
GATCheck: A Detailed Analysis of Graph Attention Networks
Lovish Madaan∗

Indian Institute of Technology, Delhi
lovish97@gmail.com

Siddhant Arora∗
Indian Insitute of Technology, Delhi
siddhantarora1806@gmail.com

ABSTRACT
Graph Attention Networks (GATs) are widely used for Representa-
tion Learning in Graphs, but there is no proper study highlighting
on what tasks GATs perform better than other models and why.
In this appraisal paper, we aim to improve our understanding of
GATs on a variety of tasks, including link prediction, multi-class
node classification, and pairwise node classification on benchmark
datasets. We also perform ablation studies on the various hyperpa-
rameters of GATs and try to reason about the importance of each
of these in node classification and link prediction tasks. Our study
offers insights into the effectiveness of GATs as compared to other
techniques, and we make our code1 public so as to facilitate future
exploration.
ACM Reference Format:
Lovish Madaan and Siddhant Arora. 2020. GATCheck: A Detailed Analysis
of Graph Attention Networks. In Proceedings of MLG’20. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Graph based data are encountered in many real-world applications
across a number of domains. For instance biological networks, so-
cial networks, world-wide web, knowledge graphs, etc. can all be
modeled using graphs in an intuitive way. These graphs can be
very large and complex so as to capture the various relationships
(edges) between the entities (nodes). Modern machine learning tool-
box comprising of deep neural networks introduced originally for
Vision and Natural Language Processing (NLP) has been adapted
in the graphs domain with varying levels of success. The basic
idea is to get good node embeddings which can be further used
in a downstream task like node classification, link prediction, etc.
Good node embeddings should be able to capture the structural
and node level information present in a graph. Earlier methods
to learn node embeddings aimed to extend standard word2vec ap-
proach over graphs by using random walks over node to generate
sentences([1], [2]). Graph Convolutional Networks (GCNs) intro-
duced in [3] gather information from a node’s neighborhood and
each neighbor node contributes equally (or weighted by it’s de-
gree) during message passing. [4] introduced various aggregation
functions like mean, pool, LSTM along with GCN-like aggregation
∗Equal Contribution
1https://github.com/lovishmadaan/gatcheck

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MLG’20, KDD, August 2020
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

on a fixed-sized neighborhood sample of a node in the message
passing step. Graph Attention Networks (GATs) [5] overcome the
shortcomings of the previous works by learning to assign varying
levels of importance to all the nodes in the neigborhood of the node
under consideration, rather than treating each node as equally im-
portant or using a fixed weight. Moreover, GATs are generalizable
to unseen nodes (inductive learning), thus simulating a real-world
setting.

2 BACKGROUND
Here we will describe the working of a GAT layer in brief. The input
to a layer is a set of node features, 𝑥𝑥𝑥 = { ®𝑥1, ®𝑥2, · · · , ®𝑥𝑁 }, where 𝑁 is
the number of nodes. The layer transforms the input node features
to 𝑥𝑥𝑥 ′ = { ®𝑥 ′1, ®𝑥

′
2, · · · , ®𝑥 ′

𝑁
}. The input features are first transformed

to a different embedding space by multiplying with a transform
matrix𝑊𝑊𝑊 . The parameters of𝑊𝑊𝑊 can be learned using a Multi-
Layered Perceptron (MLP). After the transformation, an attention
mechanism 𝑎 is applied on every edge, indicating the importance
of the features of source node to the target node. This attention is
commonly referred to as self-attention or intra-attention.

𝑒𝑖 𝑗 = 𝑎(𝑊𝑊𝑊 ®𝑥𝑖 ,𝑊𝑊𝑊 ®𝑥 𝑗 ) (1)
where 𝑒𝑖 𝑗 is the weight corresponding to the edge between nodes

𝑖 and 𝑗 . For each node 𝑖 , the weights are then normalized for the
neighborhood N𝑖 using the softmax function:

𝛼𝑖 𝑗 = softmax(𝑒𝑖 𝑗 ) =
exp(𝑒𝑖 𝑗 )∑

𝑘∈N𝑖

exp(𝑒𝑖𝑘 )
(2)

Various attention mechanisms have been used in the literature
[6, 7], and the original GAT paper uses the additive attention intro-
duced in [6], i.e.

𝑒𝑖 𝑗 = 𝑎(𝑊𝑊𝑊 ®𝑥𝑖 ,𝑊𝑊𝑊 ®𝑥 𝑗 ) = 𝜎 (®𝑎𝑎𝑎𝑇 [𝑊𝑊𝑊 ®𝑥𝑖 ∥𝑊𝑊𝑊 ®𝑥 𝑗 ]) (3)
In equation 3, ®𝑎 is a weight vector, 𝜎 is some non-linearity like

LeakyReLU, ·𝑇 represents transpose, and ∥ is the concatenation
operator.

The coefficients 𝑒𝑖 𝑗 obtained from equation 3 are put in equa-
tion 2 to get the normalized attention weights. Once we obtain
these weights, the transformed feature vector ®𝑥 ′

𝑖
is obtained as a

weighted sum of input feature vectors of the node’s neighborhood,
demonstrated as follows:

®𝑥 ′
𝑖
= 𝜎 (

∑
𝑗 ∈N𝑖

𝛼𝑖 𝑗𝑊𝑊𝑊 ®𝑥 𝑗 ) (4)

If we want the node to retain information from the input features,
we add self-loops in the graph and consider node 𝑖 as part of the
neighborhood N𝑖 .

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/lovishmadaan/gatcheck
https://doi.org/10.1145/nnnnnnn.nnnnnnn


MLG’20, KDD, August 2020 Lovish Madaan and Siddhant Arora

Table 1: Summary of the datasets used in our experiments.
NC: Multi-Class Node Classification, PNC: Pairwise Node
Classification, LP: Link Prediction

PPI Protein Brightkite

Task NC, LP PNC LP
# Graphs 24 1113 4
# Nodes 56944 43474 58222
# Edges 818716 162088 214078

# Features / Node 50 29 3
# Classes 121 (multilabel) 3 -

GAT employs multi-head attention mechanism to stabilize the
learning process as credited to [7]. Moreover, each attention head
can learn different features of the graph.

®𝑥 ′
𝑖
=

𝐾n

𝑘=1
𝜎 (

∑
𝑗 ∈N𝑖

𝛼𝑖 𝑗𝑊𝑊𝑊
𝑘 ®𝑥 𝑗 ) (5)

where𝑊𝑊𝑊 𝑘 is the learnable transformation matrix of the 𝑘𝑡ℎ
attention head and 𝐾 is the total number of attention heads. In the
output layer, averaging is used instead of concatenation to get the
final output embedding as demonstrated below:

®𝑥 ′
𝑖
= 𝜎 ( 1

𝐾

𝐾∑
𝑘=1

∑
𝑗 ∈N𝑖

𝛼𝑖 𝑗𝑊𝑊𝑊
𝑘 ®𝑥 𝑗 ) (6)

3 EXPERIMENTS
In this section, we present our experiments and architectural set-
tings in detail. All our code is in Python using the PyTorch [8]
framework. We use Deep Graph Library (DGL) [9] and PyTorch
Geometric [10] for GAT implementations. We use the evaluation
format followed in [11] to load the datasets as well as evaluate our
methods for pairwise node classification and link prediction tasks.

3.1 Datasets
We use the following datasets for our experiments:

• PPI: This dataset consists of graphs corresponding to differ-
ent human tissues [12]. After removing the isolated2 com-
ponents, this datasets comprises of 24 graphs (20 train + 2
validation + 2 test). This is an inductive dataset - test graphs
are completely unobserved during training. The average
number of nodes per graph is 2372 and each node has 50
input features. There are 121 classes for the nodes and each
node can belong to multiple classes.

• Proteins: This dataset consists of 1113 protein graphs (889
train + 112 validation + 112 test) where each node is labelled
as function role for protein [13]. Each node has 29 input
features and the number of nodes in each graph range from
4-620.

• Brightkite: This dataset comprises of a friendship network
collected from a location-based social networking provider
where users share their location by checking-in [14]. The

network has 58,222 nodes and 214,078 edges, along with
4,491,143 checkins of users over the period of Apr. 2008 - Oct.
2010.

A summary of the datasets used is given in Table 1.

3.2 Tasks
Given below is the description of the tasks under consideration.

Multi-Class Node Classification: We use the PPI dataset for
this task. Each node can belong to zero or more of the 121 classes
available. So, the output prediction is a 121-sized binary vector
where elements corresponding to multiple indexes can be 1. In the
test dataset, each node belongs to an average of 36.22 classes with
minimum and maximum classes being 0 and 101, respectively.

Pairwise Node Classification: We use the Proteins dataset for
this task. We first normalise all the features such that they have zero
mean and unit variance. This is done to facilitate training. Then for
each graph, we observe pair of nodes that have same label and add
them to our positive labeled set for pairwise node classification. We
follow the transductive setting for this task and keep 10% of positive
set as seperate for testing. Moreover for each of train, validation
and test set splits, we add negative samples by sampling pair of
nodes not in our positive labeled set.

Link Prediction: We use PPI and Brightkite datasets for this
task. We use the transductive setting exactly similar to the one
considered in Pairwise Node Classification. We logarithmically
scale all the features in the PPI dataset so as to avoid being thrown
off by big counts. This methodology was used in [11] and we found
it helpful in our training framework.

For Brightkite, we found that the entire dataset consists of 4 con-
nected parts where one of the connected parts is a very large graph
consisting around 212,000 edges and the other graphs are relatively
small. For each node, we have 3 features - average check in time,
average latitude and average longitude. We logarithmically scale
all the features as done in PPI and follow the transductive setting.
Scalability was a very important component in our experiments for
this dataset. In P-GNN, the entire graph is loaded in GPU which is
not feasible in this setting. Also, the entire connected component is
passed to the model in first iteration. We make our model scalable
by passing all the node features but only passing the edge index in
batches of 512. However, since the parameters to compute hidden
feature of the nodes should consider all the edges in the connected
component, we perform gradient accumulation and take a step of
optimiser only after making a pass over the whole graph. Finally,
to make an inference over the validation and test set, we bring
our model to CPU and pass the entire connected component to
the model for computing the prediction scores. We observe that by
using these simple heuristics, we were able to achieve scalability of
Graph Attention Networks (GATs) on large graphs.

3.3 Experimental Setup
For all the tasks in this section, we use 5-fold cross validation for
training and evaluation. We report Precision/Recall/F1 scores for
2Connected components with less than 10 nodes



GATCheck: A Detailed Analysis of Graph Attention Networks MLG’20, KDD, August 2020

Table 2: Multi-class Node Classification on PPI. 𝐿 = 4, ℎ𝑑𝑖𝑚 = 256, 𝐾ℎ𝑖𝑑 = 4, 𝐾𝑜𝑢𝑡 = 6, 𝑎𝑐𝑡 = 𝑅𝑒𝐿𝑈 , 𝑐𝑜𝑛𝑐𝑎𝑡 = 𝑇𝑟𝑢𝑒

Fold Number Valid Precision Valid Recall Valid F1 Score Test Precision Test Recall Test F1 Score

1 0.947 0.913 0.930 0.986 0.979 0.983
2 0.959 0.908 0.932 0.987 0.973 0.980
3 0.942 0.893 0.917 0.984 0.970 0.977
4 0.971 0.958 0.964 0.985 0.975 0.980
5 0.990 0.980 0.985 0.986 0.972 0.979

Cumulative 0.962 ± 0.019 0.930 ± 0.037 0.946 ± 0.028 0.986 ± 0.001 0.972 ± 0.004 0.979 ± 0.002

Node2Vec [1] - - - - - 0.479
Deepwalk [2] - - - - - 0.431

GCN [3] - - - - - 0.768
GraphSAGE [5] - - - - - 0.768

Table 3: Link Prediction on PPI and Brightkite. P-GNN (best) refers to the best P-GNN variant reported in [11]. Bold value is
the best in terms of performance on the test set. 𝐿 = 3, ℎ𝑑𝑖𝑚 = 128, 𝐾ℎ𝑖𝑑 = 1, 𝐾𝑜𝑢𝑡 = 6, 𝑎𝑐𝑡 = 𝑅𝑒𝐿𝑈 , 𝑐𝑜𝑛𝑐𝑎𝑡 = 𝑇𝑟𝑢𝑒

PPI Brightkite

Fold Number Valid ROC AUC Test ROC AUC Valid ROC AUC Test ROC AUC

1 0.803 0.803 0.754 0.856
2 0.815 0.812 0.738 0.780
3 0.806 0.806 0.685 0.784
4 0.799 0.799 0.737 0.714
5 0.778 0.776 0.721 0.701

Cumulative 0.8 ± 0.013 0.812 ± 0.013 0.727 ± 0.023 0.856 ± 0.055

Node2Vec [1] - 0.557 - 0.813
Deepwalk [2] - 0.553 - 0.742
GCN [11] - 0.794 - 0.804

GraphSAGE [11] - 0.712 - 0.501
P-GNN (best) [11] - 0.808 ± 0.003 - -

Multi-Class Node Classification and ROC AUC scores for Pairwise
Node Classification and Link Prediction. For cumulative scores,
we report the mean cross-validation scores and test scores corre-
sponding to the best cross-validation score. We consider a range of
hyperparameters for tuning in our experiments as described below:

• Layers (𝐿) - The number of Graph Attention layers used in
our methodology.

• Hidden Dimension (ℎ𝑑𝑖𝑚) - The dimension of the node
embeddings in the hidden layers.

• HiddenGATLayerAttentionHeads (𝐾ℎ𝑖𝑑 ) - The number
of attention heads in the hidden layers of GAT network.

• Output GAT Layer AttentionHeads (𝐾𝑜𝑢𝑡 ) - The number
of attention heads in the output layer of GAT network.

• Activation (𝑎𝑐𝑡 ) - The non linearity activation function used
in the GAT network.

• Aggregation (𝑎𝑔𝑔𝑟 ) - The aggregation function used in the
message passing step. It can be add, max, mean.

• Concatenation for Attention Heads (𝑐𝑜𝑛𝑐𝑎𝑡 ): A boolean
value indicating whether to concatenate or average the out-
puts obtained from the different attention heads in the hidden
layer.

3.4 Results
We experimented over the following hyperparameters for each
dataset - 𝐿 ∈ {2, 3, 4}, ℎ𝑑𝑖𝑚 ∈ {128, 256, 512} and 𝐾ℎ𝑖𝑑 ∈ {4, 6}. A
summary of the results along with their best hyperparameters is
presented in Tables 2, 3, and 4.

Multi-classNodeClassification (Table 2): The final GAT layer
with 6 attention heads is used for the (multi-label) classification.
Similar to [5], we use skip connections across the 2𝑛𝑑 attention
layer. We use cross entropy with logits as the loss function because
it is more stable while training. The default epochs used is 400, but
we use early stopping with a patience of 20 epochs. Training takes
around 30 minutes to complete.

Link Prediction (Table 3): We observe that we get better re-
sults than the ones reported in [11] and are marginally better than
the state of the art P-GNN. This shows that P-GNNs are not much
better than GATs for link prediction. We ran the training loop in
PPI dataset for about 400 epochs and the running time is around 1
hour. Similarly for Brightkite, we trained for 400 epochs which took
around 10 hours for each fold. We further observe the variation of



MLG’20, KDD, August 2020 Lovish Madaan and Siddhant Arora

,,

Figure 1: Graph showing the accuracy score [ROC AUC for left,center graphs and F1 score for right graph) (y-axis) obtained
at the training time (x-axis). The left graph shows the variation for PPI dataset and center graph shows the variation for
Brightkite dataset on Link Prediction. The right graph shows the variation of Multi Label Node Classification on PPI dataset.

Table 4: Pairwise Node Classification on Proteins. P-GNN
(best) refers to the best P-GNN variant reported in [11]. 𝐿 =

3, ℎ𝑑𝑖𝑚 = 32, 𝐾ℎ𝑖𝑑 = 1, 𝐾𝑜𝑢𝑡 = 1, 𝑎𝑐𝑡 = 𝑅𝑒𝐿𝑈 , 𝑐𝑜𝑛𝑐𝑎𝑡 = 𝑇𝑟𝑢𝑒

Fold Number Valid ROC AUC Test ROC AUC

1 0.516 0.514
2 0.511 0.513
3 0.518 0.505
4 0.524 0.512
5 0.515 0.514

Cumulative 0.517 ± 0.004 0.512 ± 0.003

Node2Vec [1] - 0.604
Deepwalk [2] - 0.557

GCN [3] - 0.63
GraphSAGE [4] - 0.65

P-GNN (best) [11] - 0.729 ± 0.176

quality of our GAT network with training time in Figure 1. The
ROC-AUC scores do not vary a lot with training time for PPI and
we observe very good performance even for small training time
in our framework, indicating that the training reaches the local
minima very quickly. However, for a dataset with large graphs like
BrightKite, we observe gains in Cross Validation Performance with
increasing training time whereas our test performance seems to
plateau after some time. Eventually both our Cross Validation and
test Performances plateau after a training time of 6 hours in each
fold.

Pairwise Node Classification (Table 4): We follow the default
setting used in [11] of using 3 layers with 1 attention head and
hidden dimension of 32 in our GAT network. We observe that our
scores are similar to the ones reported in paper. We even increased
the number of input and output attention heads but did not observe
any clear increase in performance. We can clearly observe that
Position Aware Graph Neural Networks [11] seem better suited for
this task.

Table 5: Hyperparameters considered for analysis. Brack-
eted value is the default.

Hyperparameter Range of values considered

𝐿 2,3,4 (3)
ℎ𝑑𝑖𝑚 32,128,256 (32)
𝐾ℎ𝑖𝑑 1,4,6 (1)
𝐾𝑜𝑢𝑡 1,4,6 (1)
𝑎𝑐𝑡 ReLU, LeakyReLU, tanh (ReLU)
𝑎𝑔𝑔𝑟 add, mean, max (add)
𝑐𝑜𝑛𝑐𝑎𝑡 True, False (True)

4 ANALYSIS
We analyse our approach by using GAT networks for link prediction
on the Grid dataset [11] over a wide array of hyperparameters
descibed in Section 3.3. A summary of the parameters used are
listed in Table 5. The grid dataset consist of a 2D 20*20 grid graph.
Since it is a relatively smaller dataset, it is ideal for running our grid
search experiments consisting of 243 runs. We also highlight out the
top 5 results and compare it with the default setting and reported
numbers of [11] in Table 6. We observe that since the GAT baselines
are not tuned very well, the apparent difference between GAT and
P-GNN is often exaggerated in literature. We observe that the effect
of various parameters can often be difficult to study independently
since the parameter values affect each other. However, to get some
insights into the importance of each parameter, we average the ROC
AUC scores obtained over the entire grid of other hyperparameters
for each value of the parameter under consideration and use it
to compare the variations. We explain our results in subsequent
sections.

4.1 Layers (𝐿)
As observed in Figure 2, we see that increasing the number of GAT
network seems to increase the performance slightly. However, as
the layer number increases, the variation of results also increases
because of increasing number of parameters, because of overfit-
ting on the small grid dataset. To handle this, 𝐿2 regularization or
dropout is necessary.



GATCheck: A Detailed Analysis of Graph Attention Networks MLG’20, KDD, August 2020

Figure 2: Plots showing the ROC-AUC scores (y-axis) obtained with different values of hyperparameters (x-axis) on Grid.

Table 6: Link Prediction on the Grid Dataset. P-GNN corre-
sponds to the best P-GNN variant reported in [11].

Method 𝐿 ℎ𝑑𝑖𝑚 𝐾ℎ𝑖𝑑 𝐾𝑜𝑢𝑡 𝑎𝑐𝑡 Test ROC AUC

Tuned 3 32 1 1 tanh 0.796 ± 0.037
Tuned 4 128 1 4 tanh 0.796 ± 0.04
Tuned 3 128 1 4 tanh 0.787 ± 0.025
Tuned 3 32 6 6 ReLU 0.783 ± 0.062
Tuned 3 32 6 6 tanh 0.779 ± 0.03

Default 3 32 1 1 ReLU 0.693 ± 0.028

P-GNN - - - - - 0.834 ± 0.099

4.2 Hidden Dimension (ℎ𝑑𝑖𝑚)
For hidden dimension, we observe a more clear trend, with perfor-
mance seem to be decreasing with increasing number of hidden
dimensions. Although, we must realise that this variation can be
different for different datasets, and since the grid dataset is a com-
paratively small dataset, it requires less parameters to model the
hidden dimension. Moreover, it gives the intuition that it is gener-
ally better practice to increase the number of GAT layers instead
of increasing the hidden dimension to improve performance.

4.3 Hidden Layer Attention Heads (𝐾ℎ𝑖𝑑 )
Similar to as seen above, increasing number of attention heads in
the hidden layer seem to decrease performance. But, more attention
heads give better performance in the PPI dataset. So, we can infer
that we should use attention heads proportional to the size of the
dataset. If you want to use more attention heads for smaller datasets,
instead of concatenation, use averaging for aggregation of outputs
across different attention heads.

4.4 Output Layer Attention Heads (𝐾𝑜𝑢𝑡 )
The variation of quality with the number of attention heads in the
output GAT layer follows a different trend.We see that by increasing
number of output attention heads actually help in achieving better
performance. This concludes that we should by default start with a
GAT network with less attention heads in the hidden layers and
more heads in the output layer.

4.5 Activation (𝑎𝑐𝑡 )
We observe that the tanh activation seems to be much better than
ReLU (default) and LeakyReLU activations seeing an average of 3%
gain on ROC AUC scores over the default values.

5 INTERPRETING ATTENTIONWEIGHTS
In this section, we focus on the distribution of attention weights
learned by our model in the Multi-class Node Classification task
on the PPI dataset. We first pass the test set graphs through the
trained model for inference, and store the graphs at each layer.
We plot the sampled subgraph in Figure 3 at each layer with edge
colors corresponding to the learned attention weights. Darker edges
mean that the attention weight for that edge is higher. We can
clearly observe that in the inner layers, attention weights are more
uniformly distributed as compared to the outer layers. In the outer
layers, only a few nodes contribute in the message passing step for
the final embedding of a node.

To understand the attention weight distribution more clearly
as motivated by [9], we also plot the entropy of attention weight
distribution in Figure 4. For a given node 𝑖 , 𝛼𝑖 𝑗 , 𝑗 ∈ N𝑖 defines
the probability distribution over all the neighbors of node 𝑖 , with
entropy given by:



MLG’20, KDD, August 2020 Lovish Madaan and Siddhant Arora

Figure 3: AttentionWeight Distribution learned at each layer (for the 𝐾𝑡ℎ head) on a sampled test subgraph in the PPI Dataset.
Darker edges represent higher attention weights.

Figure 4: Entropy of Attention Distribution learned at each layer (for the 𝐾𝑡ℎ head) on a sampled test subgraph in the PPI
Dataset.



GATCheck: A Detailed Analysis of Graph Attention Networks MLG’20, KDD, August 2020

Figure 5: Entropy distribution of uniform attention weights

𝐻 (𝑖) = −
∑
𝑗 ∈N𝑖

𝛼𝑖 𝑗 log(𝛼𝑖 𝑗 ) (7)

Lower entropy means higher degree of concentration around
the node, and vice versa. Since the distribution in which attention
weights are equal for all the neighborhood nodes of the node under
consideration has the highest entropy, we want a model that learns
attention weights such that only a few neighbors are important for
the downstream task. This results in a lower entropy distribution.
For reference, we also plot the uniform attention weight entropy
distribution in Figure 5 for the PPI dataset.

From this discussion, we can infer that when the uniform at-
tention weights have a lower entropy for the dataset under con-
sideration, for example Cora [5], then the gains of using Graph
Attention Networks will be lesser as compared to datasets like PPI,
in which the uniform attention weights have a relatively higher
entropy. This trend is clearly supported in [5].

6 CONCLUSION
Thus, to conclude, we have investigated the applications of Graph
Attention Networks on Link Prediction and Node Classification
tasks. We observed that other than Pairwise Node Classification,
GAT networks are pretty much state of the art in tasks like Link
Prediction and Node Classification. We also observed that GATs
reach their optimal performance very quickly for small datasets,
however, for large graphs GATs need much time to achieve SOTA
performance. Further, we analysed the hyperparameters used in
our experiments and observed that higher number of layers and
lower dimensions in hidden layer can boost performance in smaller
datasets. Moreover, we observed that having multiple attention
heads is more useful for outer GAT layers rather than inner layers.
It was also observed that the tanh activation can significantly boost
the quality of our predictions. Finally we make our code public so
as to facilitate further understanding of embeddings generated by
GAT networks.

7 ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful comments on
the paper. We also thank Sayan Ranu for discussion and comments

before the camera ready version of the paper. We also thank the IIT
Delhi HPC facility for the computational resources.

REFERENCES
[1] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for net-

works. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016.

[2] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, pages 701–710,
New York, NY, USA, 2014. ACM.

[3] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017.

[4] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA, pages 1024–1034, 2017.

[5] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. Graph attention networks. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. In Yoshua Bengio and Yann
LeCun, editors, 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 5998–6008,
2017.

[8] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pages 8024–8035,
2019.

[9] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li,
Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin
Lin, Junbo Zhao, Jinyang Li, Alexander J Smola, and Zheng Zhang. Deep graph
library: Towards efficient and scalable deep learning on graphs. ICLR Workshop
on Representation Learning on Graphs and Manifolds, 2019.

[10] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch
Geometric. In ICLRWorkshop on Representation Learning on Graphs andManifolds,
2019.

[11] Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 7134–7143. PMLR, 2019.

[12] Marinka Zitnik and Jure Leskovec. Predicting multicellular function through
multi-layer tissue networks. Bioinform., 33(14):i190–i198, 2017.

[13] Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs.
In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM
2005), 27-30 November 2005, Houston, Texas, USA, pages 74–81. IEEE Computer
Society, 2005.

[14] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. Friendship and mobility: user
movement in location-based social networks. In Chid Apté, Joydeep Ghosh,
and Padhraic Smyth, editors, Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, August
21-24, 2011, pages 1082–1090. ACM, 2011.


	Abstract
	1 Introduction
	2 Background
	3 Experiments
	3.1 Datasets
	3.2 Tasks
	3.3 Experimental Setup
	3.4 Results

	4 Analysis
	4.1 Layers (L)
	4.2 Hidden Dimension (hdim)
	4.3 Hidden Layer Attention Heads (Khid)
	4.4 Output Layer Attention Heads (Kout)
	4.5 Activation (act)

	5 Interpreting Attention Weights
	6 Conclusion
	7 Acknowledgments
	References

