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Abstract

Given a stream of graph edges from a dynamic graph, how
can we assign anomaly scores to edges in an online man-
ner, for the purpose of detecting unusual behavior, using
constant time and memory? Existing approaches aim to de-
tect individually surprising edges. In this work, we propose
Mipas, which focuses on detecting microcluster anomalies,
or suddenly arriving groups of suspiciously similar edges,
such as lockstep behavior, including denial of service attacks
in network traffic data. Mipas has the following properties:
(a) it detects microcluster anomalies while providing theo-
retical guarantees about its false positive probability; (b) it
is online, thus processing each edge in constant time and
constant memory, and also processes the data 162 —644 times
faster than state-of-the-art approaches; (c) it provides 42%-
48% higher accuracy (in terms of AUC) than state-of-the-art
approaches.

Keywords: Edge Streams, Microcluster, Dynamic Graphs,
Anomaly Detection

ACM Reference Format:

Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin, and Christos
Faloutsos. 2020. MipAs: Microcluster-Based Detector of Anomalies
in Edge Streams. In MLG, KDD, August 24, 2020, San Diego, USA.
ACM, New York, NY, USA, 8 pages.

1 Introduction

Anomaly detection in graphs is a critical problem for finding
suspicious behavior in innumerable systems, such as intru-
sion detection, fake ratings, and financial fraud. This has
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been a well-researched problem with majority of the pro-
posed approaches [1, 4, 9-11, 17] focusing on static graphs.
However, many real-world graphs are dynamic in nature,
and methods based on static connections may miss temporal
characteristics of the graphs and anomalies.

Among the methods focusing on dynamic graphs, most
of them have edges aggregated into graph snapshots [7, 8,
12, 19-21]. However, to minimize the effect of malicious
activities and start recovery as soon as possible, we need to
detect anomalies in real-time or near real-time i.e. to identify
whether an incoming edge is anomalous or not, as soon
as we receive it. In addition, since the number of vertices
can increase as we process the stream of edges, we need an
algorithm which uses constant memory in graph size.

Moreover, fraudulent or anomalous events in many appli-
cations occur in microclusters or suddenly arriving groups
of suspiciously similar edges e.g. denial of service attacks in
network traffic data and lockstep behavior. However, existing
methods which process edge streams in an online manner,
including [6, 14], aim to detect individually surprising edges,
not microclusters, and can thus miss large amounts of suspi-
cious activity.

In this work, we propose Mipas, which detects microclus-
ter anomalies, or suddenly arriving groups of suspiciously
similar edges, in edge streams, using constant time and mem-
ory. In addition, by using a principled hypothesis testing
framework, Mipas provides theoretical bounds on the false
positive probability, which these methods do not provide.

Our main contributions are as follows:

1. Streaming Microcluster Detection: We propose a novel
streaming approach for detecting microcluster anom-
alies, requiring constant time and memory.

2. Theoretical Guarantees: In Theorem 1, we show guar-
antees on the false positive probability of MiDAs.

3. Effectiveness: Our experimental results show that Mipas
outperforms baseline approaches by 42%-48% accuracy
(in terms of AUC), and processes the data 162 — 644
times faster than baseline approaches.

Reproducibility: Our code and datasets are publicly avail-
able at https://github.com/Stream-AD/MIDAS/.


https://github.com/Stream-AD/MIDAS/

MLG, KDD, August 24, 2020, San Diego, USA

2 Related Work

In this section, we review previous approaches to detect
anomalous signs on static and dynamic graphs. See [2] for
an extensive survey on graph-based anomaly detection.
Anomaly detection in static graphs can be classified by
which anomalous entities (nodes, edges, subgraph, etc.) are
spotted.

e Anomalous node detection: [1] extracts egonet-based
features and finds empirical patterns with respect to
the features. Then, it identifies nodes whose egonets
deviate from the patterns, including the count of tri-
angles, total weight, and principal eigenvalues. [10]
computes node features, including degree and authori-
tativeness [11], then spots nodes whose neighbors are
notably close in the feature space.

e Anomalous subgraph detection: [9] and [17] measure
the anomalousness of nodes and edges, detecting a
dense subgraph consisting of many anomalous nodes
and edges.

e Anomalous edge detection: [4] encodes an input graph
based on similar connectivity among nodes, then spots
edges whose removal reduces the total encoding cost
significantly. [22] factorize the adjacency matrix and
flag edges with high reconstruction error as outliers.

Anomaly detection in graph streams use as input a series
of graph snapshots over time. We categorize them similarly
according to the type of anomaly detected:

e Anomalous node detection: [21] approximates the ad-
jacency matrix of the current snapshot based on incre-
mental matrix factorization, then spots nodes corre-
sponding to rows with high reconstruction error.

e Anomalous subgraph detection: Given a graph with
timestamps on edges, [3] spots near-bipartite cores
where each node is connected to others in the same
core densly within a short time. [10] detects groups
of nodes who form dense subgraphs in a temporally
synchronized manner.

e Anomalous event detection: [7] detects sudden appear-
ance of many unexpected edges, and [23] spots sudden
changes in 1st and 2nd derivatives of PageRank.

Anomaly detection in edge streams use as input a stream
of edges over time. Categorizing them according to the type
of anomaly detected:

e Anomalous node detection: Given an edge stream, [24]
detects nodes whose egonets suddenly and signifi-
cantly change.

e Anomalous subgraph detection: Given an edge stream,
[18] identifies dense subtensors created within a short
time.

e Anomalous edge detection: [14] focuses on sparsely-
connected parts of a graph, while [6] identifies edge
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anomalies based on edge occurrence, preferential at-
tachment, and mutual neighbors.

Only the 2 methods in the last category are applicable to our
task, as they operate on edge streams and output a score per
edge. However, as shown in Table 1, neither method aims to
detect microclusters, or provides guarantees on false positive
probability.

Table 1. Comparison of relevant edge stream anomaly de-
tection approaches.
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Constant Memory v v
Constant Update Time v V|V

3 Problem

Let & = {ey, €5, - - - } be a stream of edges from a time-evolving
graph G. Each arriving edge is a tuple e; = (u;, v;, ;) consist-
ing of a source node u; € V, a destination node v; € V, and
a time of occurrence t;, which is the time at which the edge
was added to the graph. For example, in a network traffic
stream, an edge e; could represent a connection made from
a source IP address u; to a destination IP address v; at time
t;. We do not assume that the set of vertices V is known
a priori: for example, new IP addresses or user IDs may be
created over the course of the stream.

We model G as a directed graph. Undirected graphs can
simply be handled by treating an incoming undirected e; =
(uj, v, t;) as two simultaneous directed edges, one in either
direction.

We also allow G to be a multigraph: edges can be created
multiple times between the same pair of nodes. Edges are
allowed to arrive simultaneously: i.e. tjy; > ¢;, since in many
applications t; are given in the form of discrete time ticks.

The desired properties of our algorithm are as follows:

e Microcluster Detection: It should detect suddenly
appearing bursts of activity which share many re-
peated nodes or edges, which we refer to as micro-
clusters.

e Guarantees on False Positive Probability: Given
any user-specified probability level € (e.g. 1%), the al-
gorithm should be adjustable so as to provide false
positive probability of at most € (e.g. by adjusting a
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threshold that depends on €). Moreover, while guaran-
tees on the false positive probability rely on assump-
tions about the data distribution, we aim to make our
assumptions as weak as possible.

e Constant Memory and Update Time: For scalabil-
ity in the streaming setting, the algorithm should run
in constant memory and constant update time per
newly arriving edge. Thus, its memory usage and
update time should not grow with the length of the
stream, or the number of nodes in the graph.

4 Proposed Algorithm
4.1 Overview

Next, we describe our Mipas and Mipas-R approaches. The
following provides an overview:

1. Streaming Hypothesis Testing Approach: We de-
scribe our MipAs algorithm, which uses streaming data
structures within a hypothesis testing-based frame-
work, allowing us to obtain guarantees on false posi-
tive probability.

2. Detection and Guarantees: We describe our deci-
sion procedure for determining whether a point is
anomalous, and our guarantees on false positive prob-
ability.

3. Incorporating Relations: We extend our approach
to the Mipas-R algorithm, which incorporates rela-
tionships between edges temporally and spatially’.

4.2 Mipas: Streaming Hypothesis Testing Approach

Occurrences of edge (u, v)

1000

0 Time tick
1 10

Figure 1. Time series of a single source-destination pair
(u,v), with a large burst of activity at time tick 10.

Consider the example in Figure 1 of a single source-destination
pair (u,v), which shows a large burst of activity at time 10.
This burst is the simplest example of a microcluster, as it
consists of a large group of edges which are very similar to
one another (in fact identical), both spatially (i.e. in terms
of the nodes they connect) and temporally.

1We use ‘spatially’ in a graph sense, i.e. connecting nearby nodes, not to
refer to any other continuous spatial dimension.
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4.2.1 Streaming Data Structures. In an offline setting,
there are many time-series methods which could detect such
bursts of activity. However, in an online setting, recall that
we want memory usage to be bounded, so we cannot keep
track of even a single such time series. Moreover, there are
many such source-destination pairs, and the set of sources
and destinations is not fixed a priori.

To circumvent these problems, we maintain two types of
Count-Min-Sketch (CMS) [5] data structures. Assume we
are at a particular fixed time tick ¢ in the stream; we treat
time as a discrete variable for simplicity. Let s,, be the total
number of edges from u to v up to the current time. Then, we
use a single CMS data structure to approximately maintain
all such counts s, (for all edges uv) in constant memory:
at any time, we can query the data structure to obtain an
approximate count s;,.

Secondly, let a,,, be the number of edges from u to v in
the current time tick (but not including past time ticks). We
keep track of a,, using a similar CMS data structure, the
only difference being that we reset this CMS data structure
every time we transition to the next time tick. Hence, this
CMS data structure provides approximate counts ay,, for the
number of edges from u to v in the current time tick ¢.

4.2.2 Hypothesis Testing Framework. Given approxi-
mate counts s, and ay,, how can we detect microclusters?
Moreover, how can we do this in a principled framework
that allows for theoretical guarantees?

Fix a particular source and destination pair of nodes, (u, v),
as in Figure 1. One approach would be to assume that the
time series in Figure 1 follows a particular generative model:
for example, a Gaussian distribution. We could then find the
mean and standard deviation of this Gaussian distribution.
Then, at time ¢, we could compute the Gaussian likelihood
of the number of edge occurrences in the current time tick,
and declare an anomaly if this likelihood is below a specified
threshold.

However, this requires a restrictive Gaussian assumption,
which can lead to excessive false positives or negatives if the
data follows a very different distribution. Instead, we use a
weaker assumption: that the mean level (i.e. the average rate
at which edges appear) in the current time tick (e.g. t = 10)
is the same as the mean level before the current time tick
(t < 10). Note that this avoids assuming any particular distri-
bution for each time tick, and also avoids a strict assumption
of stationarity over time.

Hence, we can divide the past edges into two classes: the
current time tick (¢t = 10) and all past time ticks (¢ < 10).
Recalling our previous notation, the number of events at
(¢ = 10) is ayy, while the number of edges in past time ticks
(t < 10) is syp — Ayyp-

Under the chi-squared goodness-of-fit test, the chi-squared
statistic is defined as the sum over categories o expected
In this case, our categories are t = 10 and ¢ < 10. Under our

observed—expected)?
£ Lobserved—expecied)
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mean level assumption, since we have s, total edges (for
this source-destination pair), the expected number at ¢ = 10
is 22 and the expected number for t < 10 is the remaining,
ie. t t 1, .. Thus the chi-squared statistic is:

(observed ;—19) — expected(,:lo))2

expected,_;g

(observed;<10) — eXPECted(Klo))Z

expected ;)
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Note that both a,,, and s, can be estimated by our CMS data
structures, obtaining approximations a;, and s, respectively.
This leads to our following anomaly score, using which we
can evaluate a newly arriving edge with source-destination
pair (u,v):
Definition 1 (Anomaly Score). Given a newly arriving edge
(u, v, t), our anomaly score is computed as:

12
Suo(t — 1)
Algorithm 1 summarizes our M1DAs algorithm.

~  Su
score((u,0, 1)) = (apy — —2)?

(1)

Algorithm 1: Mipas: Streaming Anomaly Scoring

Input: Stream of graph edges over time
Output: Anomaly scores per edge
1 > Initialize CMS data structures:
2 Initialize CMS for total count s,, and current count

auv
3 while new edge e = (u, 0, t) is received: do

4 > Update Counts:

5 Update CMS data structures for the new edge uv
6 > Query Counts:

7 Retrieve updated counts s, and aj,,

8 > Anomaly Score:

9 output score((u,v,t)) = (ay, — S”—”)2 Suuéi 5

4.3 Detection and Guarantees

While Algorithm 1 computes an anomaly score for each
edge, it does not provide a binary decision for whether an
edge is anomalous or not. We want a decision procedure
that provides binary decisions and a guarantee on the false
positive probability: i.e. given a user-defined threshold ¢, the
probability of a false positive should be at most e. Intuitively,
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the key idea is to combine the approximation guarantees of
CMS data structures with properties of a chi-squared random
variable.

The key property of CMS data structures we use is that
given any € and v, for appropriately chosen CMS data struc-
ture sizes, with probability at least 1 — g the estimates ay,
satisfy:

ugauv"'V'Nt (2)
where N; is the total number of edges at time t. Since CMS
data structures can only overestimate the true counts, we
additionally have

Suo < Suo ®)
Define an adjusted version of our earlier score:
Guo = Ay — VN 4)

To obtain its probabilistic guarantee, our decision procedure
computes a,,, and uses it to compute an adjusted version of
our earlier statistic:

X = (ai - S0y L ©)

w Suo(t — 1)

Then our main guarantee is as follows:
Theorem 1 (False Positive Probability Bound). Let )(1276 /2 (1)
be the 1 — €/2 quantile of a chi-squared random variable with
1 degree of freedom. Then:

P(X2 > )} p(D) <€ (6)

In other words, using X2 as our test statistic and threshold
)(12_6/2(1) results in a false positive probability of at most €.

Proof. Recall that

Xt = (g, = St o)
Suo(t — 1)
was defined so that it has a chi-squared distribution. Thus:
P(X* < )(f_e/z(l)) =1-¢€/2 (8)
At the same time, by the CMS guarantees we have:
P(agy < Guo+v-N;) 2 1—¢€/2 ©)

By union bound, with probability at least 1 — ¢, both these
events (8) and (9) hold, in which case:

- Su t
X2 = (g, —My2__ -
(o == D)
e Swy,
= (v NS
Sup., I
< L
< (auo ; ) suo(f — 1)
:X2 = Xf—e/z(l)
Finally, we conclude that
P(X? > )(12_6/2(1)) <e. (10)
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4.4 Incorporating Relations

In this section, we describe our Mipas-R approach, which
considers edges in a relational manner: that is, it aims to
group together edges which are nearby, either temporally or
spatially.

Temporal Relations. Rather than just counting edges in
the same time tick (as we do in M1DAS), we want to allow for
some temporal flexibility: i.e. edges in the recent past should
also count toward the current time tick, but modified by a
reduced weight. A simple and efficient way to do this using
our CMS data structures is as follows: at the end of every
time tick, rather than resetting our CMS data structures ay,,
we reduce all its counts by a fixed fraction a € (0, 1). This
allows past edges to count toward the current time tick, with
a diminishing weight.

Spatial Relations. We would like to catch large groups
of spatially nearby edges: e.g. a single source IP address sud-
denly creating a large number of edges to many destinations,
or a small group of nodes suddenly creating an abnormally
large number of edges between them. A simple intuition we
use is that in either of these two cases, we expect to observe
nodes with a sudden appearance of a large number of edges.
Hence, we can use CMS data structures to keep track of edge
counts like before, except counting all edges adjacent to any
node u. Specifically, we create CMS counters d;, and s;, to ap-
proximate the current and total edge counts adjacent to node
u. Given each incoming edge (u,v), we can then compute
three anomalousness scores: one for edge (u,v), as in our
previous algorithm; one for node u, and one for node v. Fi-
nally, we combine the three scores by taking their maximum
value. Another possibility of aggregating the three scores
is to take their sum. Algorithm 2 summarizes the resulting
Mipas-R algorithm.

4.5 Time and Memory Complexity

In terms of memory, both Mipas and Mipas-R only need
to maintain the CMS data structures over time, which are
proportional to O(wb), where w and b are the number of
hash functions and the number of buckets in the CMS data
structures; which is bounded with respect to the data size.

For time complexity, the only relevant steps in Algorithm
1 and 2 are those that either update or query the CMS data
structures, which take O(w) (all other operations run in
constant time). Thus, time complexity per update step is
O(w).

5 Experiments

In this section, we evaluate the performance of Mipas and
Mipas-R compared to SEDANSPOT on dynamic graphs. We
aim to answer the following questions:
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Algorithm 2: Mipas-R: Incorporating Relations

Input: Stream of graph edges over time
Output: Anomaly scores per edge
1 > Initialize CMS data structures:
2 Initialize CMS for total count s,, and current count

auv
3 Initialize CMS for total count s, and current count a,

4 while new edge e = (u,v,t) is received: do

5 > Update Counts:
6 Update CMS data structures for the new edge uv
7 > Query Counts:
8 Retrieve updated counts s, and ay,
9 Retrieve updated counts sy, sy, dy, dy
10 > Compute Edge Scores:
. ~ 2
1 score(u,v,t) = (ap, — S"T”)ZSWETI)
12 > Compute Node Scores:
. o 2
13 score(u, t) = (dy, — sTu)zs;,(tTn
R - 2
14 score(v,t) = (dy, — sf)zm
15 > Final Node Scores:
16 output max{score(u, v, t), score(u, t), score(v, t) }

Q1. Accuracy: How accurately does MipAs detect real-
world anomalies compared to baselines, as evaluated
using the ground truth labels?

Q2. Scalability: How does it scale with input stream length?
How does the time needed to process each input com-
pare to baseline approaches?

Q3. Real-World Effectiveness: Does it detect meaning-
ful anomalies in case studies on Twitter graphs?

Datasets: DARPA [13] has 4.5M IP-IP communications
between 9.4K source IP and 23.3K destination IP over 87.7K
minutes. Each communication is a directed edge (srcIP, dstIP,
timestamp, attack) where the ground truth attack label indi-
cates whether the communication is an attack or not (anom-
alies are 60.1% of total).

TwitterSecurity [15, 16] has 2.6 M tweet samples for four
months (May-Aug 2014) containing Department of Home-
land Security keywords related to terrorism or domestic
security. Entity-entity co-mention temporal graphs are built
on daily basis (80 time ticks).

TwitterWorldCup [15, 16] has 1.7M tweet samples for the
World Cup 2014 season (June 12-July 13). The tweets are fil-
tered by popular/official World Cup hashtags, such as #world-
cup, #fifa, #brazil, etc. Similar to TwitterSecurity, entity-
entity co-mention temporal graphs are constructed on 5
minute sample rate (8640 time points).

Baseline: As described in our Related Work, only RHSS
and SEDANSPOT operate on edge streams and provide a score
for each edge. SEDANSPOT uses personalised PageRank to
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detect anomalies in sublinear space and constant time per
edge. However, RHSS was evaluated in [6] on the DARPA
dataset and found to have AUC of 0.17 (lower than chance).
Hence, we only compare with SEDANSPOT.

Evaluation Metrics: All the methods output an anomaly
score per edge (higher is more anomalous). We calculate the
True Positive Rate (TPR) and False Positive Rate (FPR) and
plot the ROC curve (TPR vs FPR). We also report the Area
under the ROC curve (AUC) and Average Precision Score.

5.1 Experimental Setup

All experiments are carried out on a 2.4GHz Intel Core i9
processor, 32GB RAM, running OS X 10.15.2. We implement
Mipas and Mipas-R in C++. We use 2 hash functions for the
CMS data structures, and we set the number of CMS buckets
to 2719 to result in an approximation error of v = 0.001. For
Mipas-R, we set the temporal decay factor « as 0.5. We used
an open-sourced implementation of SEDANSPOT, provided
by the authors, following parameter settings as suggested in
the original paper (sample size 500).

5.2 Q1. Accuracy

Figure 2 plots the ROC curve for Mipas-R, MipAs and SEDANSPOT

on the DARPA dataset. Figure 3(top) plots accuracy (AUC)
vs. running time (log scale, in seconds, excluding I/0). We
see that M1DAs achieves a much higher accuracy (= 0.91)
compared to the baseline (= 0.64), while also running signif-
icantly faster (0.13s vs. 84s). This is a 42% accuracy improve-
ment at 644X faster speed. Mipas-R achieves the highest
accuracy (= 0.95) which is 48% accuracy improvement com-
pared to the baseline at 215X faster speed.

Figure 3(bottom) plots the average precision score vs. run-
ning time. We see that MIpAs is more precise (= 0.95) com-
pared to the baseline (= 0.75). This is a 27% precision im-
provement. MIDAsS-R achieves the highest average precision
score (= 0.97) which is 29% more precise than SEDANSPOT.

We see that Mipas and Mipas-R greatly outperform SEDANSPOT

on both accuracy and precision metrics.

5.3 Q2. Scalability

Figure 4 shows the scalability of Mipas and Mipas-R. We
plot the wall-clock time needed to run on the (chronolog-
ically) first 212,213, 214 . 222 edges of the DARPA dataset.
This confirms the linear scalability of Mipas and Mipas-R
with respect to the number of edges in the input dynamic
graph due to its constant processing time per edge. Note
that both Mipas and Mipas-R process 4M edges within 0.5
second, allowing real-time anomaly detection.

Figure 5 plots the number of edges (in millions) and time
to process each edge for DARPA dataset. MIDAS processes
4.4M edges within 1us each and 0.15M edges within 2us each.
Mipas-R processes 4.3M edges within 1us each and 0.23M
edges within 2us each.
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Figure 3. (top) Accuracy (AUC) vs time, (bottom) Average
Precision Score vs time

Table 2 shows the time it takes SEDANSPOT, MIDAS and
Mipas-R to run on the TwitterWorldCup, TwitterSecurity and
DARPA datasets. For TwitterWorldCup dataset, we see that
Mipas-R is 162X faster than SEDANSPOT (0.17s vs. 27.58s)
and MIDAs is 460X faster than SEDANSPOT(0.06s vs 27.58s).
For TwitterSecurity dataset, we see that MipAs-R is 177X
faster than SEDANSPOT (0.23s vs. 40.71s) and MiDAs is 509X
faster than SEDANSPOT(0.08s vs 40.71s). For the DARPA
dataset, we see that MipAs-R is 215X faster than SEDANSPOT
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(0.39s vs. 83.66s) and MIDAS is 644X faster than SEDANSPOT(0.13s MiIDAs and MIDAS-R show similar trends whereas SEDANSPOT

vs 83.66s).

SEDANSPOT requires several subprocesses (hashing, random-
walking, reordering, sampling, etc), resulting in the large
computation time. Mipas and Mipas-R are both scalable and
fast.
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Figure 4. Mipas and Mipas-R scale linearly with the num-
ber of edges in the input dynamic graph.
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Figure 5. Distribution of processing times for ~ 4.5M edges
of DARPA dataset.

Table 2. Running time for different datasets in seconds

SEDANSPOT MIDAS MIDAS-R
TwitterWorldCup 27.58s 0.06s 0.17s
TwitterSecurity 40.71s 0.08s 0.23s
DARPA 83.66s 0.13s 0.39s

5.4 Q3. Real-World Effectiveness

We measure anomaly scores using Mipas, Mipas-R and
SEDANSPOT on the TwitterSecurity dataset. Figure 6 plots
anomaly scores vs. day (during the four months of 2014).
To visualise, we aggregate edges occurring in each day by
taking the max anomalousness score per day, for a total of
90 days. Anomalies correspond to major world news such as
Mpeketoni attack (Event 6) or Soma Mine explosion (Event 1).

misses some anomalous events (Events 2,7), and outputs
many high scores unrelated to any true events. This is also
reflected in the low accuracy and precision of SEDANSPOT
in Figure 3. The anomalies detected by Mipas and Mipas-R
coincide with major events in the TwitterSecurity timeline
as follows:

1. 13-05-2014. Turkey Mine Accident, Hundreds Dead
2. 24-05-2014. Raid.
3. 30-05-2014. Attack/Ambush.
03-06-14. Suicide bombing
4. 09-06-14. Suicide/Truck bombings.
. 10-06-2014. Iraqi Militants Seized Large Regions.
11-06-2014. Kidnapping
. 15-06-14. Attack
. 26-06-14. Suicide Bombing/Shootout/Raid
. 03-07-14. Israel Conflicts with Hamas in Gaza.
. 18-07-14. Airplane with 298 Onboard was Shot Down over Ukraine.
10. 30-07-14. Ebola Virus Outbreak.

w

O 0N

This shows the effectiveness of Mipas and Mipas-R for catch-
ing real-world anomalies.

Microcluster anomalies: Figure 7 corresponds to Event
7 in the TwitterSecurity dataset. All single edges are equiv-
alent to 444 edges and double edges are equivalent to 888
edges between the nodes. This suddenly arriving (within 1
day) group of suspiciously similar edges is an example of a mi-
crocluster anomaly which Mipas-R detects, but SEDANSPOT
misses.

6 Conclusion

In this paper, we proposed Mipas and Mipas-R for micro-
cluster based detection of anomalies in edge streams. Future
work could consider more general types of data, including
heterogeneous graphs or tensors. Our contributions are as
follows:

1. Streaming Microcluster Detection: We propose a novel
streaming approach for detecting microcluster anom-
alies, requiring constant time and memory.

2. Theoretical Guarantees: In Theorem 1, we show guar-
antees on the false positive probability of MiDAs.

3. Effectiveness: Our experimental results show that Mipas
outperforms baseline approaches by 42%-48% accuracy
(in terms of AUC), and processes the data 162 — 644
times faster than baseline approaches.
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