
Graph Clustering with Graph Neural Networks
Anton Tsitsulin∗
University of Bonn

John Palowitch
Google

Bryan Perozzi
Google Research

Emanuel Müller
University of Bonn

ABSTRACT

Graph Neural Networks (GNNs) have achieved state-of-the-art
results on many graph analysis tasks such as node classification
and link prediction. However, important unsupervised problems on
graphs, such as graph clustering, have proved more resistant to
advances in GNNs. In this paper, we study unsupervised training of
GNN pooling in terms of their clustering capabilities.

We start by drawing a connection between graph clustering and
graph pooling: intuitively, a good graph clustering is what one
would expect from a GNN pooling layer. Counterintuitively, we
show that this is not true for state-of-the-art pooling methods, such
asMinCut pooling. To address these deficiencies, we introduce Deep
Modularity Networks (DMoN), an unsupervised pooling method
inspired by the modularity measure of clustering quality, and show
how it tackles recovery of the challenging clustering structure of
real-world graphs. In order to clarify the regimes where existing
methods fail, we carefully design a set of experiments on synthetic
data which show that DMoN is able to jointly leverage the signal
from the graph structure and node attributes. Similarly, on real-
world data, we show that DMoN produces high quality clusters
which correlate strongly with ground truth labels, achieving state-
of-the-art results.
ACM Reference Format:

Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emanuel Müller. 2020.
Graph Clustering with Graph Neural Networks. In Proceedings of The KDD
MLG Workshop 2020 (MLG ’20), August 24, Online. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

In recent years there has been a surge of research interest in de-
veloping varieties of Graph Neural Networks (GNNs) – specialized
deep learning architectures for dealing with graph-structured data,
such as social networks [46], recommender graphs [65], or molec-
ular graphs [13, 66]. GNNs leverage the structure of the data as
computational graph, allowing the information to propagate across
the edges of graphs [48]. When many real-wold systems are repre-
sented as graphs, they exhibit locally inhomogeneous distributions
of edges, forming clusters (also called communities or modules) –
groups of nodes with high in-group edge density, and relatively
low out-group density. Clusters can correspond to interesting phe-
nomena in the underlying graph, for example to education [56]
or employment [40] in social graphs. GNNs have been shown to
benefit from leveraging higher-order structural information that
∗Work done while interning at Google.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
MLG ’20, August 24, 2020, Online
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Important unsupervised problems on graphs, such

as graph clustering, have proved more resistant to advances

in GNNs. In this example, DMoN, our GNN clustering

method, perfectly recovers ground-truth partition of an at-

tributed graph with barely distinguishable clusters.

could arise from clusters [9, 31, 66], for example through pooling
or trainable attention over edges [59].

Interestingly, most existing work on GNNs to leverage higher-
order structure does not directly address node partitioning or the
estimation of clusters within the computational graph. Further-
more, most works explore these mechanisms only within a semi-
supervised or supervised framework, ignoring the fact that unsuper-
vised graph clustering is often an extremely useful end-goal in itself
– whether for data exploration [44], visualization [11, 12], genomic
feature discovery [7], anomaly detection [43], or for many other
use-cases discussed e.g. in [19]. Additionally, many of the existing
structure-aware methods have undesirable properties, such as rely-
ing on a multi-step optimization process which does not allow to
optimize the objective via gradient descent end-to-end [45].

In this work, we take an ab initio approach to the clustering
problem in the GNN domain, bridging the gap between traditional
graph clustering objectives and deep neural networks. We start
by drawing a connection between graph pooling, which was typi-
cally studied in the literature as a regularizer for supervised GNN
architectures, and fully unsupervised clustering. Specifically, we
contribute:
• DMoN, a method for unsupervised clustering in GNNs that
allows optimization of cluster assignments in an end-to-end dif-
ferentiable way.
• An empirical study of performance on synthetic graphs, illus-
trating the problems with existing work and how DMoN allows
for improved model performance in those regimes.
• Thorough experimental evaluation on real-world data, showing
that many pooling methods poorly reflect hierarchical structures
and are not able to make use of both graph structure and node
attributes.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MLG ’20, August 24, 2020, Online Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emanuel Müller

method Trainable Unsupervised Sparse Node pooling Soft assignments Stable

Graclus [13] ✘ ✔ ✔ ✔ ✘ ✔

DiffPool [66] ✔ ✔ ✘ ✔ ✔ ✘

Top-k [20] ✔ ✘ ✘ ✘ ✘ ✔

SAG [31] ✔ ✘ ✘ ✘ ✘ ✔

MinCut [4] ✔ ✔ ✔ ✔ ✔ ✘

DMoN ✔ ✔ ✔ ✔ ✔ ✔

Table 1: Related work in terms of six desirable clustering properties outlined in Section 2.

2 RELATEDWORK

Our work builds upon a rich line of research on graph neural net-
works and graph pooling methods.

Graph Neural Networks (GNNs) [15, 21, 29, 39, 48] allow end-to-
end differentable losses over data with arbitrary structure. They
have been applied to an incredible range of applications, from so-
cial networks [46], to recommender systems [65], to computational
chemistry [21]. While GNNs are flexible enough to allow for unsu-
pervised losses, most work follows the semi-supervised setting for
node classification from [29]. For a complete introductions to the
vast topic we refer interested readers to detailed surveys [6, 8, 25].

Unsupervised training of GNNs is commonly done via maximiz-
ing mutual information [3, 26, 53, 57] in a self-supervised fashion.
Deep Graph Infomax (DGI) [60] adapted the mutual informaton-
based learning from Deep InfoMax [26], learning unsupervised
representations for nodes in attributed graphs. InfoGraph [55] ex-
tended the idea to learning representations of whole graphs instead
of just nodes. A very similar approach was introduced indepen-
dently in [27] in the context of pre-training GNNs for producing
representations of graphs, which was first tackled in [36].

Graph pooling aims to tackle the hierarchical nature of graphs
via iterative coarsening. Early architectures [13] resorted to fixed
axiomatic pooling, with no optimization of clustering while the
network learns. DiffPool [66] suggests to include a learnable pooling
to GNN architecture. To help the convergence, DiffPool includes a
link prediction loss to help encapsulate the clustering structure of
graphs and an additional entropy loss to penalize soft assignments.
Top-k [20] and SAG pooling [31] learn to sparsify the graph (select
top-k edges for each node) with learned weights. MinCutPool [4]
pooling studies differentiable formulation of spectral clustering as
a pooling strategy.

We summarize recent graph pooling methods in Table 1 in terms
of six desirable properties related to their clustering capabilities:
• Trainable. End-to-end training allows to capture both graph
structure and node features.
• Unsupervised training is a desirable setting for clustering
models. Works on supervised graph clustering [61, 64] are outside
of the scope of this work.
• Sparse. As graphs in the real-world vary in size and sparsity,
methods cannot use a O(n2) link prediction objectives, like Diff-
Pool [66], or compute A2, like top-k pooling methods [20, 31].
• Node aggregation is crucial for our interpretation of graph
pooling in terms of graph clustering. Both Top-k [20] and SAG
pooling [31] only sparsify the graph and do not reduce the nodeset.

• Soft assignments allow for more flexibility reasoning about
the interactions of clusters.
• Stable – the method should be stable in terms of the graph
structure. DiffPool [66] is not stable in terms of graph sparsity,
while MinCutPool [4] cannot deal with uneven node degrees.

Graph embeddings [23, 47, 58] can be thought of as (very re-
stricted) unsupervised GNNs with an identity feature matrix, mean-
ing each node learns its own positional representation [67]. The
learning process in graph embeddings is often done in a similar
way to DGI through noise contrastive estimation [24]. As far as we
know, all pooling strategies for learning node embeddings without
attributes have been axiomatic [10, 14, 33].

3 PRELIMINARIES

We introduce the necessary background for DMoN, starting with
the problem formulation, reviewing common graph clustering ob-
jectives and how they can be made differentiable efficiently.

Graph G = (V ,E) is defined via a set of nodes V = (v1, . . . ,vn),
|V | = n and edges E ⊆ V × V , |E | = m. We are interested in
measuring the quality of graph partitioning function F : n → k
that splits the set of nodes V into k partitions Vi = {vj ,F (vj) = i}.
Additionally, in contrast to standard graph clustering, we are also
provided with node attributes X ∈ Rn×s that provides information
not reflected in the graph structure, but also correlated with it.

3.1 Graph Clustering Quality Functions

Design of the objective function is crucial for the algorithm per-
formance. We review two families of clustering quality functions
amenable to spectral optimization, and review some of their short-
comings.
Cut-based metrics. In his seminal work [18], Fiedler suggested
that the second (Fiedler) eigenvector of a graph Laplacian produces
a graph cut minimal in terms of the weight of the edges. This
plain notion of cut degenerates on real-world graphs, as it does
not require partitions to be balanced in terms of size. It is possible
to get normalized partitions with the use of ratio cut [62], which
normalizes the cut by the product of the number of nodes in two
partitions, or normalized cut [51], which uses total edge volume of
the partition as normalization.

In real networks, however, there is evidence against existence of
good cuts [32] in ground-truth communities. This can be explained
by the fact that a single node implicitly participates in many differ-
ent clusters [17], e.g. a person in a social network is simultaneously
connected with family and work friends, forcing the algorithm to
merge these communities together.

Graph Clustering with Graph Neural Networks MLG ’20, August 24, 2020, Online

Recently, MinCutPool [4] adapted the notion of the normalized
cut to use as a regularizer for pooling. While, theoretically, MinCut-
Pool objective should be suitable for clustering nodes in graphs, we
(i) show that it does not optimize its own objective function and
(ii) provide evidence against this in the synthetic and real-world
experiments.

Modularity [38] approaches the same problem from a statistical
perspective, incorporating a null model to quantify the significance
of the clusteringwith respect to the random graph. In a fully random
graph with given degrees, nodes u and v with degrees du and dv
are connected with probability dudv/2m. Modularity measures the
divergence between the intra-cluster edges from the expected one:

Q =
1
2m

∑
i j

[
Ai j −

didj

2m

]
δ (ci , c j), (1)

where δ (ci , c j) = 1 if i and j are in the same cluster and 0 otherwise.
Note Q ∈ (−1/2; 1] (it is 0 when there is no correlation of clusters
with edge density), but it is not necessarily maximized at 1, and is
only comparable across graphs with the same degree distribution.
While problems with the modularity metric have been identified
[22], it remains one of the most commonly-used and eminently
useful graph clustering metrics in scientific literature [19].

3.2 Spectral Modularity Maximization

Maximizing the modularity is proven to be NP-hard [5], however, a
spectral relaxation of the problem can be solved efficiently [37]. Let
C ∈ 0, 1n×k be the cluster assignment matrix and d be the degree
vector. Then, withmodularity matrix B defined as B = A− dd⊤

2m , the
modularity Q can be reformulated as:

Q =
1
2m

Tr(C⊤BC) (2)

Relaxing C ∈ Rn×k , the optimal C maximizing Q is the top-k
eigenvectors of the modularity matrix B. While B is dense, iterative
eigenvalue solvers can take advantage of the fact that B is a sum
of a sparse A and rank-one matrix − dd⊤

2m , meaning that the matrix-
vector product Bx can be computed efficiently as

Bx = Ax −
d⊤xd
2m

and optimized efficiently with iterative methods such as power
iteration or Lanczos algorithm. One can then obtain clusters by
means of spectral bisection [37] with iterative refinement akin to
Kernighan-Lin algorithm [28]. However, these formulations operate
entirely on the graph structure, and it is non-trivial to adapt them
to work with attributed graphs.

3.3 Graph Neural Networks

Graph Neural Networks are a flexible class of models that perform
nonlinear feature aggregation with respect to graph structure. For
the purposes of this work, we consider transductive GNNs that
output a single embedding per node. Graph convolutional networks
(GCNs) [29] are simple yet effective [50] message-passing networks
that fit our criteria. Let X0 ∈ Rn×s be the initial node features and
Ã = D− 1

2AD− 1
2 be the normalized adjacency matrix, the output of

t-th layer Xt+1 is

Xt+1 = SeLU(ÃXtW + XWskip) (3)
We make two changes to the classic GCN architecture: first, we

remove the self-loop creation and instead use an Wskip ∈ Rs×s

trainable skip connection, and, second, we replace ReLU nonlinear-
ity with SeLU [30] for better convergence.

4 METHOD

In this section, we present DMoN, our method for attributed graph
clustering with graph neural networks. Inspired by the modularity
function and its spectral optimization, we propose a fully differen-
tiable unsupervised clustering objective which optimizes soft clus-
ter assignments using a null model to control for inhomogeneities
in the graph. We then discuss the challenge of regularizing cluster
assignments, and present collapse regularization, a softer version
of orthogonality loss, that against trivial solutions.

4.1 DMoN: Deep Modularity Networks

The challenge of clustering boils down to defining an optimization
procedure over the cluster assignment matrix C. In DMoN, we
propose to obtain C via the output of a softmax function, which
allows the (soft) cluster assignment to be differentiable. The input
to the cluster assignment can be any differentiable message passing
function, but here we specifically consider the case where a graph
convolutional network is used to obtain soft clusters for each node
as follows:

C = softmax(GCN(Ã,X)), (4)
where GCN is a (possibly) multi-layer convolutional network oper-
ating on an normalized adjacency matrix Ã = D− 1

2 (A)D− 1
2 .

We then propose to optimize this assignment with the following
objective, which combines insights from spectral modularity maxi-
mization (2) with a regularization to ensure informative clusters:

LDMoN = −
1
2m

Tr(C⊤BC)︸ ︷︷ ︸
modularity

+

√
k

n

∑
i
C⊤
i

F

− 1︸ ︷︷ ︸
collapse regularization

, (5)

where ∥·∥F is the Frobenius norm. we decompose the computa-
tion of Tr(C⊤BC) as a sum of sparse matrix-matrix multiplication
and rank-one degree normalization Tr(C⊤AC − C⊤d⊤dC). This al-
lows us to efficiently optimize DMoN parameters in sparse regime.

4.2 Collapse regularization

Without additional constraints on the assignment matrix C, spec-
tral clustering for both min-cut and modularity objectives has spu-
rious local minima: assigning all nodes to the same cluster pro-
duces a trivial locally optimal solution that traps gradient-based
optimization methods. MinCut pooling [4] addresses this problem
by adapting spectral orthogonality constraint in the form of soft-
orthogonality [2] regularization

C⊤C − I

F . We notice that this

term is overly restrictive when combined with softmax class as-
signment – intuitively, when the value range of C is restricted to
R ∩ [0, 1] the optimization of the soft-orthogonality regularizer
dominates the loss.

MLG ’20, August 24, 2020, Online Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emanuel Müller

DMoN

Objective Regularizer

0 50 100 150 200

not improving

epoch

MinCutPool

Figure 2: Optimization progress of MinCut and DMoN

on Cora dataset. MinCut optimizes the regularizer, while

DMoN minimizes its main objective.

dataset Nodes Edges Features Classes

Cora 2708 5278 1433 7
Citeseer 3327 4614 3703 6
Pubmed 19717 44325 500 3
Amazon PC 13752 143604 767 10
Amazon Photo 7650 71831 745 8
Coauthor CS 18333 81894 6805 15
Coauthor PHY 34493 247962 8415 5

Table 2: Dataset statistics.

We illustrate this problem in Figure 2, which depicts the progress
of optimization for both methods in terms of their main objective
and regularizer term over the course of 200 epochs on Cora dataset.
The soft orthogonality regularization term dominates the optimiza-
tion for MinCutPool, such that the cut objective becomes worse
than random over the course of training.

We fix this problem by proposing a relaxed notion of collapse
regularization that prevents the trivial partition while not restrict-
ing the optimization of the main objective. The regularizer is a
Frobenius norm of the (soft) cluster membership counts, normal-
ized to range [0, 1]. It gets value of 0 when cluster sizes are perfectly
balanced, and 1 in the case all clusters collapse to one.

We also propose to further stabilize the training by applying
dropout [54] to GNN representations before the softmax. This helps
gradient descent-based optimizers from getting stuck in the local
optima of the highly non-convex objective function.

5 EXPERIMENTS

We assess the clustering performance of DMoN in terms of both
graph clustering and label alignment.

Datasets.We use 7 real-world datasets for assessing model quality.
Cora, Citeseer, and Pubmed [49] are citation networks; nodes repre-
sent papers connected by citation edges; features are bag-of-word
abstracts, and labels represent paper topics. Amazon PC and Ama-
zon Photo [50] are subsets of the Amazon co-purchase graph for the

computers and photo sections of the website, where nodes repre-
sent goods with edges between ones frequently purchased together;
node features are bag-of-word reviews, and class labels are product
category. Coauthor CS and Coauthor PHY [50] are co-authorship
networks based on the Microsoft Academic Graph for the computer
science and physics fields respectively; nodes are authors, which
are connected by edge if they co-authored a paper together; node
features are a collection of paper keywords for author’s papers;
class labels indicate most common fields of study.
Baselines. As we study how to leverage the information from
both the graph and attributes, we employ two baselines that em-
ploy either strictly graph or attribute information. We give a brief
description of the baselines used below:
• k-means(features) is our baseline that only considers the
feature data. We use the local Lloyd algorithm [34] with the k-
means++ seeding [1] strategy.
• SBM [41] is a baseline that only relies on the graph structure.
We estimate a constrained stochastic block model with given num-
ber of k clusters, maximizing the modularity [38] of the network.
• k-means(DGI) [60] demonstrates the need of joint learning of
clusters and representations. We learn unsupervised node repre-
sentations with DGI and run k-means on them.
• MinCutPool(graph, features) [4] is a deep pooling method
that we re-interpret as clustering.

Metrics.We measure both the graph-based metrics of clustering
and label correlation to study clustering performance of attrib-
uted graphs both in terms of graph and attribute structure. For
graph-level metrics, we report average cluster conductance (as per

(a) (b)

(c) (d)

Figure 3: Illustration of synthetic data. a): 4-cluster graph

adjacency matrix. b): Covariance matrix of “matched” fea-

tures: features that are clustered according to the graph clus-

ters. c): Covariancematrix of “nested” features: features that

are clustered by nesting of the graph clusters. d): Covariance

matrix of “grouped” features: features that are clustered by

grouping of the graph clusters.

Graph Clustering with Graph Neural Networks MLG ’20, August 24, 2020, Online

Cora Citeseer Pubmed

graph labels graph labels graph labels

method C ↓ Q ↑ NMI↑ F1↑ C ↓ Q ↑ NMI↑ F1↑ C ↓ Q ↑ NMI↑ F1↑

k-means(features) 61.7 19.8 18.5 27.0 60.5 30.3 24.5 29.2 55.8 33.4 19.4 24.4
SBM 15.4 77.3 36.2 30.2 14.2 78.1 15.3 19.1 39.0 53.5 16.4 16.7

k-means(DGI) 28.0 64.0 52.7 40.1 17.5 73.7 40.4 39.4 82.9 9.6 22.0 26.4
MinCut 23.3 70.3 35.8 25.0 14.1 78.9 25.9 20.1 29.6 63.1 25.4 15.8

DMoN 12.2 76.5 48.8 48.8 5.1 79.3 33.7 43.2 17.7 65.4 29.8 33.9

Table 3: Results on four datasets from [49] in terms of graph conductance C, modularity Q, NMI with ground-truth labels, and

pairwise F1 measure. We highlight best neural method performance.

Amazon PC Amazon Photo Coauthor CS Coauthor PHY

graph labels graph labels graph labels graph labels

method C ↓ Q ↑ NMI↑ F1↑ C ↓ Q ↑ NMI↑ F1↑ C ↓ Q ↑ NMI↑ F1↑ C ↓ Q ↑ NMI↑ F1↑

k-m(feat) 84.5 5.4 21.1 19.2 79.6 10.5 28.8 19.5 49.1 23.1 35.7 39.4 57.0 19.4 30.6 42.9
SBM 31.0 60.8 48.4 34.6 18.6 72.7 59.3 47.4 20.3 72.7 58.0 47.7 25.9 66.9 45.4 30.4

k-m(DGI) 61.9 22.8 22.6 15.0 51.5 35.1 33.4 23.6 35.1 57.8 64.6 51.9 38.6 51.2 51.0 30.6
MinCut — — — — — — — — 22.7 70.5 64.6 47.8 27.8 64.3 48.3 24.9

DMoN 18.0 59.0 49.3 45.4 12.7 70.1 63.3 61.0 17.5 72.4 69.1 59.8 18.8 65.8 51.9 37.0

Table 4: Results on four datasets from [50] in terms of graph conductance C, modularity Q, NMI with ground-truth labels, and

pairwise F1 measure. We highlight best neural method performance.

definition from [63]) and graph modularity [38]. For ground-truth
label correlation analysis, we report normalized mutual informa-
tion (NMI) between the cluster assignments and labels and pairwise
F-1 score between all node pairs and their associated cluster pairs.
Where possible, we normalize all metrics by multiplying them by
100 for ease of comparison.

Parameter settings.We run all experiments for 10 times and aver-
age results across runs. All models were implemented in Tensorflow
2 and trained on CPUs. We fix the architecture for all clustering
networks to have one hidden layer with 512 neurons in it for real-
world datasets and 64 for small synthetic graphs. We set the number
of clusters to 16 for all datasets and methods.

5.1 Simulation Experiments on Stochastic

Block Model

To better explore the robustness of our approach to variance in the
graph and node features, we propose a study on synthetic graphs
using an attributed, degree-corrected stochastic block model (ADC-
SBM). The SBM [52] plants a partition of clusters (“blocks”) in a
graph, and generates edges via a distribution conditional on that
partition. This model has been used extensively to benchmark graph
clusteringmethods [19], and has recently been used for experiments
on state-of-the-art GNNs [16]. In our version of the model, node
features are also generated, using a multivariate mixture model,
with the mixture memberships having some correspondence to the
cluster memberships.

To generate an instance of the ADC-SBM, we fix a number of
nodes n and a number of clusters k , and choose node cluster mem-
berships uniformly-at-random. Define the matrix Dk×k where Di j
is the expected number of edges shared between nodes in clusters i
and j. We determine D by fixing (1) the expected average degree
of the nodes d ∈ {1,n}, and (2) the expected average sub-degree
dout ≤ d of a node to any cluster other than its own. Note that the
difference din − dout , where din := d − dout , controls the spectral
detectability of the clusters [35]. Finally, we generate a power-law
n-vector θ , where θi is proportional to i’s expected degree. With the
memberships and the parametersD and θ . We use graph-tool [42]
generate the graphs.

To generate s-dimensional features, we first generate feature
memberships from kf cluster labels. For graph clustering GNNs
that operate both on edges and node features, it is important to
examine performance on data where feature clusters diverge from
or segment the graph clusters: thus potentially kf , k . We examine
cases where feature memberships match, group, or nest the graph
memberships, as illustrated in Figure 3. With feature memberships
in-hand, we generate k zero-mean feature cluster centers from a
s-multivariate normal with covariance matrix σ 2

c · Is×s . Then, for
feature cluster i ≤ kf , we generate its features from a s-multivariate
normal with covariance matrix σ 2 · Is×s . Note that the ratio σ 2

c /σ
2

controls the expected value of the classical between/within-sum-
of-squares of the clusters.

The above paragraphs describe a single generation of our syn-
thetic benchmark model, the ADC-SBM. To explore robustness,
we define a “default” ADC-SBM, and explore model parameters

MLG ’20, August 24, 2020, Online Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emanuel Müller

1 2 3 4 5
0
20
40
60
80
100

detectability limit

dout

N
M
I×
10
0

Scenario 1

DMoN SBM k-means(features) MinCut k-means(DGI)

10−2 10−1 100 101
σc

Scenario 2

10−2 10−1 100 101
σc

Scenario 3

10−2 10−1 100 101
0
20
40
60
80
100

σc

N
M
I×
10
0

Scenario 4

22 23 24 25 26 27
d

Scenario 5

22 23 24 25 26 27 28 29 210
dmax

Scenario 6

Figure 4: Synthetic results on the ADC-SBM model with 6 different scenarios described in Table 5.

Scenario Parameter Description

1 dout ∈ [2.0, 5.0] Increase graph cluster mixing signal. Higher = weaker clusters.
2 σc ∈ [10−2, 101] Increase feature cluster center variance. Higher = stronger clusters.
3 σc ∈ [10−2, 101] Increase feature cluster center variance, with nested feature clusters.
4 σc ∈ [10−2, 101] Increase feature cluster center variance, with grouped feature clusters.
5 d ∈ [22, 27] Increase average degree. Higher = clearer graph signal.
6 dmax ∈ [22, 210] Increase power law upper-bound. Higher = more extreme power law.

Table 5: Synthetic ADC-SBM benchmark scenarios.

(a) (b)

Figure 5: (a) MinCut fails to recover ground-truth clusters

while (b) DMoN perfectly recovers ground-truth partition.

in a range around the defaults. We configure our default model
as follows: we generate graphs with n = 1, 000 nodes grouped
in k = 4 clusters, and s = 32-dimensional features grouped in
kf = 4 matching feature clusters with σ = 1 intra-cluster cen-
ter variance and σc = 3 cluster center variance. We try to model
real-world graphs’ degree distribution with d = 20 average degree
and dout = 2 average inter-cluster degree with power law param-
eters dmin = 2,dmax = 4,α = 2. In total, we consider 6 different
scenarios, as described in Table 5.

Figure 4 demonstrates overwhelming superiority of DMoN in
all considered scenarios. In scenario 1 we see that DMoN can effec-
tively leverage the feature signal to obtain outstanding clustering
performance even when the graph structure is close to random,
far beyond the spectral detectability threshold (pictured in gray).
Scenario 2 demonstrates that even in the presence of a weak fea-
ture signal DMoN outperforms stochastic SBMminimization, while
MinCutPool needs two orders of magnitude stronger signal to attain
the same performance. Scenario 3 demonstrates that DMoN is not
susceptible to nested feature clusters and can correctly recover
underlying graph structure. Scenario 4 shows that DMoN is more
susceptible to grouped features, as it becomes hard to differenti-
ate graph clusters with similar features, however, MinCutPool is
struggling to pick up any signal in the data. Scenarios 5&6 demon-
strate that DMoN is stable in terms of the degree distribution of the
graph, while MinCutPool is not. We also notice that while the k-
means(DGI) baseline offers some improvements over using features
or the graph structure alone, it never surpasses the strongest signal
provider in the graph, never being better than the best one between
k-means(features) and SBM. Finally, we provide an illustration of
the how MinCutPool collapsing into a single cluster while DMoN
succeeds in Figure 5.

Graph Clustering with Graph Neural Networks MLG ’20, August 24, 2020, Online

5.2 Real-world Data

We now move on to studies on real-world networks, featuring
DMoN and 4 baselines on 7 different datasets. DMoN achieves
better clustering performance than its neural counterparts on every
single dataset and metric besides losing twice to DGI+k-means on
Cora and Citeseer in terms of NMI. Compared to SBM, amethod that
exclusively optimizes modularity, we are able to stay within 2 NMI
percentage points, while simultaneously clustering the features.
Surprisingly, on Citeseer and Pubmed we achieve better modularity
than the method designed to optimize it – we attribute that to very
high correlation between graph structure and the features. We also
highlight that we beatMinCutPool in terms of conductance (average
graph cut) on all datasets, even though it attempts to optimize for
this metric.

On Amazon PC and Amazon Photo MinCutPool failed to con-
verge, even with tuning the orthogonality regularization parameter.
We attribute that to extremely uneven structure of these graphs,
as popular products are co-purchased with a lot of other items,
so the effects discussed in [17, 32] are prohibiting good cuts. This
corresponds to high values of d ad dmax in our synthetic scenarios
5 and 6.

Overall, DMoN demonstrates excellent performance on both
graph clustering and label correlation, successfully leveraging both
graph and attribute information. Both synthetic and real-world
experiments prove that DMoN is vastly superior to its counterparts
in attributed graph clustering.

6 CONCLUSION

In this work, we study GNN pooling through the lens of attrib-
uted graph clustering. We introduce Deep Modularity Networks
(DMoN), an unsupervised objective and realize it with a GNNwhich
can recover high quality clusters. We compare against challeng-
ing baselines that baselines that optimize structure (SBM), features
(kmeans), or both (DGI+k-means), in addition to a recently pro-
posed state-of-the-art pooling method (MinCutPool).

We explore the limits of GNN clusteringmethods in terms of both
graph and feature signals using synthetic data, where we see that
DMoN better leverages structure and attributes than all existing
methods. In extensive experiments on real datasets we show that the
clusters found by DMoN are more likely to correspond to ground
truth labels, and have better properties as illustrated by clustering
metrics (e.g. conductance or modularity). We hope that this work
will further advancements in unsupervised learning for GNNs as
well as attributed graph clustering, allowing further advances in
graph learning.

REFERENCES

[1] David Arthur and Sergei Vassilvitskii. 2007. K-Means++: The Advantages of
Careful Seeding. In SODA.

[2] Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. 2018. Can we gain more
from orthogonality regularizations in training deep CNNs?. In Proceedings of the
32nd International Conference on Neural Information Processing Systems. Curran
Associates Inc., 4266–4276.

[3] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua
Bengio, Aaron Courville, and R Devon Hjelm. 2018. Mine: mutual information
neural estimation. In ICML.

[4] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. 2020. Spectral
Clustering with Graph Neural Networks for Graph Pooling. In ICML.

[5] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer,
Zoran Nikoloski, and Dorothea Wagner. 2006. Maximizing modularity is hard.
arXiv preprint physics/0608255 (2006).

[6] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. 2017. Geometric deep learning: going beyond euclidean data. IEEE
Signal Processing Magazine (2017).

[7] Irineo Cabreros, Emmanuel Abbe, and Aristotelis Tsirigos. 2016. Detecting com-
munity structures in hi-c genomic data. In 2016 Annual Conference on Information
Science and Systems (CISS). IEEE, 584–589.

[8] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Mur-
phy. 2020. Machine Learning on Graphs: A Model and Comprehensive Taxonomy.
arXiv preprint arXiv:2005.03675 (2020).

[9] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. 2018. Harp: Hierar-
chical representation learning for networks. In Thirty-Second AAAI Conference
on Artificial Intelligence.

[10] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. 2018. HARP: Hier-
archical representation learning for networks. In AAAI.

[11] Stéphan Clémençon, Hector De Arazoza, Fabrice Rossi, and Viet Chi Tran. 2012.
Hierarchical clustering for graph visualization. arXiv preprint arXiv:1210.5693
(2012).

[12] Weiwei Cui, Hong Zhou, Huamin Qu, Pak Chung Wong, and Xiaoming Li. 2008.
Geometry-based edge clustering for graph visualization. IEEE Transactions on
Visualization and Computer Graphics 14, 6 (2008), 1277–1284.

[13] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In NIPS.

[14] Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng.
2020. GraphZoom: A multi-level spectral approach for accurate and scalable
graph embedding. In ICLR.

[15] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. 2015. Convolutional
networks on graphs for learning molecular fingerprints. In NIPS.

[16] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. 2020. Benchmarking graph neural networks. arXiv preprint
arXiv:2003.00982 (2020).

[17] Alessandro Epasto, Silvio Lattanzi, and Renato Paes Leme. 2017. Ego-splitting
framework: From non-overlapping to overlapping clusters. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 145–154.

[18] Miroslav Fiedler. 1973. Algebraic connectivity of graphs. Czechoslovak mathe-
matical journal (1973).

[19] Santo Fortunato and Darko Hric. 2016. Community detection in networks: A
user guide. Physics reports (2016).

[20] Hongyang Gao and Shuiwang Ji. 2019. Graph U-nets. In ICML.
[21] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. In ICML.
[22] Benjamin H Good, Yves-Alexandre De Montjoye, and Aaron Clauset. 2010. Per-

formance of modularity maximization in practical contexts. Physical Review E
81, 4 (2010), 046106.

[23] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In KDD.

[24] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation: A
new estimation principle for unnormalized statistical models. In AISTATS.

[25] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning
on graphs: Methods and applications. IEEE Data Engineering Bulletin (2017).

[26] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil
Bachman, Adam Trischler, and Yoshua Bengio. 2019. Learning deep representa-
tions by mutual information estimation and maximization. In ICLR.

[27] Weihua Hu*, Bowen Liu*, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay
Pande, and Jure Leskovec. 2020. Strategies for Pre-training Graph Neural Net-
works. In ICLR.

[28] Brian W Kernighan and Shen Lin. 1970. An efficient heuristic procedure for
partitioning graphs. The Bell system technical journal (1970).

[29] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR.

MLG ’20, August 24, 2020, Online Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emanuel Müller

[30] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
2017. Self-normalizing neural networks. In Advances in neural information pro-
cessing systems. 971–980.

[31] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. 2019. Self-attention graph pooling.
In ICML.

[32] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2008.
Statistical properties of community structure in large social and information
networks. In Proceedings of the 17th international conference on World Wide Web.
695–704.

[33] Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. 2018. MILE:
A multi-level framework for scalable graph embedding. arXiv preprint
arXiv:1802.09612 (2018).

[34] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory (1982).

[35] Raj Rao Nadakuditi and Mark EJ Newman. 2012. Graph spectra and the detectabil-
ity of community structure in networks. Physical review letters (2012).

[36] Nicolò Navarin, Dinh V Tran, and Alessandro Sperduti. 2018. Pre-training graph
neural networks with kernels. In NeurIPS.

[37] Mark EJ Newman. 2006. Finding community structure in networks using the
eigenvectors of matrices. Physical review E (2006).

[38] Mark EJ Newman. 2006. Modularity and community structure in networks. PNAS
(2006).

[39] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
convolutional neural networks for graphs. In ICML.

[40] Zizi Papacharissi. 2009. The virtual geographies of social networks: a comparative
analysis of Facebook, LinkedIn and ASmallWorld. New media & society 11, 1-2
(2009), 199–220.

[41] Tiago P Peixoto. 2014. EfficientMonte Carlo and greedy heuristic for the inference
of stochastic block models. Physical Review E (2014).

[42] Tiago P Peixoto. 2014 (accessed June 1, 2020). The graph-tool python library.
http://figshare.com/articles/graph_tool/1164194.

[43] Bryan Perozzi and Leman Akoglu. 2016. Scalable anomaly ranking of attributed
neighborhoods. In Proceedings of the 2016 SIAM International Conference on Data
Mining. SIAM, 207–215.

[44] Bryan Perozzi and LemanAkoglu. 2018. Discovering Communities andAnomalies
in Attributed Graphs: Interactive Visual Exploration and Summarization. ACM
Trans. Knowl. Discov. Data 12, 2, Article 24 (Jan. 2018), 40 pages. https://doi.org/
10.1145/3139241

[45] Bryan Perozzi, Leman Akoglu, Patricia Iglesias Sánchez, and Emmanuel Müller.
2014. Focused Clustering and Outlier Detection in Large Attributed Graphs.
In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (New York, New York, USA) (KDD ’14). Association
for Computing Machinery, New York, NY, USA, 1346–1355. https://doi.org/10.
1145/2623330.2623682

[46] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-
ing of Social Representations. In Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (New York, New York,
USA) (KDD ’14). Association for Computing Machinery, New York, NY, USA,
701–710. https://doi.org/10.1145/2623330.2623732

[47] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online learning
of social representations. In KDD.

[48] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. IEEE Transactions on Neural
Networks (2008).

[49] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine
(2008).

[50] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[51] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation.
IEEE Transactions on pattern analysis and machine intelligence (2000).

[52] Tom AB Snijders and Krzysztof Nowicki. 1997. Estimation and prediction for
stochastic blockmodels for graphs with latent block structure. Journal of classifi-
cation (1997).

[53] Jiaming Song and Stefano Ermon. 2020. Understanding the Limitations of Varia-
tional Mutual Information Estimators. In ICLR.

[54] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. JMLR (2014).

[55] Fan-Yun Sun, Jordan Hoffmann, and Jian Tang. 2020. InfoGraph: Unsupervised
and Semi-supervised Graph-Level Representation Learning via Mutual Informa-
tion Maximization. In ICLR.

[56] Amanda L Traud, Eric D Kelsic, Peter J Mucha, andMason A Porter. 2011. Compar-
ing community structure to characteristics in online collegiate social networks.
SIAM review 53, 3 (2011), 526–543.

[57] Michael Tschannen, Josip Djolonga, Paul K Rubenstein, Sylvain Gelly, and Mario
Lucic. 2020. On mutual information maximization for representation learning.

In ICLR.
[58] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018.

Verse: Versatile graph embeddings from similarity measures. In WWW.
[59] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. In ICLR.
[60] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,

and R Devon Hjelm. 2019. Deep graph infomax. In ICLR.
[61] Zhongdao Wang, Liang Zheng, Yali Li, and Shengjin Wang. 2019. Linkage based

face clustering via graph convolution network. In CVPR.
[62] Yen-Chuen Wei and Chung-Kuan Cheng. 1989. Towards efficient hierarchical

designs by ratio cut partitioning. In IEEE International Conference on Computer-
Aided Design. IEEE.

[63] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network commu-
nities based on ground-truth. Knowledge and Information Systems (2015).

[64] Lei Yang, Xiaohang Zhan, Dapeng Chen, Junjie Yan, Chen Change Loy, and
Dahua Lin. 2019. Learning to cluster faces on an affinity graph. In CVPR.

[65] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974–983.

[66] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure
Leskovec. 2018. Hierarchical graph representation learning with differentiable
pooling. In NeurIPS.

[67] Jiaxuan You, Rex Ying, and Jure Leskovec. 2019. Position-aware graph neural
networks. In ICML.

https://doi.org/10.1145/3139241
https://doi.org/10.1145/3139241
https://doi.org/10.1145/2623330.2623682
https://doi.org/10.1145/2623330.2623682
https://doi.org/10.1145/2623330.2623732

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Graph Clustering Quality Functions
	3.2 Spectral Modularity Maximization
	3.3 Graph Neural Networks

	4 Method
	4.1 DMoN: Deep Modularity Networks
	4.2 Collapse regularization

	5 Experiments
	5.1 Simulation Experiments on Stochastic Block Model
	5.2 Real-world Data

	6 Conclusion
	References

