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ABSTRACT
Social networks play a central role in the spread of diseases, ideas,

and beliefs. The Linear Threshold Model (LTM) is a prominent

model which describes the process of diffusion through the net-

work and how nodes become "infected" based on a threshold of

number of neighbors who are already "infected." LTM is often used

with the assumption that node thresholds are globally unique or

randomly distributed. In many cases, however, thresholds can dif-

fer between individuals, and knowing individual-level thresholds

can lead to better diffusion predictions. In this work, we propose

a causal inference approach for estimating node thresholds. We

develop a Structural Causal Model to show the identifiability of

causal effects in the Linear Threshold Model, and map the threshold

estimation problem to heterogeneous treatment effect estimation.

Through experimental results on real-world and synthetic datasets,

we show that individualized thresholds play an important part in

reliable long-term diffusion prediction.
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1 INTRODUCTION
The advent of online social networks allowed millions of people

to interact with each other. The spread of information and ideas

has been studied as information diffusion in many fields such as

epidemiology [16], marketing [15], and the social sciences [14].

The Linear Threshold Model (LTM) is one prominent framework

of information diffusion in networks. In the LTM process, an in-

dividual is influenced to adopt a product or idea if the proportion

of that individual’s friends who have already adopted that prod-

uct or idea is above some threshold. LTM has been used in many

settings, such as modeling the spread of ideas [29] and the develop-

ment of influence maximization algorithms [7, 15]. However, node

thresholds are typically assumed to be globally unique or randomly

distributed [15], despite the fact that in reality, different individuals

may have different susceptibility to social influence. In fact, a recent

survey on LTMs highlighted this gap in the research literature and
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specified the need to develop individual-level threshold estimation

models [27]. Moreover, existing works do not study LTM through

a causal inference lens, even though LTM is essentially a causal

concept: "how many friends does it take to buy a product before

it causes me to buy the same product?" In our work, we seek to

address these shortcomings of previous work.

We move away from globally set threshold assumptions and

estimate individual-level thresholds from data. Our models reflect

real-world scenarios in which some individuals are more easily

influenced than others, or are influenced by specific friends differ-

ently than other friends. To address the variety of characteristics

and behaviors of individuals, we frame the threshold estimation

problem as a causal problem: “what is the minimum number of

activated neighbors that can cause a node with certain attributes to

become activated?” We study a Structural Causal Model (SCM) that

encodes interference by contagion [20, 21]. Interference is defined

as the influence an individual’s social network has on their own

outcomes, where contagion is the process of friends’ outcomes

influencing an individual’s own outcomes. For example, in Fig 1,

Angelo might be tempted to buy new trendy sunglasses (outcome)

if his friends already bought them (contagion). Recent work has

studied the role and specification of SCMs in the presence of inter-

ference [5, 20, 26], the estimation of social effects [1, 19, 26], and

the use of other graphical models for diffusion prediction [10]. To

the best of our knowledge, no Structural Causal Model has been

developed for the Linear Threshold Model. Through SCM, we show

how the contagion can be identified in LTM, while contrasting our

work to prior studies on unidentifiability for social effects [19, 26].

We map the problem of individual threshold estimation to trigger-

based heterogeneous treatment effect estimation [28], and propose

two methods of estimating the threshold, one based on the concept

of meta-learners and the other on causal trees. In our experiments,

we explore the problem of diffusion prediction using the Linear

Threshold Model. Our experimental results on real-world and syn-

thetic datasets show that individualized threshold estimation plays

a crucial role in reliable long-term diffusion prediction.

2 PROBLEM SETUP
We present the problem setup for information diffusion, as well as

LTM. We then describe the objective of threshold estimation for

LTMs as well as our main objective for predicting thresholds.

2.1 Information diffusion
Let 𝐺 = (𝑽 , 𝑬) denote an attributed, social network, where 𝑽 is the

set of nodes and 𝑬 is the set of edges between nodes. If two nodes

𝑣,𝑢 ∈ 𝑽 are connected by an edge, then (𝑣,𝑢) ∈ 𝑬 , denotes an
edge from 𝑣 to 𝑢. If𝐺 is an undirected graph, then (𝑣,𝑢) ∈ E =⇒
(𝑢, 𝑣) ∈ E and we assume that diffusion can flow in either direction.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Molly Josh
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Michelle

𝑯𝑴𝒐𝒍𝒍𝒚 = 𝟎

𝑯𝑱𝒂𝒎𝒆𝒔 = 𝟎

𝑯𝑱𝒐𝒔𝒉 = 𝟏

𝑯𝑨𝒏𝒈𝒆𝒍𝒐 = 𝟏/𝟑

𝑯𝑴𝒊𝒄𝒉𝒆𝒍𝒍𝒆 = 𝟐/𝟑

Figure 1: A toy example illustrating the Linear Threshold
diffusion process, where Molly and James are activated. In
the first time step, Angelo will become activated, since his
threshold, 𝐻𝐴𝑛𝑔𝑒𝑙𝑜 = 1/3, but Josh will not become activated
since his threshold is 1, which requires all his friends to be
activated first.

Additionally, define the set of neighbors of 𝑣 to be 𝑁 (𝑣) = {𝑢 :

𝑢 ∈ 𝑽 , (𝑣,𝑢) ∈ E}. Each node 𝑣 ∈ 𝑽 has an𝑚-dimensional vector

of attributes, Xv, and outcome of interest 𝑌𝑣 ∈ {0, 1}, which is a

binary indicator of whether the node is activated (e.g. whether an

individual has bought new sunglasses). We define the set of all

activated nodes at time 𝑡 to be D𝑡 = {𝑣 : 𝑌𝑣 = 1}.

2.2 Linear Threshold Model
According to LTM, each node 𝑣 has a threshold of activation 𝐻𝑣 .

Given an initial set of activated nodes, D0 ⊆ V, diffusion occurs

in discrete steps, 𝑡 = 1, 2, . . . ,𝑇 . In each time step 𝑡 , a node 𝑣 ∈
𝑽 \ ∪𝑡

𝑖=0
D𝑖 is activated if the activation influence, the weighted

proportion of its activated neighbors reaches its threshold 𝐻𝑣
1
:∑

𝑢∈𝑁 (𝑣)
𝑤𝑢𝑣𝑌𝑢 ≥ 𝐻𝑣, (1)

where𝑤𝑢𝑣 is the normalized influence strength of neighbor 𝑢 to 𝑣 .

We assume𝑤𝑢𝑣 ∈ [0, 1] for (𝑢, 𝑣) ∈ 𝑬 , so that nodes only become

activated as the number of activated neighbors increases. Influence

weights can be calculated in a variety of ways such as: degree

centrality [15], PageRank [15], credit distribution [13], or edge

centrality [9].

Figure 1 shows a toy example of a social network with 5 individu-

als, assuming equal weights. Each node has their own threshold (e.g.

𝐻𝑣 = 1/3 means 𝑣 ’s threshold is 1/3.) The initial set of activations
is the set of individuals who have adopted a new product (new

sunglasses), which consists of two individuals: D0 = {Molly, James}.

In the first time step, Angelo will buy new sunglasses, since his

threshold, 𝐻𝐴𝑛𝑔𝑒𝑙𝑜 = 1/3, and 1 of his 3 friends (James) has already

bought new sunglasses. The set of activations at the first time step

is, D1 = {Molly, James, Angelo}. No one else will buy sunglasses,

since Josh’s threshold is 1, which requires all his friends to buy

sunglasses, and Michelle’s threshold is 2/3, which means all her

friends need to buy sunglasses, since she only has 2 friends.

1
We consider the threshold and activation influence to be a weighted proportion. Our

model can be applied in both settings.

2.3 Problem statement
Our goal in this work is to estimate individual-level thresholds for

all nodes in the network:

Problem 1. (Heterogeneous threshold estimation for LTM) Given a
graph,𝐺 = (𝑽 , 𝑬) and a set of individual-thresholds𝑯 = {𝐻𝑣 |𝑣 ∈ 𝑽 }.
The goal is to estimate thresholds, �̂� = {�̂�𝑣 |𝑣 ∈ 𝑽 }, such that the
average error is minimized:

min

�̂�𝑣

1

|𝑽 |
∑
𝑽

|𝐻𝑣 − �̂�𝑣 |. (2)

An important application of estimating individual-level thresholds

is to predict diffusion [6, 13, 25]. Another application is targeting

individuals who are susceptible to neighborhood influence, since

individuals with lower thresholds require less activated neighbors.

3 CAUSAL MODEL FOR LTM
First, we provide a brief background to causal inference, particularly

the problem of estimating heterogeneous treatment effects. Then,

we present a causal model assumption for LTM.

3.1 Causal inference background
For any node 𝑣 , denote the treatment group assignment as 𝑍𝑣 ∈
{0, 1}, where𝑍𝑣 = 1 and𝑍𝑣 = 0 indicates that 𝑣 is in the treatment or

control group, respectively. The observed outcome of an individual

given a treatment value of 𝑧 is 𝑌𝑣 (𝑧). If we have both observed

outcomes, then we can compute the individual effect as: 𝑌𝑣 (1) −
𝑌𝑣 (0). In practice, we cannot observe both outcomes simultaneously,

so the actual observed outcome is:

𝑌𝑣 =

{
𝑌𝑣 (0), if 𝑍𝑣 = 0,

𝑌𝑣 (1), if 𝑍𝑣 = 1,

(3)

Often times the average treatment effect is of interest, which is the

mean of differences in treated and control groups: 𝐸 [𝑌 (1) − 𝑌 (0)].

3.1.1 Heterogeneous treatment effect estimation. In many cases,

effects of treatment are different for each individual, known as

heterogeneous (or individual) treatment effect expressed through

the conditional average treatment effect (CATE) [2, 22]. CATE is

defined as the expectation of difference in outcome with respect to

an individual’s features:

𝜏 (x) ≡ 𝐸 [𝑌 (1) − 𝑌 (0) | X = x], (4)

Since this is the estimated effect with respect to relevant features,

we get individualized effects, instead of average effects overall.

3.2 Causal model for LTM
The first step in estimating causal effects in networked data is rea-

soning about causal effect identification using Structural Causal

Models (SCMs) [21]. SCM is a graphical model that encodes cause-

effect relationships between variables. SCMs typically assume that

data is independent and identically distributed (IID), and do not

encode interference between individuals. Interference occurs when

one individual’s outcome may depend on other individuals. Identifi-

cation in the presence of interference has been studied [1, 5, 20, 26],

but not in the context of LTM. Ogburn and VanderWeele presented

an extensive discussion of SCMs for interference [20], exploring
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Figure 2: A causal model of contagion for a node 𝑣 that re-
flects the LTM process.

three different types of interference for fixed group sizes: direct,

contagion, and allocational. In the context of LTM, diffusion is a

problem of contagion. Contagion is present when an individual’s

individual outcome depends on the outcome of other individuals,

which is analogous to LTM activation. We present our SCM that

encodes contagion for an arbitrary size neighborhood.

Figure 2 shows the causal model of diffusion we develop to

capture the LTM process. Here, X𝑁 represents a set of features, and
Y𝑡
𝑁
is the set of indicators of activations for the neighbors, 𝑁 , of

node 𝑣 . An arrow from one variable to another denotes a cause-

effect relationship (e.g. a node’s features affect its own activation).

In this model, the contagion from node 𝑣 ’s neighbors are captured

through the arrows from Y𝑡
𝑁
to𝑌 𝑡+1

𝑣 . While group effects have been

shown to be unidentifiable without strong assumptions [19], Shalizi

and Thomas explored the identification of effects after decoupling

and considering pairwise interactions [26]. In contrast to themodels

explored by Shalizi and Thomas, our models consider an arbitrary

neighborhood size for the contagion effects.

One issue to consider is that the neighborhood features and

outcomes are of varying sizes, so the estimation of effects cannot be

estimated directly using standard regression with a fixed number

of variables. We follow the approach used by Arbour et al. for

summarizing relational features using aggregation [1]. They use

sufficient statistics to model the distribution of relational variables

for estimating direct interference. We use the weighted mean of

activated neighbors as the measurement for activation influence.

In order to identify the effect of activation influence (left side of

eq (1)) on a node’s own activation (i.e. the effect of Y𝑡
𝑁

on 𝑌 𝑡+1
𝑣 ),

we need to find the correct adjustment set through the back-door
criterion [21]. To identify the contagion at an arbitrary time step 𝑡 ,

the effect of Y𝑡−1
𝑁

on 𝑌 𝑡
𝑣 , we find a set of variables 𝑍 such that “no

node in 𝑍 is a descendant of Y1
𝑁

and 𝑍 blocks every path between

Y1
𝑁
and 𝑌 2

𝑣 that contains an arrow into Y1
𝑁
”. Here, a blocked path

follows the same criteria as in a traditional directed acyclic graph

(DAG). In our example, there are three arrows going into Y𝑡−1
𝑁

:𝑌 𝑡−2
𝑣 ,

Y𝑡−2
𝑁

and X𝑁 . Based on this, one sufficient set to block all back-

door paths is to condition on the node features𝑋𝑣 , and the previous

outcome 𝑌 𝑡
𝑣 . This is because the previous outcome blocks all back-

door paths from any 𝑌𝑁 and 𝑋𝑣 blocks all back-door paths of 𝑌
𝑡−1
𝑣 .

Therefore, to identify the contagion effect for any node 𝑣 ∈ 𝑽 , we
only need to take into account 𝑣 ’s features and its previous outcome.

In the CATE formula defined in eq. (4), this is the heterogeneous

subgroup 𝑋𝑣 = x, The special case is the initial contagion effect of

Y0
𝑁

on 𝑌 1

𝑣 , where there are no back-door paths. In this case, we can

estimate the effect of Y0
𝑁

without an adjustment set.

To match the characteristics of LTM, we define a functional form

of the outcome of node 𝑣 . The outcome of node 𝑣 at time 𝑡 can

be represented as a function of

(
𝑋𝑣, 𝑌

𝑡−1
𝑣 ,Y𝑛

)
, which maps to the

threshold indicator, 𝜙 , analogous to eq. 1:

𝜙 (𝑋𝑣,Y𝑁 ) = 1
[ ∑
𝑢∈𝑁

𝑤𝑢𝑣 ∗ 𝑌𝑢 ≥ ℎ(𝑋𝑣)
]
. (5)

Here, we define a threshold function on the node features as 𝐻𝑣 =

ℎ(𝑋𝑣), which captures the notion of individual-level thresholds.

Finally, we can define the functional form of 𝑌 𝑡
𝑣 for 𝑡 ≥ 1 as:

𝑌 𝑡
𝑣 (𝑋𝑣, 𝑌

𝑡−1
𝑣 ,Y𝑁 ) =

{
𝑌 𝑡−1
𝑣 if 𝑌 𝑡−1

𝑣 = 1,

𝜙 (𝑋𝑣,Y𝑁 ) if 𝑌 𝑡−1
𝑣 = 0.

(6)

This form correctly captures the LTMprocess: a node stays activated

if already activated, otherwise, it activates based on its individual

threshold and the activations and influences of neighbors.

4 THRESHOLD ESTIMATION FOR LTM
Now, we map the problem of estimating thresholds to the problem

of estimating triggers for heterogeneous effects. Then, we propose

two methods for estimating thresholds for LTM.

4.1 HTE triggers for threshold estimation
The treatment in our problem, 𝑍𝑣 , is the activation influence of

neighbors (i.e.

∑
𝑤𝑢𝑣 ∗ 𝑌𝑢 ), which is not a binary value, but rather

a continuous value. In LTM, the continuous treatment value of

activation influence turns into a binary treatment through node

thresholds: a node is "treated" if its activation influence is above

its threshold, and "untreated" (or control) if it is below. Then our

goal is transformed into a problem of estimating the correct node

threshold that correctly identifies when a node is treated. To do

this, we map the threshold estimation problem to the problem of

estimating triggers for heterogeneous treatment effects [28].

A trigger is defined as the minimum amount of treatment neces-

sary to change an outcome. Some examples of triggers are: (1) the

minimum number of days a patient needs to take a medicine to be

cured; (2) a minimum discount needed for a customer to buy a prod-

uct. For the problem of threshold estimation, our causal question

is "what is the minimum number of activated neighbors that can

cause a node with certain attributes to become activated"? A trigger

𝜃 can have two potential outcomes, dependent on whether 𝑍 is

above and below the trigger: 𝑌 (𝑍 ≥ 𝜃 ) and 𝑌 (𝑍 < 𝜃 ). Then, the
average treatment effect with trigger 𝜃 is 𝐸 [𝑌 (𝑍 ≥ 𝜃 ) −𝑌 (𝑍 < 𝜃 )].
When the threshold is the same for everyone in a population, the

trigger is defined at the population level.

In order to estimate individual-level thresholds, we study hetero-
geneous (individual) triggers estimation. Let the individual trigger of

node 𝑣 be 𝜃𝑣 with potential outcomes:𝑌𝑣 (𝑍𝑣 ≥ 𝜃𝑣) and𝑌𝑣 (𝑍𝑣 < 𝜃𝑣).
We can define CATE with a trigger as:

𝜏 (x) = 𝐸 [𝑌 (𝑍𝑣 ≥ 𝜃𝑣) − 𝑌 (𝑍𝑣 < 𝜃𝑣) |X = x] . (7)



MLG ’20, Aug 24, 2020, San Diego, CA, US Christopher Tran and Elena Zheleva

We see that estimating CATE with a trigger translates to estimating

the “effect” of the activation influence being above the trigger. The

trigger 𝜃𝑣 = ˆℎ(𝑋𝑣) is an estimation of the node threshold ℎ(𝑋𝑣).
We demonstrate through an example why the trigger that maxi-

mizes the effect corresponds to finding the correct threshold for a

node 𝑣 . Let |𝑁 (𝑣) | = 8 and the true threshold be ℎ(𝑋𝑣) = 0.5 for a

node 𝑣 . Assume all neighbor influences are equal (𝑤𝑢𝑣 = 1/8). De-
fine𝐴0

𝑣 (𝑧) and𝐴1

𝑣 (𝑧) to be the set of potential outcomes when there

are less than and greater than 𝑧 neighbors activated, respectively:

𝐴0

𝑣 (𝑧) = {𝑌𝑣 (𝑎) | 0 ≤ 𝑎 < 𝑧},
𝐴1

𝑣 (𝑧) = {𝑌𝑣 (𝑎) | 𝑧 ≤ 𝑎 ≤ 8}, (8)

where 𝑌𝑣 (𝑎) is the outcome with 𝑎 activated neighbors. For sim-

plicity, we assume that each potential outcome is equally likely.

Suppose a model estimates
ˆℎ(𝑋𝑣) = 𝜃𝑣 = 1/8. To find the causal ef-

fect of the estimated threshold, we evaluate the expected outcomes

above and below the trigger
2
:

𝐸 [𝑌𝑣 (𝑍𝑣 < 𝜃𝑣)] =
1

𝑁0

𝑁0−1∑
𝑎=0

𝑌𝑣 (𝑎) =
1

1

(0 ∗ 1) = 0, (9)

𝐸 [𝑌𝑣 (𝑍𝑣 ≥ 𝜃𝑣)] =
1

𝑁1

𝑁1∑
𝑎=𝑁0

𝑌𝑣 (𝑎) =
1

8

(0 ∗ 3 + 1 ∗ 5) = 5

8

, (10)

where 𝑁0 = |𝐴0

𝑣 (1) | = 1 and 𝑁1 = |𝐴1

𝑣 (1) | = 8. The first quantity is

0 since there is only 1 element in 𝐴0

𝑣 (1), namely, 𝑌𝑣 (0), which is 0

since no neighbors are activated. The second set, 𝐴1

𝑣 (1), has 3 cases
where the node does not activate (1, 2, 3 neighbors activated) and 5

cases where the node does activate (4, 5, 6, 7, 8 neighbors activated).

We find the expected outcome is 5/8, and the causal effect is:

𝐸 [𝑌𝑣 (𝑍𝑣 ≥ 𝜃𝑣)] − 𝐸 [𝑌𝑣 (𝑍𝑣 < 𝜃𝑣)] = 5/8 − 0 = 5/8. (11)

On the other extreme, imagine a model estimates 𝜃𝑣 = 1.0. The

expected outcomes and treatment effect in this case are:

𝐸 [𝑌𝑣 (𝑍𝑣 < 𝜃𝑣)] = 4/8, (12)

𝐸 [𝑌𝑣 (𝑍𝑣 ≥ 𝜃𝑣)] = 1, (13)

𝐸 [𝑌𝑣 (𝑍𝑣 ≥ 𝜃𝑉 )] − 𝐸 [𝑌𝑉 (𝑍𝑣 < 𝜃𝑣)] = 1 − 4/8 = 4/8. (14)

Finally, suppose a model estimates the true threshold correctly,

𝜃𝑣 = ℎ(𝑋𝑣) = 0.5. Then, the expected outcomes are:

𝐸 [𝑌𝑣 (𝑍𝑣 < 𝜃𝑣)] = 0, (15)

𝐸 [𝑌𝑣 (𝑍𝑣 ≥ 𝜃𝑣)] = 1, (16)

since there will be no cases where node 𝑣 activates below the trigger

andwill always activate above the trigger. This results in a treatment

effect of 1, the maximum value of CATE for LTM. Therefore, we

conclude that estimating the trigger that maximizes the treatment

effect will estimate the node threshold that changes the output.

Formally, we define the problem as: find the triggers, 𝜃𝑣 , that
maximizes CATE 𝜏 with a minimum trigger 𝜃 :

argmax

𝜃

𝜏 (x) = 𝐸 [𝑌𝑣 (𝑍𝑣 ≥ 𝜃𝑣) − 𝑌𝑣 (𝑍𝑣 < 𝜃𝑣) | X = x] . (17)

For each node, we find a the minimal trigger that maximizes CATE,

which results in an estimated individual threshold.

2
We omit the conditional X = x since we only consider node 𝑣.

4.2 Heterogeneous trigger estimation
We have discussed how to map the threshold estimation problem to

a problem of estimating triggers for heterogeneous treatment effects.

Here, we describe two methods for estimating triggers: Trigger-

based causal trees (TCT) [28] and ST-Learner. We first describe

how to adapt trigger-based causal trees [28] to the problem of

LTM trigger estimation. Then, we propose a novel meta-learner,

ST-Learner, which can use any base learner for estimating effects.

4.2.1 Causal Trees. Causal trees work similarly to decision trees,

in that they greedily split using a partition function. The main

difference is that the goal of a causal tree is to estimate CATE

for different populations of individuals, rather than to predict a

label. The causal trees we use work by finding splits that maximize

the differences in CATE as a spltiting criteria, so that the most

heterogeneous effects are found at each split [2]. We use the CTL

method by Tran and Zheleva, which use an additional validation

set while building the tree to penalize effect estimations that do

not generalize estimated effects [28]. In order to learn triggers,

an additional search is done at each split to find the trigger that

maximizes the effect estimation in the split. Through recursive

partitioning, CTL balances heterogeneous discovery of effects with

generalization effects on separate validation data.

Using the causal tree, we can extract subpopulations via the

leaves of the tree. Each leaf represents a subpopulation based on

the attribute path to that leaf node. In each leaf, a trigger that

maximizes the difference in effects is given. For example, some

leaves may have only a trigger of 0.1, which means nodes that end

up in that leaf only need a small amount of influence to trigger

a change. Other leaves may have a high trigger (e.g. 0.7) which

means that a large majority of their neighborhood needs to be

activated, to influence a change. Using these leaves, we can assign

an individualized threshold for every node in the graph.

4.2.2 ST-Learner. Estimating heterogeneous effects using base or

meta learners has been described in detail by Künzel et al [17]. They

describe three types of learners: S-, T-, and X- learners. However,

none of them consider the problem of trigger-based HTE and are

not directly suitable for solving the problem of threshold estimation.

Here, we describe a variant of the S-Learner to solve the trigger-

based HTE estimation problem, which we call the ST-Learner
3
.

The S-Learner is based on a single base learner for estimating out-

comes from data. A base learner can be any regression or classifica-

tion method, such as Linear Regression or Random Forest. The base

learner is used to predict a unit’s outcome given the features and

treatment indicator: 𝐸 [𝑌𝑣 |𝑋𝑣, 𝑍𝑣]. Here, the treatment indicator is

given no special meaning, so the base learner can choose to not use

it in the prediction (e.g. a weight of 0). To estimate CATE, the base

learner can be used to estimate the expected outcomes when 𝑍𝑣 is 1

and 0: 𝐸 [𝑌𝑣 (1) − 𝑌𝑣 (0) |𝑋𝑣] = 𝐸 [𝑌𝑣 |𝑋𝑣, 𝑍𝑣 = 1] − 𝐸 [𝑌𝑣 |𝑋𝑣, 𝑍𝑣 = 0],
which is the difference in predictions when varying 𝑍𝑣 .

To create the ST-Learner, we need to learn the trigger that maxi-

mizes the effect. We first use a single base learner to learn the out-

comes given all features concatenated with the treatment variable:

𝐸 [𝑌𝑣 |𝑋𝑣, 𝑍𝑣]. Let Z = {𝑧1, 𝑧2, . . . , 𝑧𝑛} be all the possible treatment

3
The "S" refers to the single learner and "T" is for triggers, following the same naming

scheme.
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Figure 3: Representation of our experimental setup. Given
the true number of activations up to time 𝑡 (first row), we
train on different sets. D𝑖 represents the set of all activated
nodes up to time 𝑖 and 𝐷 ′

𝑖
represents the predicted activa-

tions. The second row is using only the initial set of activa-
tions, D0. The third row uses activations up to time 1, D1.

values of 𝑍𝑣 in the data. Define Θ = {𝑟1, 𝑟2, . . . , 𝑟𝑚},𝑚 ≤ 𝑛, to be

the subset of triggers we are considering. We use 𝑟𝑖 to refer to any

potential trigger, while 𝜃𝑣 is a node’s individual trigger. We can

consider all potential values of treatment in the training data, or

we can consider a discretization of these values (𝑚 ≤ 𝑛).

Using the trained base learner, we can now estimate CATE with

different triggers. For any node in our data, we can estimate CATE

at any treatment level by imputing the treatment values in Z, so that
we have 𝑛 predictions for any node. Since we have all predictions,

we can compute the expectation above and below each trigger. Let

Θ1

𝑖
= {𝑧𝑘 : 𝑧𝑘 ≥ 𝑟𝑖 } and Θ0

𝑖
= {𝑧 𝑗 : 𝑧 𝑗 < 𝑟𝑖 } be the set of treatment

values above and below the trigger 𝑟𝑖 , respectively. Mapping the

right hand side of eq (7) for an arbitrary trigger 𝑟𝑖 , we get the

analogous objective to the ST-Learner:

argmax

𝑟𝑖

𝜏 (x) = 1

|Θ1

𝑖
|

∑
𝑧≥𝑟𝑖

𝐸 [𝑌 |X = x, 𝑍 = 𝑧]

− 1

|Θ0

𝑖
|

∑
𝑧<𝑟𝑖

𝐸 [𝑌 |X = x, 𝑍 = 𝑧] . (18)

We use the base learner to estimate the outcomes for every node

above and below the trigger, by taking the average outcomes.

5 EXPERIMENTS
We study three real-world datasets that are natural cases of in-

fluence diffusion. We also experiment on four synthetic network

generation models. Our models are compared to methods proposed

by Talukder et al. [27] and a practical regression baseline.

5.1 Experimental setup
We use two baseline threshold estimation methods by Talukder

et al.: Heuristic Expected and Heuristic Individual [27]. Heuristic
Expected computes a unique threshold for all the nodes in the net-

work. Heuristic Individual estimates a range of values to sample

node thresholds from. These baselinemethods utilize degree central-

ity in their threshold selection methods. Since random thresholds

are often used in influence maximization problems [15], we also

employ a baseline called Random, that assigns individual thresholds

uniformly random from 0 to 1. In addition, we use a more practical

baseline for threshold estimation using Linear Regression. To get

labels for Linear Regression, we take all currently activated nodes

in the network and estimate their threshold by taking the current

neighborhood activations. Then, we fit a Linear Regression model

on those nodes and estimate thresholds for all nodes in the network.

We compare the baseline methods to the Causal Tree and the

ST-Learner method. For the ST-Learner, we use Linear Regression as

the base learner. For neighbor influences, we use degree centrality:

𝑤𝑢𝑣 = 1/|𝑁 (𝑣) |, where |𝑁 (𝑣) | is the degree of node 𝑣 . However,
our models can be applied with any weight estimation method.

5.2 Datasets
We study three real-world datasets for diffusion estimation. Ad-

ditionally, we use synthetic datasets to explore how our models

performs under different network assumptions. For each dataset,

we specify the time period for diffusion.

5.2.1 Hateful Users. The Hateful Users dataset was collected by

Ribeiro et al. [24]. In this dataset, the authors collected a sample

retweet network from Twitter, with 200 most recent tweets for each

user. A sample of users were selected to be annotated as hateful or
not hateful. We employ their methodology of identifying hateful

users, and the rest can be predicted based on the history of tweets.

We estimate node triggers for how “hatefulness” spreads through

the network, where being activated means you change from not
hateful to hateful. For node attributes, we extract Empath categories
from user tweets [12], and average across all user tweets. Empath

captures a wide variety of topics that are relevant. Some examples

are: violence, fear, and warmth. We consider a month to month

diffusion: how “hatefulness” diffuses on a month to month basis.

We look at two time periods: Jan 2016 to Dec 2016 and Jan 2017 to

Oct 2017. In the first time period, there are 18,520 users, with an

average clustering coefficient of 0.0521. In the second period, there

are 345,693 users with an average clustering coefficient of 0.0071.

5.2.2 Cannabis. The Cannabis dataset is a follower network, for
the spread of cannabis tweets. The dataset is originally collected

on all users who tweet about the ecigarette Juul. From the users

who tweet about Juul, we identify those users who also tweet about

cannabis or marijuana. All tweets are collected and Empath cate-

gories [12] are used as attributes. We estimate node thresholds for

how cannabis related tweets diffuse through the network. We con-

sider the period between Jan 2017 to Dec 2017. There are 2,976,033

users in this dataset. The average clustering coefficient is 0.0369.

5.2.3 Higgs Boson. This dataset is based on the announcement of

the Higgs-boson like particle at CERN on July 4, 2012. The dataset

was collected by De Domenico et al. between July 1 and July 8 of

2012 and is follower network on Twitter [8]. We focus on the spread

of mentions for the Higgs-boson discovery with the announcement

on July 4 until July 8. There are no explicit node attributes (e.g. tweet

text) like the other two datasets, so we construct features based on

the graph and use those for our method. We use degree central-

ity, both in-degree and out-degree, as well as counts of user and

neighborhood tweets. We consider hourly diffusions. The average

clustering coefficient in this dataset is 0.1280.
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Method Hateful 2016 Hateful 2017 Cannabis Higgs Erdos-Renyi Pref. Attachment Small World Forest Fire

Random 0.2450 0.2262 0.2033 0.6287 0.7242 0.8132 0.8039 0.8005

Heuristic Expected 0.2608 0.2300 0.2433 0.6429 0.6488 0.7551 0.7470 0.7376

Heuristic Individual 0.2617 0.2301 0.2691 0.6436 0.6580 0.7655 0.7566 0.7396

Linear Regression 0.1522 0.2297 0.3674 0.6449 0.9693 0.9459 0.8520 0.8429

Causal Tree 0.7207 0.5793 0.7830 0.9427 0.9470 0.9274 0.8461 0.8267

ST-Learner 0.6877 0.5785 0.7564 0.9734 0.9783 0.9611 0.8871 0.8737

Table 1: Average Jaccard index across all datasets (higher is better). Our models have the highest accuracy across all datasets.

5.2.4 Synthetic datasets. We generate synthetic datasets using four

graph generation models: Erdos-Renyi [11], preferential attach-

ment [3], small world [30], and forest fire [18]. We set the final

number of nodes to 1000, and for each node, we randomly generate

100 node attributes from a Gaussian, 𝑁 (0, 1). To generate thresh-
olds, we use a random linear regression model with 10 attributes

using scikit-learn’s make regression function [23]. The normalized

(between 0 and 1) outputs of the linear model are used as thresholds

for each node. 50 nodes are randomly set to activated and diffusion

events are generated based on LTM for 8 time steps. In Erdos-Renyi,

we vary the probability of edge creation 𝑝 from 0.05 to 0.5. In pref-

erential attachment, we vary the parameter 𝑘 , the number of new

attachments, from 1 to 50. For the small world networks, we fix the

probability of rewiring an edge to 0.1, and vary the parameter of 𝑘

nearest neighbors from 1 to 50. For forest fire networks, we fix the

backward probability of an edge to 0.1 and vary the forward proba-

bility of an edge 𝑓 from 0.05 to 0.5. For each network generation

model, we run 10 simulations and report the average accuracy.

5.3 Evaluation
For evaluation, we simulate diffusion using estimated node thresh-

olds from each model. The goal for evaluation is to determine if our

node thresholds are capable of capturing the true number of activa-

tions. The better the threshold estimation, the closer the estimation

of activated nodes at any given time point, which we call reach.
To compare results across different methods, we start with a

given snapshot of the network (e.g. Jan 2016), and estimate the node

thresholds at that snapshot. Here, a snapshot is the current structure

and activations of the network at time 𝑡 . The proportion of activated

neighbors for any activated node is considered the threshold. For

unactivated nodes, we do not consider them for any of the learning

models (Linear Regression, Causal Tree, ST-Learner), while they

are considered for the Heuristic baselines. Using those thresholds,

we simulate a diffusion process until a target time (e.g. Dec 2016).

We show results at different starting time points, since we may

have more information with different snapshots. For evaluation, we

show the real and simulated number of activated nodes based on

estimated node thresholds. Figure 3 shows our experimental setup.

In addition to the comparisons on the global reach of eachmethod,

we also estimate the error of the specific nodeswhichwere predicted

as activated nodes using Jaccard index. LetD𝑡 be the set of activated

nodes and D ′
𝑡 be the set of predicted activated nodes up to time 𝑡 .

We compute the average Jaccard index over all sets as:

𝐽 =
1

𝑇

𝑇∑
𝑡=0

|D𝑡 ∩ D ′
𝑡 |

|D𝑡 ∪ D ′
𝑡 |
. (19)

We will also reference the average Jaccard index as the accuracy

of prediction. While the reach estimations compares the number

of activated nodes, the average Jaccard index shows how accurate

each model is in predicting specific activated nodes.

5.4 Real-world data results
We present the results on the real-world datasets. In each dataset,

we show the true and simulated reach curves. Overall, our models

are able to get better reach estimates, and predict a curve closer to

the true reach, compared to baseline methods. Our models are able

to achieve more accurate activation predictions, shown in Table 1.

5.4.1 Hateful Users Dataset. Figures 4a-4d show the diffusion pre-

dictions for the Hateful Users dataset from Jan 2016 to Dec 2016,

with varying starting points (Jan, Mar, May, Jul). We show diffusion

simulations at four snapshots before Dec 2016. The first thing we no-

tice is that our models initially overestimates the reach the diffusion

prediction, but is able to predict close to the final diffusion amount.

Additionally, we see that as we get more time steps, our models

obtains more accurate reach estimates. For example, in Figures 4a

and 4b, where we start with information in January and March, our

models overestimates the prediction in the beginning. With more

information, the reach estimates are better, as in Figures 4c (starting

in May), and 4d (starting in July). In the 2017 dataset, we notice the

same trends as in the 2016 dataset: our models overestimates the

reach prediction in the beginning, but predicts close to the final

true amount, so we omit the plots.

5.4.2 Cannabis Dataset. Figures 4e-4h show results for threshold

estimation on the Cannabis dataset from Jan 2017 to Dec 2017. Con-

trast to the Hateful Users dataset, all models predict diffusion that

saturate after a number of time steps. A reason for this could be the

sparsity of edges. Additionally, the network is a follower network,

so different parts of the network do not necessarily interact with

each other, which results in disjoint subgraphs. About 77% of users

in this follower network only have 1 follower. The diffusion may

get “blocked” when there is no connection to different parts of the

graph, so the simulated diffusion will not progress throughout the

network. Another reason is the possibility of exogenous variables

that affect how users tweet about cannabis, and how many users

tweet about cannabis. New users may join Twitter, or laws may be

passed that increase the activity of Cannabis related hashtags. The

methods presented are not able to account for exogenous variables.

5.4.3 Higgs Dataset. For the Higgs dataset, we show diffusion

predictions from the beginning of July 4 until the end of July 8.

Figures 4i-4l shows the diffusion process for four different starting

time steps. Specifically, we start at noon, July 4th and increase the

starting time steps by 12 hours each time. Here, we see that the
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Figure 4: Comparison of diffusion size prediction on three real world datasets. Ourmodels have the closest estimation of reach
over longer time periods whereas the baselines incorrectly predict diffusion saturation in the early stages.

Method Hateful Users Cannabis Higgs

Heuristic Expected 0.9523 0.012 0.5840

Heuristic Individual [0.5, 1.0] [0, 0.1] [0.3. 0.9]

Linear Regression 0.0063 0.0369 0.5298

Causal Tree 0.0202 0.0020 0.7127

ST-Learner 0.0486 0.0051 0.5435

Table 2: Average estimated thresholds for all models.

ST-Learner performs better than the causal trees. Additionally, the

baseline models significantly overestimate the reach predictions

across all snapshots of the network.

5.4.4 Discussion. Interestingly, the baseline methods predict dif-

fusion saturation in all real-world datasets, but may overestimate

(Higgs dataset) or underestimate reach (Hateful Users and Cannabis

datasets). To explain this behavior, we look at the thresholds pro-

duced by eachmodel, shown in Table 2. In Hateful Users, our models

produce significantly lower thresholds compared to the Heuristic

baseline methods (0.0202 and 0.0486 v.s. [0.5, 1.0] and 0.9523). From
the results in Figures 4a-4d, we saw the baseline methods diffu-

sion predictions plateau early on, which suggests the thresholds

estimated were too high and resulted in saturation. This also oc-

curs in the Cannabis dataset, where our model’s thresholds are

significantly lower than the baseline methods.

Compared to our models, Linear Regression estimates larger

thresholds in the Hateful Users, which results in overestimating

reach. In the Higgs dataset, our thresholds are on average higher

(0.7127 and 0.5435 v.s. [0.3, 0.9] and 0.5840), which explains why the
baselines significantly overestimate true reach estimations (e.g. Fig-

ure 4j). From these results, we show that having individualized and

accurate thresholds are important for reliable diffusion prediction.

5.5 Synthetic data results
We explore how the network structure affects a model’s ability to

estimate thresholds correctly. Here, we show the average Jaccard

index of all models run over 10 simulations. Figure 5 shows the

average Jaccard index of all models across variations of parameters

for each network structure. We can see that the Linear Regression

based models perform the best, with the ST-Learner performing

the best overall. The most likely reason is that those threshold

estimation models are closest to the underlying process of thresh-

old generation, which was based on a linear regression. Linear

Regression can exploit the imprecise thresholds to learn the correct

thresholds and predict thresholds more accurately. The Causal Tree

performs worse out of the three learning methods, which may also

be due to the linear model used for threshold generation.
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Figure 5: Average Jaccard index across variations for several network structures. All models’ vary in accuracy across all net-
works depending on the parameters.

6 CONCLUSION
In this work, we proposed a causal inference approach to individual-

level threshold estimations in the Linear Threshold Model. We have

shown that under our causal model assumption, contagion can

be identified, and the heterogeneous treatment effects can be esti-

mated in the social network. We adapt trigger-based causal trees

and develop a new meta-learner, the ST-Learner, for estimating

triggers for heterogeneous effects to solve the threshold estimation

problem. Our results show that learning individualized thresholds

from data can provide better and more reliable estimates of dif-

fusion in networks, compared to state-of-the-art methods which

ignore individual variations. A fruitful avenue of research would

be to develop models that combine edge diffusion probability esti-

mation with threshold estimation, as well as explore learning from

data over time to combat upwardly biased thresholds and diffusion

predictions, known as the opacity problem [4].
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