
On Structural vs. Proximity-based Temporal Node Embeddings
Puja Trivedi*, Alican Büyükçakır*, Yin Lin, Yinlong Qian, Di Jin, Danai Koutra

{pujat,alicanb,irenelin,yinlongq,dijin,dkoutra}@umich.edu
University of Michigan

ABSTRACT
We investigate the representation power of static node embed-
dings in dynamic or temporal settings. To this end, we introduce a
framework that incorporates different design options for extending
static node embeddings to temporal settings: temporal combina-
tion schemes to introduce dynamics in otherwise static approaches,
alignment methods that lead to comparability of embedding dimen-
sions across time steps, and different edge operators for generating
edge embeddings from node embeddings. In our empirical analysis,
we evaluate the performance of both proximity-based and struc-
tural node embedding methods in a temporal link prediction task
over four time-evolving networks. Our results show that proper
choice over these designs yields up to 20% absolute improvement
over baselines that do not leverage temporal combination and em-
bedding alignment. We further present broad trends to guide design
decisions for embedding methods in temporal settings.

KEYWORDS
temporal graphs, graph embeddings, temporal link prediction
ACM Reference Format:
Puja Trivedi*, Alican Büyükçakır*, Yin Lin, Yinlong Qian, Di Jin, Danai
Koutra. 2018. On Structural vs. Proximity-based Temporal Node Embeddings.
InMLG ’20: 16th InternationalWorkshop onMining and Learning with Graphs,
Aug 24, 2020, San Diego, CA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Representation learning on static graphs is a well-studied problem
[8, 20, 30, 31] and is central to many graph mining applications,
including community detection [18], recommendation systems [2],
and information retrieval [13]. However, many networks naturally
evolve over time: for example, interactions on social media such as
Facebook or Snapchat continually evolve, email and other commu-
nication networks grow continuously by amassing more and more
email exchanges. Therefore, there has been a recent upsurge of
interest in dynamic representation learning on graphs for various
tasks, including temporal link prediction [19], user-state change
prediction [16] and identity stitching [14]. However, it is worth
noting that the promising performance of these customized models

*The authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MLG ’20, Aug 24, 2020, San Diego, CA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

comes with the trade-off of complexity by introducing the latent
features that capture temporal dependency over time [7], or graph-
level attention [24] across graph time-streaming. Static methods,
on the other hand, typically are more computationally-efficient.

Motivated by this trade-off and the computational efficiency of
static methods, we seek to explore the potential of static methods
in dynamic scenarios. To this end, we introduce a framework that
considers different design options, including techniques to combine
embeddings over time, align embeddings across time-stamps, and
combine node embeddings via edge operators, to induce tempo-
ral information. In our analysis, we consider embedding methods
that fall into two categories: proximity-based and structural em-
beddings, where the former generate embeddings that preserve
closeness/communities, and the latter generate embeddings that
preserve structural similarity or roles [23]. Thus, we also investigate
how proximity-vs-structural paradigms influence representation
power in this setting.

Adapting embeddings from a static setting to a dynamic setting
comes with several challenges. First, embeddings are generated at
each snapshot separately, and it is unclear how to extract temporal
dynamics from these distinct embeddings. Therefore, we consider
three different temporal combination schemes that incorporate the
information gains from preceding time steps (including combining
the static embeddings from different snapshots with exponential
decay, putting more emphasis on the recent embeddings). Second,
before the embeddings can be combined across time, their man-
ifolds must be comparable. While structural embeddings which
capture role information are comparable across graphs and time
stamps, proximity-based (community-based) embeddings which
capture homophily and closeness are not comparable [10, 23]. To
address this challenge, we draw inspiration from recent work in
NLP [9] and temporal graph embedding alignment [28] that uses
the solution to the Orthogonal Procrustes Problem [25] to align the
embeddings across different time stamps. Additionally, following
[29], we also take the average over proximity-based embeddings
to represent structural properties, which are comparable across
graphs. Third, after generating temporally-combined, aligned node-
embeddings, we consider three different operators to induce edge
embeddings (including concatenating, and averaging the endpoints’
node embeddings). We evaluate the cross product of these three
designs in our general framework on a temporal link prediction
task. Our contributions are summarized as follows:

• Framework.We introduce a framework that incorporates a
variety of sensible design options for converting static node
embeddings into temporal embeddings that can be used in
downstream temporal tasks.

• Empirical evaluation. We analyze four static proximity-
based and structural node embeddings approaches over four
datasets in a temporal link prediction task, and discuss the
representation power of the different design choices.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

MLG ’20, Aug 24, 2020, San Diego, CA Trivedi and Büyükçakır et al.

Temporal Graph
Dataset

Generate
Snapshots

1

2

T-1

T

1

2

T-1

[zu]

TRAIN SET

TEST SET

P1
P2

P3
P4

[zuv]

… …

Generate
Node

Embeddings

Align
Embeddings

Temporally
Combine

Node
Embeddings

Generate
Edge

Embeddings

Temporal Link
Prediction

Evaluate
Performance

Figure 1: Proposed pipeline for exploring the impact of structural and proximity-based node embeddings in temporal graphs.
A temporal graph is first pre-processed and split into different temporal granularities. Then, different embedding methods
are applied at each graph snapshot, and these embeddings are aligned and fused into one. The fused embeddings are used for
generating edge embeddings which can be used to train classifiers on the task of temporal link prediction.

2 RELATEDWORK
Our work is related to node representation learning in static and
dynamic graphs, which we discuss next.
Node embeddings in static graphs. Existing work on learning
representations on static graphs (i.e. graph embeddingmethods) can
be examined in twomain groups [23]. The first group is proximity-
based embeddings (e.g. DeepWalk [20], LINE [30], node2vec [8]
and NetMF [21]) where closeness and homophily among the nodes
are captured; and the second group is structural embeddings
(e.g. GraphWave [5], node2bits [14], rolX [12] and xNetMF [11])
where roles and structural similarity of the nodes are captured.
For a detailed discussion on the structural and proximity-based
embeddings, the reader is referred to [23]. In our work, we pick two
structural (GraphWave, xNetMF) and two proximity-based methods
(LINE, node2vec) to generate embeddings at each graph snapshot.
Node embeddings in dynamic graphs. Learning representations
of dynamic and temporal graphs is a research area that has re-
cently gained a lot of interest [32]. Previous methods consider
various approaches including: temporal random walks (CTDNE
[19], node2bits [14]), Hawkes Processes (HTNE [33]), LSTMs with
autoencoders (dyngraph2vec [6]), and predicting trajectories of
individual node embeddings (JODIE [16]) to incorporate temporal
dynamics into the learned embeddings. However, thesemethods use
mechanisms for representing dynamics that are inherent to their
method construction. In other words, it is not possible to benefit
from previously computed and well-performing static node embed-
dings using these methods. Furthermore, dynamic methods may
require computationally expensive techniques to encode temporal
properties, such as LSTMs. tNodeEmbed [28] utilizes node2vec to
initialize its embeddings (though any static method can be used),
aligns consecutive timestamps, and sequentially optimizes two

Table 1: Summary of notation

Symbol Definition

G = {𝐺1,𝐺2, . . . } a graph time-series
𝐺𝑡 = (V𝑡 , E𝑡) a directed and weighted temporal network from G with

|V𝑡 | nodes and |E𝑡 | temporal edges
A𝑡 adjacency matrix for graph 𝐺𝑡 at time 𝑡
𝛼 the decay factor in the temporal summary graph model
\ the decay factor in the temporal embedding smoothing
𝑑 dimensionality of the embedding
Z |V| × 𝐷 embedding matrix

objective functions jointly, one for preserving neighborhood be-
tween nodes and another for capturing temporal aspect. Unlike this
work, tNodeEmbed uses expensive LSTMs to obtain the temporal
combination of node embeddings, and uses only concatenation to
generate edge embeddings from the node embeddings.

3 NOTATION
Let G = (V, E, 𝜏) be a temporal network whereV is the set of ver-
tices, E ⊆ V×V×R+ is the set of temporal edges between vertices
V , and 𝜏 : E → R+ is a function mapping edges to timestamps.
In temporal settings, timestamped edges are processed in batches
containing sets of edges that arrive at equidistant time intervals.
The length of these time intervals is referred as the granularity
of the temporal data. Let 𝑇 be the total number of batches with
the choice of a granularity (e.g. days, weeks, months). Then, each
𝑖 (1 ≤ 𝑖 ≤ 𝑇) generates a graph snapshot, 𝐺𝑖 , where edges of 𝐺𝑖

are the edges that arrive only in the batch 𝑖 . That is, 𝐺𝑖 = (V, E𝑖),
where E𝑖 = {𝑒 |𝑒 ∈ 𝑏𝑎𝑡𝑐ℎ 𝑖 }.

EmbeddingZ : V → R𝑑 maps each vertex ofG to𝑑-dimensional
feature representations where 𝑑 << |V|. At each graph snapshot
𝐺𝑖 , a corresponding embeddingZ𝑖 may be generated. The preceding

On Structural vs. Proximity-based Temporal Node Embeddings MLG ’20, Aug 24, 2020, San Diego, CA

embeddings may be partially retained to contribute to the current
embedding or be completely discarded.

4 PROPOSED FRAMEWORK
In this work, we consider the problem of dynamic graph repre-
sentation learning by the fusion of static embeddings over time.
Specifically, we focus on different types of static embeddings, fac-
tors that affect their performance, and their behavior under the
incorporation of different temporal dynamics.

To explore the impact of discrete techniques on dynamic network
representation learning, we divide our framework into four phases:
(P1) generating snapshots, (P2) generating node embeddings, (P3)
temporal combination and (P4) generating edge embeddings. We
give an overview of our framework in Figure 1.

4.1 (P1) Generating Snapshots
Given timestamped edges, network snapshots can be generated by
defining discrete time periods that are sensible for the domain or
application at hand. Typical time periods in the literature include
hourly, daily, weekly, monthly, or yearly granularities [1, 15, 26, 27].

4.2 (P2) Generating Node Embeddings
For a given embedding method, we generate node embeddings at
every snapshot𝐺𝑖 . Since proximity-based embeddings are not com-
parable across time-stamps or graphs [3, 10], we consider alignment
techniques that aim to align the embedding spaces that are learned
independently per snapshot.

• Averaging Embeddings over Multiple Runs: Srivinasan
and Ribeiro [29] showed that averaging the proximity repre-
sentations over multiple runs leads to structural embeddings,
and hence, a form of an alignment. Following that, we aver-
age over 3 runs to generate aligned embeddings.

Ẑ𝑖 =
1
3 ∗ (Z1𝑖 + Z2𝑖 + Z3𝑖)

• Procrustes: Inspired by [3, 9], we use Procrustes to find
the transformation matrix, R𝑖 ∈ R𝑑×𝑑 , per timestep 𝑖 that
minimizes:

R𝑖 = min
Q𝑇Q=𝐼

∥Z𝑖Q − Z𝑘 ∥22 , for 𝑖 = 1, . . . ,𝑇 − 1

Then, Ẑ𝑖 = Z𝑖R𝑖 is rotationally aligned to the embeddings
Z𝑘 (at timestep k), and the embeddings are more comparable
across time-steps.

4.3 (P3) Temporal Combination
Each embedding is generated statically at each snapshot. There-
fore, while the embedding captures graph properties, it does not
represent how the graph changed over time. By fusing or combin-
ing the time series of embeddings, we induce temporal dynamics.
After alignment, we consider the following temporal-combination
techniques:

• No Combination: Use Z𝑁𝑂𝑁𝐸 = Z𝑇 , i.e. use only the last
embedding that is generated, and disregard the preceding
ones.

• Linear Combination: Z𝐿𝐼𝑁 =
∑𝑇
𝑖 𝛼Z𝑖 , 𝛼 ∈ R. This is

equivalent to summing up embeddings when 𝛼 = 1, which
is what we use in our experiments.

• Exponential Decay: Z𝐸𝑋𝑃 =
∑𝑇
𝑖 𝑒

−\ (𝑇−𝑖)Z𝑖 , i.e. embed-
dings of past snapshots are weighted exponentially less than
more recent ones. In our experiments, we use \ = 0.3.

4.4 (P4) Generating Edge Embeddings
Having the node embeddings z𝑢 and z𝑣 for the nodes 𝑢 and 𝑣 , we
consider 3 combination methods that transform z𝑢 and z𝑣 into an
edge embedding z𝑢𝑣 .

• Concatenation: Use z𝑢𝑣 = (z𝑢 | |z𝑣), i.e. concatenate the two
node embeddings to generate the edge embedding. Previ-
ously, this was adopted in [28].

• Average: z𝑢𝑣 = (z𝑢 + z𝑣)/2, i.e. take the average of the two
node embeddings.

• Hadamard Product: z𝑢𝑣 = (z𝑢⊙z𝑣), i.e. take the piece-wise
multiplication of the entries of the two node embeddings.
Previously, this was recommended in [8] and adopted in
[24].

5 EMPIRICAL EVALUATION
In our empirical evaluation we seek to answer the following ques-
tions:

Q1 Do proximity-based or structural embedding methods adapt
better to the temporal link prediction task?

Q2 Does embedding alignment improve the performance of
proximity-based and structural embedding methods?

Q3 How should node embeddings be combined across time?
Q4 What edge operators lead to better performance in temporal

settings?
Q5 How stable are methods with respect to different design

choices or datasets?
Before we answer these questions, we present the datasets and

experimental setup that we consider in our evaluation.

5.1 Datasets & Setup
5.1.1 Datasets. We use four real-world datasets that are available
at SNAP [17] and/or NetworkRepository [22]. To create a snapshot,
we parse the edge-list such that only edge occurring within dis-
crete periods of given granularity are included; e.g., edges between
(1/1/1970 - 2/1/1970) form one monthly snapshot. The chosen tem-
poral granularity, and the corresponding number of time snapshots
per dataset are shown in Table 2. We choose the corresponding
granularity to avoid having many empty snapshots, in favor of
fewer denser snapshots.

Table 2: Dataset Information

Name |𝑉 | |𝐸 | 𝑇 Granularity

Bitcoin 3,783 24,186 63 months
Facebook 899 33,720 24 weeks
Wiki-Elec 7,118 107,071 47 months
Email-EU 987 332,334 17 months

MLG ’20, Aug 24, 2020, San Diego, CA Trivedi and Büyükçakır et al.

LINE n2v
GW

xNetM
F

0.0

0.2

0.4

0.6

0.8

1.0

Bitcoin

Baseline 1 Baseline 2 Best

16.58%
20.34% 8.64%

7.43%

2.09% 10.70%

8.27%
2.64%

1.28%

3.01% 7.47%

10.91%
6.20%

0.19% 0.29% 0.35%

Facebook WIKI-ELEC Email-EU

A
cc

u
ra

cy

Method

LINE n2v
GW

xNetM
F

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
Method

LINE n2v
GW

xNetM
F

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Method

LINE n2v
GW

xNetM
F

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Method

Figure 2: Results of temporal link prediction on four datasets. Percentages over the bar plots show the absolute improve-
ment on the performance of the best performing node alignment, combination and edge generation method over the best-
performing baseline.

5.1.2 Temporal Link Prediction Task. Following [24] and [6], we
evaluate our embeddings on a temporal link prediction task.We gen-
erate embeddings using the methods: LINE, node2vec, GraphWave
and xNetMF at every snapshot𝐺𝑖 . Given graphs and corresponding
node embeddings from timestamps 1 to 𝑇 − 1, we build a Logistic
Regression model to predict links in the graph at timestamp 𝑇 . We
construct the training set from 𝐺𝑇−1 by sampling true (existing)
and an equal number of false (non-existent) edges. We generate the
test set from 𝐺𝑇 , using a similar procedure. We report the average
accuracy across 5 trials. See Appendix B for detailed results.

5.2 Q1. Link Prediction Performance
The best predictive performance of temporal link prediction per
method and dataset is shown in Figure 2. We also include the per-
formance of two baseline combinations of design options without
embedding alignment (P2) and without temporal combina-
tion (P3), which generate edge embeddings using concatenation
and averaging, respectively.

First, we observe that each method in every dataset benefits from
correctly-picked alignment, temporal combination and edge embed-
ding generation techniques, as evidenced by the improvement over
the baselines. The improvement in performance is the most evident
in Bitcoin dataset, whereas it is not very significant in Email-EU
dataset. We hypothesize that this behavior is due to the fact that
Bitcoin has a sharp decrease in edges towards the later time-stamps,
whereas Email-EU remains relatively stable.

Typically, proximity-based embeddings are used in link predic-
tion tasks, since they capture homophily and community structure;
and links are more likely to form within communities than across
them [7, 23]. Hence, our initial hypothesis was that proximity-based
methods should benefit more from careful choice of designs. Sur-
prisingly, however, we observe that structural methods GraphWave
and xNetMF perform at least as well as proximity-based methods,
and in several datasets outperform the latter. We see the steepest
rise in the performance in Bitcoin dataset with GraphWave with
20.34% absolute (equivalent to 31% relative) increase.

5.3 Q2-Q5. Effectiveness of Design Options
To examine the effects of each phase in our pipeline individually,
we report the number of times each design choice ranked top-3
across all datasets and methods in temporal link prediction task

in Tables 3, 4 and 5. Henceforth, we report our findings on these
parameter choices.

5.3.1 Q2. Choice of Alignment. In our experiments, we tried two
different versions of Procrustes for embedding alignment purposes
(P2). In the first one, we aligned the nodes in all of the snapshots to
the first snapshot, whereas we aligned each consecutive snapshots
with one another (as proposed in [28]) in the second one. Since
there were not considerable differences in the results for these two
types of Procrustes, we only report the former version.

Table 3: Number of times each alignment choice ranked top-
3 across all datasets.

Proximity Structural Total

No Alignment 9 11 20
Averaging Runs [29] 11 8 19
Procrustes 4 5 9

Firstly, we observe in Table 3 that No Alignment and Averaging
Runs performed better than Procrustes on average. Despite its suc-
cesses in recent researchworks [9, 28], we did not find it particularly
effective when combining static embeddings over time. Averaging
Runs [29] is not originally proposed for the alignment task, but
it functions as one in this setting, and performs quite well. It is
interesting that having No Alignment across timestamps still yields
strong results, especially for proximity-based embedding methods
that yield embedding spaces that could be rotated, translated, or
rescaled relative to each other [4]. That said, we note that the im-
pact of alignment is slightly more pronounced in proximity-based
embeddings than structural ones.

5.3.2 Q3. Choice of Temporal Embedding Combination. We often
observe that either No Combination across time, or Linear Combi-
nation works better than using Exponential Decay in Table 4. Our
initial assumption of “more recent snapshots being more important
for link prediction task” did not hold in the case of Exponential De-
cay. Weighting more recent embeddings exponentially more results
in worse predictive performance. We note that in our analysis, Ex-
ponential Decay was never in the top-3 combinations for structural
node embeddings.

On Structural vs. Proximity-based Temporal Node Embeddings MLG ’20, Aug 24, 2020, San Diego, CA

It appears that summing up embeddings across time works very
well, especially for structural embedding methods (it ranks in the
top-3 in 17/24 cases). On the other hand, proximity-based methods
achieve high scores even without utilizing past embedding infor-
mation. This, of course, depends on the density of the snapshots.
When the last snapshot alone is dense enough (e.g. Email-EU), the
embeddings in the last snapshot are representative enough for the
test snapshot, and this results in high accuracy even without tempo-
ral combination. Therefore, it is expected that the effect of temporal
combination matters more in more sparse datasets.

Table 4: Number of times each temporal combination tech-
nique ranked top-3 across all datasets.

Proximity Structural Total

No Combination 11 7 18
Linear Comb. (Sum) 9 17 26
Exponential Decay 4 0 4

5.3.3 Q4. Edge Generation Method. For the edge generation step,
we observe that concatenation of node embeddings is the best
performing heuristic in Table 5. Averaging runs follow that, and
Hadamard product performs the worst on average. Despite the
recommendation of Hadamard product for edge generation in static
settings [8], our results show that it is consistently outperformed by
concatenation and averaging of node features in temporal settings.
The difference between proximity-based and structural embedding
methods is more pronounced when Hadamard product is used
(see Table 5). There, we see Hadamard product performs especially
poorly for proximity-based methods, whereas structural methods
(specifically GraphWave) benefits from it. All in all, we recommend
the usage of concatenation over the other heuristics for future
research.

Table 5: Number of times each edge generation technique
ranked top-3 across all datasets.

Proximity Structural Total

Concatenation 15 10 25
Average 9 8 17
Hadamard Prod. 0 6 6

5.3.4 Q5. Embedding Stability. We find that different datasets lead
to different levels of embedding stability, which we define as the
variance of average accuracy in the temporal link prediction task
across different combinations of design options. Understanding the
stability of a method is important so that practitioners can make
informed choices when doing hyper-parameter tuning—i.e., should
they expect to see better performance with different design choices
or select a different method.

In Figure 3, we compute the "distribution" over all the Temporal
Combinations × Alignment × Edge Operators options considered
for each of methods, for every dataset. We see that some datasets

Figure 3: Distribution of accuracy across each method and
dataset (over different combinations of design options).

appear tricky for all methods. For example, for Bitcoin dataset, we
see relatively wide range of values across all combinations. On the
contrary, Email-EU appears to be more stable, with LINE, Graph-
Wave and xNetMF performing comparably. Even though node2vec
performs relatively poorly, it still exhibits moderate variance.

However, if we consider performance for a given method, we
see that LINE benefits greatly from sensible choices on 3 out of 4
datasets. Node2vec does not see as much benefit, and tends to per-
form poorly regardless (with the exception being Bitcoin). Graph-
wave has different performance depending on dataset; having con-
siderable variance on Bitcoin, but relatively less on Email-EU. Re-
gardless, it too is benefited by good design choices. xNetMF also
has large variance on 3 of 4 datasets, but it produces the best or
near best accuracy when properly tuned.

6 CONCLUSION
In this work, we investigate various design choices that need to
be considered when extending structural and proximity-based em-
beddings to dynamic settings. Specifically, we consider different
embedding alignment strategies, temporal combinations schemes,
and edge operators. We find that selecting good choices may result
in up to 20% increase over baselines without aligning embeddings
nor combining embeddings from different snapshots. Moreover,
when selecting alignment methods, No-Combination or Averaging
are preferred. Either of No Combination and Linear Combination
(summation) over time-steps is preferred for incorporating temporal
dynamics. Additionally, we find that using the Hadamard product
is generally not effective for generating edge embeddings for the
link prediction task. We hope that this guidance on design choices
may be valuable to practitioners and the research community when
designing baselines that can be used to evaluate the performance
of new dynamic embedding methods.

ACKNOWLEDGEMENTS
We would like to thank the reviewers for their feedback and sug-
gestions for future directions. This work is supported by the NSF
under Grant No. IIS 1845491, Army Young Investigator Award No.
W911NF1810397, and Adobe, Amazon, and Google faculty awards.

MLG ’20, Aug 24, 2020, San Diego, CA Trivedi and Büyükçakır et al.

REFERENCES
[1] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly

detection and description: a survey. Data mining and knowledge discovery 29, 3
(2015), 626–688.

[2] Toine Bogers. 2010. Movie recommendation using random walks over the con-
textual graph. In Proc. of the 2nd Intl. Workshop on Context-Aware Recommender
Systems.

[3] Xiyuan Chen, Mark Heimann, Fatemeh Vahedian, and Danai Koutra. 2020.
Consistent Network Alignment via Proximity-Preserving Node Embedding. In
arXiv:2005.04725.

[4] Xiyuan Chen, Mark Heimann, Fatemeh Vahedian, and Danai Koutra. 2020. Consis-
tent Network Alignment with Node Embedding. arXiv preprint arXiv:2005.04725
(2020).

[5] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. 2018. Learning
structural node embeddings via diffusion wavelets. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
ACM, 1320–1329.

[6] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2019. dyngraph2vec:
Capturing network dynamics using dynamic graph representation learning.
Knowledge-Based Systems (2019), 104816.

[7] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications,
and performance: A survey. Knowledge-Based Systems 151 (2018), 78–94.

[8] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM KDD. ACM, 855–864.

[9] William L Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic
word embeddings reveal statistical laws of semantic change. arXiv preprint
arXiv:1605.09096 (2016).

[10] Mark Heimann and Danai Koutra. 2017. On Generalizing Neural Node Embedding
Methods to Multi-Network Problems. In KDD MLG Workshop.

[11] Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. 2018. Regal:
Representation learning-based graph alignment. In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management. 117–126.

[12] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato
Basu, Leman Akoglu, Danai Koutra, Christos Faloutsos, and Lei Li. 2012. Rolx:
structural role extraction & mining in large graphs. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data mining.
1231–1239.

[13] Bernard J Jansen and Soo Young Rieh. 2010. The seventeen theoretical constructs
of information searching and information retrieval. JASIST 61, 8 (2010), 1517–
1534.

[14] Di Jin, Mark Heimann, Ryan Rossi, and Danai Koutra. 2019. node2bits: Com-
pact Time-and Attribute-aware Node Representations. In ECML/PKDD European
Conference on Principles and Practice of Knowledge Discovery in Databases.

[15] Danai Koutra, Joshua T Vogelstein, and Christos Faloutsos. 2013. Deltacon: A
principled massive-graph similarity function. In Proceedings of the 2013 SIAM
International Conference on Data Mining. SIAM, 162–170.

[16] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic em-
bedding trajectory in temporal interaction networks. In Proceedings of the 25th
ACM KDD. ACM, 1269–1278.

[17] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford large network
dataset collection.

[18] Weiping Liu and Linyuan Lü. 2010. Link prediction based on local random walk.
EPL (Europhysics Letters) 89, 5 (2010), 58007.

[19] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee
Koh, and Sungchul Kim. 2018. Continuous-time dynamic network embeddings.
In Companion Proceedings of the The Web Conference 2018. International World
Wide Web Conferences Steering Committee, 969–976.

[20] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM KDD. ACM, 701–710.

[21] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining. 459–467.

[22] Ryan Rossi and Nesreen Ahmed. 2015. The network data repository with inter-
active graph analytics and visualization. In Twenty-Ninth AAAI Conference on
Artificial Intelligence.

[23] Ryan A. Rossi, Di Jin, Sungchul Kim, Nesreen Ahmed, Danai Koutra, and
John Boaz Lee. 2020. From Community to Role-based Graph Embeddings. ACM

Transactions on Knowledge Discovery from Data (TKDD) (2020).
[24] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020.

DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-
Attention Networks. In Proceedings of the 13th International Conference on Web
Search and Data Mining. 519–527.

[25] Peter H Schönemann. 1966. A generalized solution of the orthogonal procrustes
problem. Psychometrika 31, 1 (1966), 1–10.

[26] Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos.
2015. Timecrunch: Interpretable dynamic graph summarization. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 1055–1064.

[27] Umang Sharan and Jennifer Neville. 2008. Temporal-relational classifiers for
prediction in evolving domains. In 2008 Eighth IEEE International Conference on
Data Mining. IEEE, 540–549.

[28] Uriel Singer, Ido Guy, and Kira Radinsky. 2019. Node Embedding over Temporal
Graphs. arXiv preprint arXiv:1903.08889 (2019).

[29] Balasubramaniam Srinivasan and Bruno Ribeiro. 2019. On the Equivalence
between Node Embeddings and Structural Graph Representations. arXiv preprint
arXiv:1910.00452 (2019).

[30] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1067–1077.

[31] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-
bedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 1225–1234.

[32] Yu Xie, Chunyi Li, Bin Yu, Chen Zhang, and Zhouhua Tang. 2020. A Survey on
Dynamic Network Embedding. arXiv:2006.08093 [cs.SI]

[33] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018.
Embedding Temporal Network via Neighborhood Formation. In Proceedings of
the 24th ACM KDD (London, United Kingdom) (KDD ’18). ACM, New York, NY,
USA, 2857–2866. https://doi.org/10.1145/3219819.3220054

A HYPERPARAMETER TUNING
We used the default parameters for all methods. Specifically,

• Node2Vec: We used 𝑝 = 4 and 𝑞 = 1.
• GraphWave: We used the provided “auto" select option for 𝜏 .
• LINE: We used second-order proximity, 𝐾 = 5,
𝑙𝑟 = 0.025, 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 5000, and 𝑏𝑎𝑡𝑐ℎ − 𝑠𝑖𝑧𝑒 = 128.

• xNetMF: We used 𝑎𝑙𝑝ℎ𝑎 = 0.1, 𝑘 = 1, 𝑔𝑎𝑚𝑚𝑎 − 𝑠𝑡𝑟𝑢𝑐 = 1,
𝑔𝑎𝑚𝑚𝑎 − 𝑎𝑡𝑡 = 1.

For each method, we replicated the embeddings 6 times. We sam-
pled 3 replicates from these 6 embeddings to compute the average
alignment embeddings. We fixed the embedding selections, and
trained the classifier 3 times. We repeat this procedure 3 times to get
the reported average accuracy and standard deviation. We sample
true edges from 𝐺𝑇−1 and an equivalent number of false edges to
train the classifier. We generate the test similarly using 𝐺𝑇 .

We use the following popular, publicly available implementa-
tions, provided by the respective authors:

• https://github.com/aditya-grover/node2vec (Node2Vec)
• https://github.com/snowkylin/line (LINE)
• https://github.com/snap-stanford/graphwave/ (GraphWave)
• https://github.com/GemsLab/REGAL (xNETMF)

B DETAILED RESULTS
Average accuracy and standard deviation of all combinations of
methods across all datasets are shown in Tables 6, 7, 8 and 9.

https://arxiv.org/abs/2006.08093
https://doi.org/10.1145/3219819.3220054

On Structural vs. Proximity-based Temporal Node Embeddings MLG ’20, Aug 24, 2020, San Diego, CA

Table 6: Wiki-Elec: Average accuracy and standard deviation per method for the different combinations of design options.

Combination Edge Operator Alignment LINE node2vec GraphWave XNetMF

Exponential
Decay

Average
None 0.548±0.015 0.556±0.040 0.521±0.003 0.571±0.028
Averaging 0.533±0.018 0.563±0.031 0.522±0.004 0.566±0.028
Procrustes 0.550±0.035 0.531±0.024 0.504±0.004 0.557±0.021

Concat
None 0.545±0.019 0.561±0.045 0.528±0.003 0.584±0.036
Averaging 0.525±0.034 0.565±0.043 0.529±0.002 0.578±0.035
Procrustes 0.553±0.042 0.538±0.039 0.504±0.004 0.567±0.028

Hadamard
None 0.504±0.007 0.502±0.007 0.533±0.005 0.560±0.025
Averaging 0.498±0.007 0.501±0.007 0.533±0.006 0.559±0.024
Procrustes 0.502±0.007 0.504±0.006 0.500±0.001 0.518±0.060

No
Combination

Average
None 0.692±0.014 0.526±0.016 0.534±0.058 0.617±0.037
Averaging 0.688±0.006 0.521±0.007 0.531±0.071 0.640±0.054
Procrustes 0.688±0.015 0.506±0.005 0.535±0.065 0.637±0.046

Concat
None 0.705±0.016 0.535±0.021 0.489±0.030 0.568±0.047
Averaging 0.703±0.008 0.524±0.007 0.499±0.003 0.558±0.052
Procrustes 0.693±0.019 0.502±0.007 0.492±0.029 0.589±0.063

Hadamard
None 0.512±0.009 0.501±0.004 0.544±0.058 0.593±0.025
Averaging 0.501±0.013 0.500±0.003 0.545±0.061 0.622±0.026
Procrustes 0.505±0.011 0.500±0.003 0.500±0.000 0.383±0.119

Linear
Combination

Average
None 0.590±0.029 0.556±0.040 0.609±0.035 0.691±0.033
Averaging 0.569±0.014 0.543±0.021 0.608±0.037 0.704±0.040
Procrustes 0.595±0.022 0.530±0.025 0.597±0.098 0.717±0.061

Concat
None 0.575±0.038 0.555±0.048 0.593±0.036 0.628±0.042
Averaging 0.560±0.008 0.550±0.038 0.591±0.035 0.635±0.089
Procrustes 0.611±0.031 0.537±0.039 0.599±0.100 0.727±0.054

Hadamard
None 0.497±0.006 0.503±0.007 0.608±0.037 0.682±0.029
Averaging 0.497±0.006 0.501±0.007 0.609±0.036 0.687±0.028
Procrustes 0.504±0.007 0.504±0.007 0.506±0.009 0.602±0.085

Table 7: Facebook: Average accuracy and standard deviation per method for the different combinations of design options.

Combination Edge Operator Alignment LINE node2vec GraphWave XNetMF

Exp
Decay

Average
None 0.619±0.055 0.599±0.032 0.674±0.026 0.698±0.030
Averaging 0.582±0.040 0.577±0.022 0.664±0.026 0.716±0.041
Procrustes 0.656±0.030 0.597±0.036 0.684±0.027 0.711±0.036

Concat
None 0.673±0.036 0.621±0.027 0.672±0.020 0.729±0.029
Averaging 0.649±0.018 0.629±0.041 0.661±0.038 0.732±0.037
Procrustes 0.757±0.044 0.607±0.031 0.670±0.028 0.776±0.031

Hadamard
None 0.559±0.054 0.555±0.024 0.672±0.032 0.637±0.040
Averaging 0.518±0.039 0.577±0.028 0.688±0.029 0.604±0.028
Procrustes 0.521±0.039 0.554±0.042 0.572±0.012 0.546±0.029

No
Combination

Average
None 0.757±0.034 0.620±0.036 0.570±0.007 0.738±0.022
Averaging 0.744±0.022 0.621±0.029 0.574±0.012 0.738±0.018
Procrustes 0.753±0.031 0.620±0.038 0.625±0.009 0.732±0.019

Concat
None 0.784±0.015 0.627±0.038 0.630±0.006 0.761±0.016
Averaging 0.786±0.017 0.626±0.020 0.627±0.010 0.765±0.015
Procrustes 0.778±0.018 0.620±0.028 0.631±0.008 0.769±0.012

Hadamard
None 0.560±0.037 0.556±0.046 0.569±0.013 0.663±0.046
Averaging 0.561±0.040 0.592±0.026 0.571±0.019 0.723±0.010
Procrustes 0.555±0.056 0.540±0.038 0.621±0.026 0.521±0.113

Linear
Combination

Average
None 0.705±0.036 0.608±0.029 0.672±0.029 0.791±0.034
Averaging 0.657±0.047 0.600±0.039 0.657±0.030 0.795±0.020
Procrustes 0.776±0.032 0.628±0.034 0.678±0.025 0.791±0.028

Concat
None 0.749±0.040 0.648±0.027 0.691±0.021 0.823±0.039
Averaging 0.736±0.037 0.636±0.021 0.687±0.023 0.838±0.037
Procrustes 0.858±0.027 0.608±0.029 0.737±0.026 0.844±0.023

Hadamard
None 0.566±0.049 0.553±0.042 0.707±0.024 0.783±0.032
Averaging 0.558±0.040 0.583±0.051 0.716±0.031 0.794±0.020
Procrustes 0.580±0.052 0.553±0.030 0.568±0.014 0.623±0.019

MLG ’20, Aug 24, 2020, San Diego, CA Trivedi and Büyükçakır et al.

Table 8: Email-EU: Average accuracy and standard deviation per method for the different combinations of design options.

Combination Edge Operator Alignment LINE node2vec GraphWave XNetMF

Exp
Decay

Average
None 0.726±0.005 0.607±0.008 0.750±0.002 0.742±0.006
Averaging 0.726±0.002 0.606±0.008 0.749±0.002 0.736±0.002
Procrustes 0.717±0.003 0.546±0.004 0.749±0.003 0.726±0.003

Concat
None 0.723±0.005 0.613±0.007 0.751±0.002 0.743±0.005
Averaging 0.728±0.003 0.613±0.010 0.749±0.002 0.738±0.003
Procrustes 0.718±0.003 0.547±0.004 0.750±0.002 0.729±0.004

Hadamard
None 0.712±0.012 0.550±0.005 0.752±0.002 0.705±0.009
Averaging 0.706±0.003 0.546±0.005 0.751±0.002 0.715±0.004
Procrustes 0.659±0.015 0.506±0.004 0.646±0.002 0.669±0.004

No
Combination

Average
None 0.766±0.003 0.568±0.005 0.786±0.002 0.797±0.003
Averaging 0.760±0.003 0.587±0.006 0.787±0.003 0.793±0.002
Procrustes 0.767±0.003 0.552±0.004 0.786±0.002 0.764±0.005

Concat
None 0.764±0.004 0.572±0.006 0.789±0.003 0.801±0.003
Averaging 0.756±0.002 0.591±0.005 0.789±0.002 0.796±0.004
Procrustes 0.768±0.003 0.552±0.004 0.785±0.002 0.766±0.004

Hadamard
None 0.745±0.007 0.541±0.004 0.775±0.002 0.761±0.008
Averaging 0.718±0.002 0.540±0.004 0.776±0.003 0.756±0.003
Procrustes 0.683±0.014 0.502±0.006 0.670±0.002 0.715±0.015

Linear
Combination

Average
None 0.749±0.008 0.625±0.008 0.771±0.002 0.773±0.006
Averaging 0.745±0.005 0.634±0.010 0.774±0.003 0.766±0.003
Procrustes 0.750±0.003 0.553±0.005 0.768±0.002 0.762±0.002

Concat
None 0.748±0.007 0.623±0.008 0.774±0.003 0.773±0.006
Averaging 0.745±0.003 0.634±0.010 0.775±0.002 0.765±0.003
Procrustes 0.753±0.003 0.552±0.004 0.768±0.003 0.768±0.003

Hadamard
None 0.733±0.009 0.560±0.007 0.777±0.002 0.749±0.006
Averaging 0.735±0.002 0.560±0.005 0.777±0.002 0.747±0.004
Procrustes 0.704±0.004 0.506±0.004 0.656±0.003 0.687±0.004

Table 9: Bitcoin: Average accuracy and standard deviation per method for the different combinations of design options.

Combination Edge Operator Alignment LINE node2vec GraphWave XNetMF

Exp
Decay

Average
None 0.704±0.060 0.668±0.045 0.473±0.040 0.578±0.116
Averaging 0.646±0.074 0.670±0.038 0.479±0.050 0.731±0.080
Procrustes 0.660±0.056 0.674±0.068 0.509±0.068 0.492±0.065

Concat
None 0.716±0.063 0.674±0.055 0.486±0.049 0.564±0.100
Averaging 0.678±0.034 0.652±0.038 0.470±0.048 0.668±0.068
Procrustes 0.632±0.052 0.637±0.023 0.474±0.049 0.480±0.058

Hadamard
None 0.495±0.063 0.514±0.047 0.469±0.052 0.513±0.051
Averaging 0.536±0.067 0.520±0.061 0.465±0.019 0.731±0.083
Procrustes 0.503±0.080 0.555±0.109 0.516±0.074 0.544±0.078

No
Combination

Average
None 0.803±0.054 0.611±0.047 0.657±0.159 0.742±0.097
Averaging 0.826±0.011 0.573±0.026 0.658±0.164 0.759±0.052
Procrustes 0.794±0.048 0.633±0.051 0.720±0.103 0.783±0.018

Concat
None 0.800±0.018 0.597±0.043 0.655±0.157 0.712±0.091
Averaging 0.808±0.015 0.555±0.040 0.656±0.162 0.689±0.044
Procrustes 0.789±0.047 0.613±0.047 0.720±0.103 0.782±0.020

Hadamard
None 0.575±0.058 0.513±0.062 0.648±0.149 0.707±0.096
Averaging 0.586±0.034 0.520±0.029 0.648±0.154 0.801±0.030
Procrustes 0.554±0.057 0.491±0.061 0.317±0.088 0.379±0.211

Linear
Combination

Average
None 0.746±0.046 0.759±0.043 0.632±0.103 0.828±0.057
Averaging 0.788±0.048 0.777±0.033 0.664±0.055 0.775±0.058
Procrustes 0.763±0.032 0.701±0.040 0.676±0.055 0.708±0.127

Concat
None 0.734±0.049 0.749±0.040 0.644±0.082 0.820±0.074
Averaging 0.735±0.052 0.723±0.076 0.627±0.079 0.711±0.055
Procrustes 0.719±0.060 0.686±0.021 0.627±0.081 0.694±0.106

Hadamard
None 0.504±0.048 0.584±0.044 0.861±0.052 0.814±0.071
Averaging 0.526±0.060 0.555±0.053 0.858±0.054 0.703±0.079
Procrustes 0.524±0.051 0.540±0.059 0.637±0.101 0.650±0.130

	Abstract
	1 Introduction
	2 Related Work
	3 Notation
	4 Proposed Framework
	4.1 (P1) Generating Snapshots
	4.2 (P2) Generating Node Embeddings
	4.3 (P3) Temporal Combination
	4.4 (P4) Generating Edge Embeddings

	5 Empirical Evaluation
	5.1 Datasets & Setup
	5.2 Q1. Link Prediction Performance
	5.3 Q2-Q5. Effectiveness of Design Options

	6 Conclusion
	References
	A Hyperparameter Tuning
	B Detailed Results

