Increment Bounds Significance
units Atlanta >9% (-3, 22) FLAT
trans Atlanta >9% (-1, 24) FLAT
units Chicago >12% (2, 25) YES
trans Chicago >12% (2, 25) YES
units Houston >15% (5, 28) YES
trans Houston >15% (5, 27) YES
units Washington D.C >4% (-2, 15) FLAT
trans Washington D.C >4% (-2, 15) FLAT

Table 3: Results of A/B tests in 120 stores at 95% confidence
interval.

of NSTORES and NWEEKS . Figure 7 shows contours of minimum
detectable difference. The type I (α ) and type II (β) error rates are
set to 0.05 and 0.2 respectively.

In practice σ is computed from the stores sales and NWEEKS
is decided based on operating constraints. For this paper, experi-
ments were designed across four different markets namely, Atlanta,
Chicago, Houston andWashington D.C. In total 120 stores were se-
lected for control and test group across 4 markets with each group
containing 15 stores. Units sold (units) and number of transactions
made (trans) were the primary metrics chosen for this experiment.
The actual experiment was conducted for around 6 months, which
then translates into Ns = 390 samples. The minimum detectable
difference computed for this experiment was around 2.5%. Table
3 summarizes the results of the A/B test performed across 4 dif-
ferent markets. The percentage increase in the metric (increment)
between the treatment and control group is computed in the third
column. The results of the A/B test are statistically significant or
flat depending on whether the spread contains zero or not. We can
concretely say for transaction and units that we achieved statisti-
cally significant result for Chicago and Houston markets at 95%
confidence interval. Overall, we observe a lift in excess of 11% for
both units sold and number of transactions with all of our sample,
well exceeding the baseline resolution of 2.5%.

6 CONCLUSION AND FUTUREWORK
In this work, we studied the problem of product substitution and
its specificity to the shopping channel. We discussed a few poten-
tial approaches and their relative performance in providing online
grocery product substitutes recommendation to the customers. We
found that GraphSWAG, a graph convolutional approach, that com-
bines information from store sales as well as product description
outperforms approaches relying solely on store sales or product
description. We leveraged the product substitution work to factor
in demand transfer of unavailable products to existing assortment
and hence plan assortment of cookies and crackers in stores. Signif-
icant lift was observed in units sold as well as number of customer
transactions. As next steps, we would like to scale the assortment
planning effort to more categories of groceries, as well as use graph-
SWAG based substitutions to facilitate assortment planning. We
also demonstrated the relative performance of these approaches in
providing out of stock recommendations on the website as well as
in same-day delivery scenarios.
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