
First- and High-Order Bipartite Embeddings
Justin Sybrandt

jsybran@clemson.edu

Clemson University

Clemson, SC

Ilya Safro

isafro@clemson.edu

Clemson University

Clemson, SC

ABSTRACT
Typical graph embeddings may not capture type-specific bipartite

graph features that arise in such areas as recommender systems,

data visualization, and drug discovery. Machine learning methods

utilized in these applications would be better served with special-

ized embedding techniques. We propose two embeddings for bipar-

tite graphs that decompose edges into sets of indirect relationships

between node neighborhoods. When sampling higher-order rela-

tionships, we reinforce similarities through algebraic distance on

graphs. We also introduce ensemble embeddings to combine both

into a “best of both worlds” embedding. The proposed methods are

evaluated on link prediction and recommendation tasks and com-

pared with other state-of-the-art embeddings. Our embeddings are

found to perform better on recommendation tasks and equally com-

petitive in link prediction. Although all considered embeddings are

beneficial in particular applications, we demonstrate that none of

those considered is clearly superior (in contrast to what is claimed

in many papers). Therefore, we discuss the trade offs among them,

noting that the methods proposed here are robust for applications

relying on same-typed comparisons.

Reproducibility: Our code, data sets, and results are all publicly

available online at: https://sybrandt.com/2020/fobe_hobe/.

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions; • Mathematics of computing → Hypergraphs; • Infor-
mation systems→ Social recommendation; Social networks; Rec-
ommender systems; • Networks → Network structure; • Human-
centered computing→ Social networks; Social network analysis; •
Theory of computation → Unsupervised learning and clustering.

KEYWORDS
bipartite graphs, hypergraphs, graph embedding, algebraic distance

on graphs, recommendation, link prediction

ACM Reference Format:
Justin Sybrandt and Ilya Safro. 2020. First- and High-Order Bipartite Embed-

dings. In Proceedings of MLG 2020: 16th International Workshop on Mining

Justin Sybrandt is now at Google Brain. Contact via jsybrandt@google.com.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MLG’20, August 24, 2020, San Diego, CA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

and Learning with Graphs (MLG’20). ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Graph embedding methods place nodes into a continuous vector

space in order to capture structural properties that enable machine

learning tasks [9]. While many have made significant progress em-

bedding general graphs [10, 21, 26, 27], we find that bipartite graphs

have received less study [8], and that the field is far from settled

on this interesting case. There exist a variety of special algorith-

mic cases for bipartite graphs, which are utilized in applications

such as user-product or user-group recommender systems [30],

hypergraph based load balancing and mapping [20], gene-disease

relationships [2], and drug-to-drug targets [29].

We define a simple, undirected, and unweighted bipartite graph

to be G = (V ,E) where V = {v1,v2, . . . ,vn+m } is composed of the

disjoint subsetsA = {α1, . . . ,αn } and B = {β1, . . . , βn } (V = A∪B).
Here, A and B represent the two halves of the network, and are

sometimes called “types.” We use vi to indicate any node in V , αi
for nodes inA, and βi for those in B. In a bipartite graph, edges only

occur across types, and E ⊆ {A × B} indicates those connections
within G. A single edge is notated as αiβj ∈ E, and because our

graph is undirected, αiβj = βjαi . The neighborhood of a node is

indicated by the function Γ(·). If αi ∈ A then Γ(αi) = {βj |αiβj ∈ E},
and vice-versa for nodes in B. In order to sample an element from a

set, such as selecting a random αi from A with uniform probability,

we notate αi∼A. The problem of graph embedding is to determine

a representation of the nodes inG in a vector space of r dimensions

such that r << |V | and that a select node-similaritymeasure defined

onV is encoded by these vectors [27]. We notate this embedding as

the function ϵ(·) : V → Rr , that maps each node to an embedding.

We propose two methods for embedding bipartite graphs. These

methods fit embeddings by optimizing nodes of each type sepa-

rately, which we find can lead to higher quality type-specific latent

features. Our first method, First-Order Bipartite Embedding (FOBE),

samples for the existence of direct, and first-order similarities within

the bipartite structure. This approach maintains the separation of

types by reformulating edges in E into indirect same-typed obser-

vations. For instance, the connection αiβj ∈ E decomposes into a

set of observed pairs (αi ,αk∼Γ(βj)) and (βj , βk∼Γ(αi)).
Our second method, High-Order Bipartite Embedding (HOBE),

samples direct, first-, and second-order relationships, and weighs

samples using algebraic distance on bipartite graphs [5]. Again, we

represent sampled relationships between nodes of different types

by decomposing them into collections of same-typed relationships.

While this sampling approach is similar to FOBE, algebraic distance

allows us to improve embedding quality by accounting for broader

graph-wide trends. Algebraic distance on bipartite graphs has the

effect of capturing strong local similarities between nodes, and

https://sybrandt.com/2020/fobe_hobe/
mailto:jsybrandt@google.com
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

MLG’20, August 24, 2020, San Diego, CA Justin Sybrandt and Ilya Safro

reduces the effect of less meaningful relationships. This behavior

is beneficial in many applications, such as shopping, where two

users are likely more similar if they both purchase a niche hobby

product, andmay not be similar even if they both purchase a generic

cleaning product.

Because FOBE and HOBE each make different prior assumptions

about the relevance of bipartite relationships, we propose a method

for combining bipartite embeddings to get “best of both worlds”

performance. This ensemble approach learns a joint representation

from multiple pre-trained embeddings. The “direct” combination

method fits a non-linear transformation of the original embeddings

into a fixed-size hidden layer in accordance to sampled similarities.

The “auto-regularized” combination extends the direct method by

introducing a denoising-autoencoder layer in order to regulate the

learned joint embedding [28]. The architecture of both approaches

maintains a separation between nodes of different types, which

allows for type-specific embeddings, without the constraint of a

shared global structure. Evaluation of all proposed embeddings is

performed on link prediction reinforced with holdout experiments

and recommender system tasks.

Our contribution in summary: (1) We introduce First- and High-

Order Bipartite Embeddings that learn representations of bipartite

structure that retaining type-specific semantic information. (2) We

present the direct and the auto-regularized methods to leverage

multiple pre-trained graph embeddings to produce a “best of both

words” embedding. (3) We discuss the strengths and weaknesses

of our proposed methods as they compare to a range of graph

embedding techniques. We identify certain graph properties that

suit different graph types, and report that none of the proposed

embeddings is clearly superior. However, we find that applications

wanting to make many same-typed comparisons are often best

suited by a type-sensitive embedding.

1.1 Related Work
Low-rank embeddings project high-order data into a compressed

real-valued space, often for the purpose of facilitating machine

learning models. Inspired by the Skip-Gram approach[18], Perozzi

et al. demonstrate that for a similar method can capture latent struc-

tural features of traditional graphs [21]. An alternative approach,

LINE by Tang et al., models first- and second-order node relation-

ships explicitly [26]. Node2Vec blends the intuitions behind both

LINE and Deepwalk by combining homophilic and structural simi-

larities through a biased random walk [10]. Our proposed methods

are certainly influenced by LINE’s approach, but differ in a few key

areas. Firstly, we split our model in order to only make same-typed

comparisons. Furthermore, we introduce terms that compare nodes

with relevant negihborhoods, and can weigh different samples with

algebraic distance [5].

While the three previously listed embedding approaches are

designed for traditional graphs, Metapath2Vec++ by Dong et al.

presents a heterogeneous approach using extended type-sensitive

skip-grammodel [6]. Our method differs fromDong et al.’s in a num-

ber of ways. Again, we do not apply random walks or the skip-gram

model. Furthermore, the Metapath2Vec++ model implicitly asserts

that output type-specific embeddings be a linear combination of

the same hidden layer. In contrast, we create entirely separate em-

bedding spaces for the nodes of different types. BiNE by Gao et al.

focuses directly on the bipartite case [8]. This approach uses the

biased random-walks described in Node2Vec, and samples these

walks in proportion to each node’s HITS centrality [13]. While our

methods differ, again, in the use of skip-gram, BiNE also funda-

mentally differs from our proposed approaches by enforcing global

structure through cross-type similarities. Tsitsulin et al. present

VERSE, a versatile graph embedding method that allows multiple

different node-similarity measures to be captured by the same over-

arching embedding technique [27]. This method requires that the

user specify a node-similarity measure that will be encoded in the

dot product of resulting embeddings. A key difference between

the methods presented here, and the methods presented in VERSE,

come from differences in objective values when training embed-

dings. VERSE uses a range of methods to sample node-pairs, from

direct sampling to Noise Contrastive Estimation [11], and updates

embeddings according to their observed similarity or dissimilar-

ity (in the case of negative samples). However, the optimization

method proposed here enforces only same-typed comparisons.

2 METHODS AND TECHNICAL SOLUTIONS
We present two sibling strategies for learning bipartite embeddings.

First-Order Bipartite Embedding (FOBE) samples direct links from E
and first-order relationships between nodes sharing common neigh-

bors. We then fit embeddings to minimize the KL-Divergence be-

tween our observations and our embedding-based estimations. The

second method, High-Order Bipartite Embedding (HOBE), begins

by computing algebraic similarity estimates for each edge [5, 23].

Using these heuristic weights, HOBE samples direct, first- and

second-order relationships, to which we fit embeddings using mean-

squared error.

At a high level, both embedding methods begin by observing

structural relationships within a graph G and then fitting an em-

bedding ϵ in order to encode structural features via dot product of

embeddings. We combine three types of observations for a single

graph These observations are represented through the functions

SA(·, ·), SB (·, ·), and SV (·, ·). Each function maps two nodes to an

observed similarity:V ×V → R. The result of SA is nonzero only if

both arguments are in A, SB is similarly nonzero only if both argu-

ments are in B. In this manner, these functions capture type-specific

similarities. The SV function, in contrast, captures cross-typed ob-

servations, and is nonzero if its arguments are of different types.

We define a reciprocal set of functions to model these similarities:

S̃A(·, ·), S̃B (·, ·), and S̃V (·, ·). These functions are defined in terms

of ϵ(·), and each method must select some embedding such that the

difference between each corresponding set of S, S̃ pairs.
Because we estimate similarities within type-specific subsets of

ϵ separately, we can better preserve typed latent features. This is

important for many applications. Consider an embedding of the

bipartite graph of viewers and movies, often used for applications

such as video recommendations. Within “movie space” one would

expect to uncover latent features such as genre, budget, or the

presence of high-profile actors. These features are undefined within

“viewer space,” wherein one would expect to observe latent features

corresponding to demographics and viewing preferences. Clearly

First- and High-Order Bipartite Embeddings MLG’20, August 24, 2020, San Diego, CA

these two spaces are correlated in a number of ways, such as the

alignment between viewer tastes and movie genres. However, we

find methods that enforce direct comparisons between viewer and

movie embeddings can result in an erosion of type-specific features,

which can lead to lower downstream performance. In contrast,

the methods proposed here do not encode cross-type relationships

as a linear transformation of embeddings, and instead captures

cross-typed relationships through the aggregate behavior of node

neighborhoods within same-typed subspaces.

2.1 First-Order Bipartite Embedding
The goal of FOBE is to model direct and first-order relationships

from the original structure. This very simple method only detects

the existence of a relationship between two nodes, and therefore

does not distinguish between two nodes that share only one neigh-

bor from two nodes that share many. However, we find that this

simplicity enables scalability at little cost to quality. Here, a direct

relationship is any edge from the original bipartite graph, while a

first-order relationship is defined as {(αi ,α j) | Γ(αi) ∩ Γ(α j) , ∅}.

Note that nodes in a first-order relationship share the same type.We

define observations corresponding with each relationship. Direct

observations simply detect the presence of an edge, while first-order

relationships similarly detect a common neighbor. Formally:

SA(αi ,α j) =

{
1 αi ,α j ∈ A & Γ(αi) ∩ Γ(α j) , ∅

0 otherwise

(1)

SB (βi , βj) =

{
1 βi , βj ∈ B & Γ(βi) ∩ Γ(βj) , ∅

0 otherwise

(2)

SV (αi , βj) =

{
1 αiβj ∈ E

0 otherwise

(3)

By sampling γ neighbors, we allow our later embedding model

to approximate the effects of Γ, similar to the k-ary set sampling

in [19]. Note also that each sample contains one nonzero S value. By
fitting all three observations simultaneously, we implicitly generate

two negative samples for each positive sample. Furthermore, we

generate a fixed number of samples for each node’s direct and

first-order relationships.

Given these observations SA, SB , and SV , we fit the ϵ embedding

according to corresponding estimation functions S̃A, S̃B , S̃V . To

estimate a first-order relationship (̃SA and S̃B) we calculate the

sigmoid of the dot product of embeddings (5), namely,

σ (x) = (1 + e−x)−1. (4)

S̃A(αi ,α j) = σ
(
ϵ(αi)

⊺ϵ(α j)
)

(5)

S̃B (βi , βj) = σ
(
ϵ(βi)

⊺ϵ(βj)
)

(6)

Building from this, we train embeddings based on direct relation-

ships by composing relevant first-order relationships. Specifically,

if αiβj ∈ E then we would expect αi to be similar to αk ∈ Γ(βj) and
vice-versa. Intuitively, a viewer has a higher chance of watching

a movie if they are similar to others that have. We formulate our

direct relationship estimate to be the product of each node’s average

first-order estimate to the other’s neighborhood. Formally:

S̃V (αi , βj) = E
αk ∈Γ(βj)

[
S̃A(αi ,αk)

]
E

βk ∈Γ(αi)

[
S̃B (βj , βk)

]
(7)

In order to train our embedding function ϵ for the FOBE method,

we minimize the KL-Divergence [14] between our observed simi-

larities S and our estimated similarities S̃. We minimize for each

simultaneously, for both direct and first-order similarities, using

the Adagrad optimizer [7], namely, we solve:

min

ϵ

∑
vi ,vj ∈V×V



S̃A(vi ,vj) log

(
SA(vi ,vj)

S̃A(vi ,vj)

)
+S̃B (vi ,vj) log

(
SB (vi ,vj)

S̃B (vi ,vj)

)
+S̃V (vi ,vj) log

(
SV (vi ,vj)

S̃V (vi ,vj)

)


(8)

2.2 High-Order Bipartite Embedding
The goal of HOBE is to capture distant relationships between nodes

that are related, but may not share an edge or a neighborhood.

In order to differentiate the meaningful distant connections from

those that are spurious, we turn to algebraic distance on graphs [23].

This method is fast to calculate and provides a strong signal for

local similarity. For example, algebraic distance can tell us which

neighbor of a high-degree node is the most similar to the root. As

a result, we can utilize this signal to estimate which multi-hop

connections are the most important to preserve in our embedding.

Algebraic distance is a measure of dependence between vari-

ables popularized in algebraic multigrid (AMG) [4, 17, 22]. Later, it

has been shown to be a reliable and fast way to capture implicit

similarities between nodes in graphs [12, 16] and hypergraphs

that are represented as bipartite graphs [23] (which is leveraged

in this paper) taking into account distant neighborhoods. Techni-

cally, it is a process of relaxing randomly initialized test vectors

using stationary iterative relaxation applied on graph Laplacian

homogeneous system of equations, where in the end the algebraic

distance between system’s variables xi and x j (that correspond to

linear system’s rows i and j) is defined as an maximum absolute

value between the ith and jth components of the test vectors (or,

depending on application, as sum or sum of squares of them).

In our context, a variable is a node, and we apply K iterations

of Jacobi over-relaxation (JOR) on the bipartite graph Laplacian

as in [22] (K = 20 typically ensures good stabilization as we do

not need full convergence, see Theorem 4.2 [5]). Initially, each

node’s coordinate is assigned a random value, but on each iteration

a node’s coordinate is updated to move it closer its neighbors’

average. Weights corresponding to each neighbor are inversely

proportional their degree in order to increase the “pull” of small

communities. Intuitively, this acknowledges that two viewers who

both watch a niche new-wave movie are more likely similar than

two viewers who watched a popular blockbuster. We run JOR on R
independent trials (called test vectors in AMG works, convergence

proven in [5]). Formally, for r th test vector ar the update step of

JOR is performed as follows, where a
(t)
r (vi) represents node vi ’s

algebraic coordinate on iteration t ∈ {1, ..,K}, and λ is a damping

factor (suggested λ = 0.5 in [23]).

a(t+1)r (vi) = λa(t)r (vi) + (1 − λ)

∑
vj ∈Γ(vi) a

(t)
r (vj)|Γ(vj)|

−1∑
vj ∈Γ(vi) |Γ(vj)|

−1
(9)

MLG’20, August 24, 2020, San Diego, CA Justin Sybrandt and Ilya Safro

We use the l2-norm in order to summarize the algebraic distance

of two nodes across R trails with different random initializations.

As a result, two nodes will be close in our distance calculation if

they remain nearby across many trials, which lessens the effect of

too slow convergence in a single trial. For our purposes we select

R = 10. Additionally, we define “algebraic similarity”, s(i, j), as
a closeness across trials. We subtract the distance between two

embeddings from the maximum distance in our space, and rescale

the result to the unit interval. Because we know that the maximum

distance between any two coordinates in the same trial is 1, we can

compute this in constant time:

d(vi ,vj) =

√√√ R∑
r=1

(
a(K)
r (vi) − a(K)

r (vj)
)
2

(10)

s(vi ,vj) =

√
R − d(vi ,vj)

√
R

(11)

After calculating algebraic similarities for pairs of nodes of all

edges, we begin to sample direct, first-order, and second-order

similarities from the bipartite structure. Here, a second-order con-

nection is one wherein αi and βj share a neighbor that shares a
neighbor: αi ∈ Γ(Γ(Γ(βj))). Note that the set of second-order rela-
tionships is a superset of the direct relationships. We can extend to

these higher-order connections with HOBE, as opposed to FOBE,

because of the information provided in algebraic distances. Many

graphs contain a small number of high degree nodes, which creates

a very dense second-order graph. Algebraic distances are therefore

needed to distinguish which of the sampled second-order connec-

tions are meaningful, especially when the refinement is normalized

by |Γ(vi)|
−1
.

We formulate our first-order observations to be equal to the

strongest shared bridge between two nodes. This indicates that

both nodes are closely related to something that is mutually rep-

resentative, such as two viewers that watch new-wave cinema.

Formally:

S
′

A(αi ,α j) =


max

βk ∈Γ(αi)∩Γ(α j)
min

(
s(αi , βk), s(α j , βk)

)
if αi ,α j ∈ A

0 otherwise

(12)

S
′

B (βi , βj) =


max

αk ∈Γ(βi)∩Γ(βj)
min

(
s(αk , βi), s(αk , βj)

)
if βi , βj ∈ B

0 otherwise

(13)

When observing second-order relationships between nodes αi
and βj if different types, we again construct a measurement from

shared first-order relationships. Specifically, we are looking for the

strongest first-order connection between i and j’s neighborhood,
and vice-versa. In the context of viewers and movies this represents

the similarity between a viewer and a movie watched by a friend.

Formally:

S
′

V (αi , βj) = max

(
max

αk ∈Γ(βj)
S
′

A(αi ,αk), max

βk ∈Γ(αi)
S
′

B (βj , βk)
)

(14)

We again collect a fixed number of samples for each relationship

type: direct, first- and second-order. We then train embeddings

using cosine similarities, however we select the ReLU activation

function to replace sigmoid in order to capture the weighted rela-

tionships. We optimize for all three observations simultaneously,

which again has the effect of creating negative samples for non-

observed phenomena. Our estimated similarities are defined as

follows:

S̃
′

A(αi ,α j) = max

(
0, ϵ(αi)

⊺ϵ(α j)
)

(15)

S̃
′

B (βi , βj) = max

(
0, ϵ(βi)

⊺ϵ(βj)
)

(16)

S̃
′

B (αi , βj) = E
αk ∈Γ(βj)

[
S̃
′

A(αi ,αk)
]
E

βk ∈Γ(αi)

[
S̃
′

B (βj , βk)
]

(17)

We use the same model as FOBE to train HOBE, but with our

new estimation functions and a new objective. We now optimize

for the mean-squared error between our observed and estimated

samples, as KL-Divergence is ill-defined for the weighted samples

we collect. Formally, we minimize:

min

ϵ
E

vi ,vj ∈V×V


(S

′

A(vi ,vj) − S̃
′

A(vi ,vj))
2

+(S
′

B (vi ,vj) − S̃
′

B (vi ,vj))
2

+(S
′

V (vi ,vj) − S̃
′

V (vi ,vj))
2

 (18)

2.3 Combination Bipartite Embedding
In order to unify our proposed approaches, we present a method to

create a joint embedding from multiple pre-trained bipartite em-

beddings. This combination method maintains our initial assertion

that nodes of different types ought to participate in different global

embedding structures. We fit a non-linear projection of the input

embeddings such that an intermediate embedding can accurately

uncover direct relationships. This raises a question as to whether

it is better to create an intermediate that succeeds in this training

task, or whether it is better to fully encode the input embeddings.

To address this concern we propose two flavors of our combina-

tion method: the “direct” approach maximizes performance on the

training task, while the “auto-regularized” approach enforces a full

encoding of input embeddings.

We begin by taking the edge list of the original bipartite graph

E as our set of positive samples. We then generate five negative

samples for each node by selecting random pairs αiβj < E. For each
sample, we create an input vector by concatenating each of the e ′

pre-trained embeddings.

In(vi) = [ϵ1(vi) ϵ2(vi) ... ϵe ′(vi)] (19)

After generating In(αi) and In(βj), ourmodels assert 50% dropout

in these input vectors [24]. We do so in the auto-regularized case so

that we follow the pattern of denoising auto-encoders, which have

shown high performance in robust dimensionality reductions [28].

However, we also find that this dropout increases performance

in the direct combination model as well. This is because in either

case, we anticipate both redundant and noisy signals to be present

across the concatenated embeddings. This is especially necessary

for larger values of k and e ′, where the risk of overfitting increases.

We then project In(αi) and In(βj) separately onto two hidden

layers of size d (In)+k
′
/2 where d(·) indicates the dimensionality

of the input, and k
′

represents the desired dimensionality of the

combined embeddings. By separating these hidden layers, we only

allow signals from within embeddings of the same node to affect

First- and High-Order Bipartite Embeddings MLG’20, August 24, 2020, San Diego, CA

its combination. We then project down to two combination embed-

dings of size k
′

, which act as input to both the joint link-prediction

model, as well as to the optional auto-encoder layers.

In the direct case, we simply minimize the mean-squared error

between the predicted links and the observed links. Formally, let

S
′′

(αi , βj) → {0, 1} equal the sampled value, and let S̃
′′

(αi , βj) → R
be combination estimate. In the auto-regularized case we introduce

a factor to enforce that the original (pre-dropout) embeddings can

be recovered from the combined embedding. We weight these fac-

tors so they are half as important as performing the link prediction

training task. The neural architecture used to learn these combina-

tion embeddings is depicted in the supplemental information. IfΘ is

the set of free parameters of our neural network model, N is the set

of negative samples, and Out(vi) is the output of the auto-encoder
corresponding to In(vi), then we optimize the following (direct

followed by auto-regularized):

min

Θ
E

αi ,βj ∈(E+N)

(
S
′′

(αi , βj) − S̃
′′

(αi , βj)
)
2

(20)

min

Θ
E

αi ,βj ∈(E+N)

©­­­«
4

(
S
′′

(αi , βj) − S̃
′′

(αi , βj)
)
2

+| |In(αi) −Out(αi)| |2

+| |In(βj) −Out(βj)| |2

ª®®®¬ (21)

3 ALGORITHMIC ANALYSIS
In order to efficiently compute FOBE and HOBE, we collect a fixed

number of samples per node for each of the observation functions,

S. As later explored in Table 4, we find that the performance of

our proposed methods does not significantly increase beyond a

relatively small, fixed sampling rate sr , where sr << |V |. Using

this observation, we can efficiently minimize the FOBE and HOBE

objective values by approximating the expensive O(n2) set of com-

parisons (vi ,vj ∈ V ×V) with a linear number of samples (specif-

ically O(|V |sr)). Furthermore, we can estimate the effect of each

node’s neighborhood in observations SV and S′V by following a sim-

ilar approach. Instead of considering each node’s total O(V)-sized

neighborhood, we can randomly sample sγ neighboring nodes with

replacement. These specifically samples nodes are recorded dur-

ing the sampling procedure so that they may be referenced during

training. Algorithm 1 describes the sampling algorithm formally.

4 EMPIRICAL EVALUATION
Link PredictionWe evaluate the performance of our proposed em-

beddings across three link prediction tasks and a range of training-

test splits. When removing edges, we visit each in random order

and remove them with probability h provided the removal does

not disconnect the graph. This additional check ensures all nodes

appear in all experimental embeddings. The result is the subgraph

G ′ = (V ,E ′,h). Deleted edges form the positive test-set examples,

and we generate set of negative samples (edges not present in orig-

inal graph) of equal size. These samples are used to train three

sets of link-prediction models: the A-Personalized, B-Personalized
(where A and B are parts of V), and unified models.

The A-personalized model is a support vector machine trained

on the neighborhood of a particular node. A model personalized

to i ∈ A learns to identify a region in B-space corresponding to

Procedure 1 FOBE/HOBE Sampling. Unobserved values per sam-

ple are recorded as either zero or empty.

1: function SameTypeSample(vi , sr ,S)
2: vj∼Γ(Γ(vi))
3: Record vi ,vj , and S(vi ,vj)

4: function DiffTypeSample(vi , sr , sγ ,G,S)
5: vj∼G(vi)
6: Let γα and γβ be sets of size sγ sampled with replacement

from the neighborhoods Γ(vi) and Γ(vj) according to the types
of vi and vj .

7: Record vi ,vj ,γα ,γβ , and S(vi ,vj).

8: function FobeSampling(G, sr , sγ)
9: for all vi ∈ V do
10: for sr samples do
11: SameTypeSample(vi , sr ,SA)
12: SameTypeSample(vi , sr ,SB)
13: DiffTypeSample(vi , sr , sγ , Γ(·),SV)

14: function HobeSampling(G, sr , sγ)
15: for all vi ∈ V do
16: for sr samples do
17: SameTypeSample(vi , sr ,S

′
A)

18: SameTypeSample(vi , sr ,S
′
B)

19: DiffTypeSample(vi , sr , sγ , Γ(Γ(Γ(·))),S
′
V)

its neighborhood in G ′
. We use support vector machines with the

radial basis kernel (C = 1,γ = 0.1) because we find these models

result in robust performance given limited training data, and be-

cause the chosen kernel function allows for non-spherical decision

boundaries. We additionally generate five negative samples for each

positive sample (a neighbor of i in G ′
). In doing so we evaluate the

ability to capture type-specific latent features, as each personalized

model only considers one-type’s embeddings. While the personal-

ized task may not be typical for production link-prediction systems,

it is an important measure of latent features found in each space.

In many bipartite applications, such as the six we have selected for

evaluation, |A| and |B | may be drastically different. For instance,

there are typically more viewers than movies, or more buyers than

products. Therefore it becomes important to understand the differ-

ences in quality between the latent spaces of each type, which we

evaluate through these personalized models.

The unified link-prediction model, in contrast, learns to asso-

ciate αiβj ∈ E ′ with a combination of ϵ(αi) and ϵ(βj). This model

attempts to quantify global trends across embedding spaces. We use

a hidden layer of size k with the ReLU activation function, and a

single output with the sigmoid activation. We fit this model against

mean-squared error using the Adagrad optimizer [7].

Datasets. We evaluate each embedding across six datasets. The

Amazon, YouTube, DBLP, Friendster, and Livejournal graphs are

all taken from the Stanford Large Network Dataset Collection

(SNAP) [15]. We select the distribution of each under the listing

“Networks with Ground-Truth Communities.” Furthermore, we col-

lect the MadGrades graph, from an online source provided by the

University of Wisconsin at Madison [1]. This graph consists of

teachers and course codes, wherein an edge signifies that teacher

αi has taught course code βj . We clean this dataset by iteratively

deleting any instructor or course with degree 1 until none remain.

MLG’20, August 24, 2020, San Diego, CA Justin Sybrandt and Ilya Safro

Experimental Parameters. We evaluate the performance of

our proposed methods: FOBE and HOBE, as well as our two com-

bination approaches: Direct and Auto-Regularized Combination

Bipartite Embedding. We compare against all methods described

in Section 1.1. Note, we limit our comparison to other embedding-

based techniques as prior work [10] establishes they considerably

outperform alternative heuristic methods. We evaluate each across

the six above graphs and nine training-test splitsh = 0.1, 0.2, ..., 0.9.

For all embeddings we select dimensionality k = 100. For Deepwalk,

we select a walk length of 10, a window size of 5, and 100 walks

per node. For LINE we apply the model that combines both first-

and second-order relationships, selecting 10,000 samples total and

5 negative samples per node. For Node2Vec we select 10 walks per

node, walk length of 7 and a window size of 3. Furthermore, we

select default parameters for BiNE and Metapath2Vec++. For the lat-

ter, we supply the metapath of alternatingA−B−A nodes, the only

metapath in our bipartite case. For FOBE and HOBE we generate

200 samples per node, and when sampling neighborhoods we select

5 nodes with replacement upon each observation. After training

both methods, we fit the Direct and Auto-Regularized Combination

methods, each trained using only the results of FOBE and HOBE.

Recommendation: We follow the procedure originally described

by Gao et al. and evaluate our proposed embeddings through the

task of recommendation [8]. Recommendation systems propose

products to users in order to maximize the overall interaction rate.

These systems fit the bipartite graphmodel because they are defined

on the set of user-product interactions. While many such systems

could be reformulated as operations on bipartite networks, methods

such as matrix factorization and user-user nearest neighbors do

not capture granular local features to the same extent as modern

graph embeddings [3, 8]. In contrast, bipartite graph embedding

provides a framework to often learn richer latent representations

for both users and products. These representations can then be

used directly through simple similarity measures, or added to exist-

ing solution archetypes, such as k-nearest neighbors, which often

provides significant quality benefits.

While there are many similarities between recommendation and

link prediction, the key difference is the introduction of weighted

connections. As a result, recommendation systems are evaluated

based on their ability to rank products in accordance to held-out

user supplied rankings. This is quantified through a number of

metrics defined on the top k system-supplied recommendation for

each user. When using embeddings to make a comparison, Gao et al.

rank products by their embedding’s dot product with a given user.

However, our proposed methods relax the constraint that products

and users be directly comparable. As a result, when ranking prod-

ucts for a particular user for our proposed embeddings we must

first define a product-space representation. For each user we collect

the set of known product ratings, and calculate a product centroid

weighted by those ratings.

Experimental Procedure.We present a comparison between

our proposed methods and all previously discussed embeddings

across the DBLP
1
and LastFM

2
datasets. Note that this distribution

1
https://github.com/clhchtcjj/BiNE/tree/master/data/dblp

2
https://grouplens.org/datasets/hetrec-2011/

of DBLP is the bipartite graph of authors and venues, and is differ-

ent from the community-based version distributed by SNAP. The

LastFM dataset consists of listeners and musicians, where an edge

indicates listen count, which we log-scale to improve convergence

for all methods. We start by splitting each rating set into training-

and test-sets with a 40% holdout. In the case of DBLP we use the

same split as Gao et al. We use embeddings from the training bipar-

tite graph to perform link prediction. We then compare the ranked

list of training-set recommendations for each user, truncated to 10

items, to the test-set rankings. We calculate 128-dimensional em-

beddings for each method, and report F1, Normalized Discounted

Cumulative Gain (NDCG), Mean Average Precision (MAP) and

Mean Reciprocal Rate (MRR).

5 SIGNIFICANCE AND IMPACT
In contrast to what is typically claimed in papers, we observe that

the link prediction data (Table 1) demonstrates that different graphs

lead to very different performance results for the existing state-

of-the-art and proposed embeddings. Moreover, their behavior

is changed with different holdouts when the size of training set

is smaller. For instance, our methods are above the state of the

art in the Youtube and MadGrades graphs, but Metapath2Vec++,

Node2Vec, and LINE each have scenarios wherein they outperform

the field. Additionally, while there are scenarios where the combi-

nation methods perform as expected, such as in the Youtube, Mad-

Grades, and DBLP B-Personalized cases, we observe that variability
in the other proposed embeddings can disrupt this performance

gain.

When comparing the A- and B-Personalized results, its is impor-

tant to keep in mind that for all considered graphs there are more

A nodes (|A| > |B |), and therefore these nodes tend to have fewer

neighbors (E[Γ(α)] < E[Γ(β)]). For this reason, we find that differ-

ent embedding methods can exhibit significantly different behavior

across both personalized tasks. Intuitively, performing well on the

A-Personalized set indicates an ability to extrapolate connections

between elements with significantly more sparse attachments, such

as selecting a new movie given a viewer’s limited history. In con-

trast, performance on the B-Personalized set indicates an ability to

uncover trends among relatively larger sets of connections, such

as determining what patterns are common across all the viewers

of a particular movie. While these two tasks are certainly related,

we observe that the B-Personalized evaluation appears to be sig-

nificantly more challenging for a number of embedding methods,

such as Node2Vec on Lovejournal and YouTube. In contrast, HOBE

succeeds in this evaluation for both cases, as well as Friendster

and MadGrades. Metapath2Vec++ additionally is superior on Live-

Journal and Friendster, but falls behind on DBLP, MadGrades, and

Youtube.

In the recommendation results (Table 2 and 3), our methods

improve the state-of-the art. This is likely due to the behavior of

aggregate neighborhood-based comparisons present within FOBE

andHOBE, which has the effect of grouping clusters of nodes within

one type’s embedding space. Our biggest increase is in MRR for

DBLP, indicating that the first few suggestions from our embeddings

are often more relevant. The performance of HOBE, demonstrates

the ability for algebraic distance to estimate useful local similarity

https://github.com/clhchtcjj/BiNE/tree/master/data/dblp
https://grouplens.org/datasets/hetrec-2011/

First- and High-Order Bipartite Embeddings MLG’20, August 24, 2020, San Diego, CA

— FOBE — HOBE — D.Comb.

— A.R.Comb. - - Deepwalk - - LINE

- - Node2Vec - - BiNE - - Metapath2Vec++

A-Pers. B-Pers. Unified

A
m
a
z
o
n

D
B
L
P

F
r
i
e
n
d
s
t
e
r

L
i
v
e
j
o
u
r
n
a
l

M
a
d
G
r
a
d
e
s

Y
o
u
T
u
b
e

Table 1: Link Prediction Accuracy vs. Training-Test Ratio.
Dashed lines indicate prior work, while solid lines indicate
methods proposed here.

Metric@10: F1 NDCG MAP MRR

DeepWalk .0850 .2414 .1971 .3153

LINE .0899 .1441 .0962 .1713

Node2Vec .0854 .2389 .1944 .3111

MP2V++ .0865 .2514 .1906 .3197

BINE .1137 .2619 .2047 .3336

FOBE .1108 .3771 .2382 .4491

HOBE .1003 .4054 .3156 .6276
D.Comb. .0753 .2973 .2362 .5996

A.R.Comb. .0667 .2359 .1730 .5080

Table 2: DBLPRecommendation. Note: result numbers from
prior works are reproduced from [8].

measures. Interestingly, in the LastFM dataset, FOBE outperforms

HOBE. One reason for this is that LastFM contains significantly

more artists-to-user than DBLP contains venues-to-author. As a

result the amount of information present when estimating algebraic

similarities is different across datasets, and insufficient to boost

HOBE above FOBE.

Metric@10: F1 NDCG MAP MRR

DeepWalk .0027 .0153 .0069 .1844

LINE .0067 .0435 .0229 .2477

Node2Vec .0279 .1261 .0645 .2047

MP2V++ .0024 .0153 .0088 .2677

BINE .0227 .1551 .0982 .3539

FOBE .0729 .3085 .1997 .3778

HOBE .0195 .1352 .0789 .3400

D.Comb. .0243 .1285 .0795 .3520

A.R.Comb. .0388 .1927 .1249 .3915
Table 3: LastFM Recommendations.

When looking at both link prediction and recommendation tasks,

we observe a highly variable performance of the combination meth-

ods. In some cases, such as the MadGrades and YouTube link pre-

diction tasks, as well as the LastFM recommendation task, these

combinations are capable of learning a joint representation from

FOBE and HOBE that can improve overall performance. However,

in other cases, such as the Amazon link prediction task, the combi-

nation method appears to have significantly decreased performance.

This effect is due to the increased number of hyperparameters intro-

duced by the combination approach, which are determined not by

the complexity of a given dataset, but are instead determined by the

number and size of input embeddings. In the Amazon dataset, these

free parameters lead to overfitting the combination embeddings.

6 SENSITIVITY STUDY
We select the MadGrades network to demonstrate how our pro-

posed methods are effected by the sampling rate. We run ten trials

for each experimental sampling rate, consisting of powers of 2 from

1 to 1024. Each trial represents an independent 50% holdout exper-

iment. We present min, mean, and max observed link prediction

accuracy.

To continue comparing FOBE and HOBE, it would appear that

higher-order sampling is often able to produce better results, but

that the algebraic distance heuristic introduces added variability

that occasionally reduces overall performance. In some applications

it would appear that this variability is manageable, as seen in our

DBLP recommendation results. However in the case of link predic-

tion on Amazon communities, this caused an unintentional drop

when FOBE remained more consistent. Overall, FOBE and HOBE

are fast methods that broaden the array of embedding techniques

available for bipartite graphs. While no method is clearly superior

in every case, there exist a range of graphs and applications that

are better suited by these methods.

Looking to the sensitivity study (Tables 4), we see the variability

of HOBE is significantly larger for small sampling rates. However,

we do observe that after approximately 32 samples per node, in the

case of MadGrades, this effect is reduced. Still, considering FOBE

does not exhibit this same quality, it is likely the variability of

the algebraic similarity measure that ultimately leads to otherwise

unexpected reductions in HOBES performance.

7 CONCLUSIONS
In this work we present FOBE and HOBE, two strategies for model-

ing bipartite networks that are designed to capture type-specific

MLG’20, August 24, 2020, San Diego, CA Justin Sybrandt and Ilya Safro

– Max – Mean – Min

Per-A Per-B Unified

F
O
B
E

H
O
B
E

Table 4: Link Prediction Accuracy vs. Sampling Rate. De-
picts the effect of increasing sr from 2 to 1024 on the Mad-
Grades dataset, running 10-trials of the 50% holdout experi-
ment per value of sr .

structural properties. FOBE, which captures first-order relation-

ships, samples nodes in small local neighborhoods. HOBE, in con-

trast, captures higher-order relationships that are prioritized by

a heuristic signal provided by algebraic distance on graphs . In

addition we present two variants on an approach to learn joint

representations that are designed to identify a “best of both worlds”

embedding. We evaluate these methods against the state-of-the-art

via a set of link prediction and recommendation tasks.

The most novel component of FOBE and HOBE is that these

methods do not encode cross-typed relationships through a linear

transformation, but instead model these relationships through the

aggregate behavior of node neighborhoods. For this reason, we

find that our proposed method performs well in the context of

recommendation, where identifying local clusters of similar nodes is

important (see example of partitioning application [25]). In the case

of link prediction, where the goal is to identify specific attachments

between two particular nodes, we find that themethods perform at a

level similar to those considered in the benchmark, and only exceed

the state-of-the-art in particular graphs. While our personalized

classification tasks demonstrate the ability for FOBE and HOBE to

capture type-specific latent features, additional work is necessary

to study the specific qualities these methods encode.

ACKNOWLEDGMENTS
This work was supported by NSF awards MRI #1725573 and NRT

#1633608.

REFERENCES
[1] [n. d.]. MadGrades - UW Madison Grade Distributions. https://madgrades.com.

([n. d.]). Accessed: 2018-10-25.

[2] Albert-László Barabási, Natali Gulbahce, and Joseph Loscalzo. 2011. Network

medicine: a network-based approach to human disease. Nature reviews genetics
12, 1 (2011), 56.

[3] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez.

2013. Recommender systems survey. Knowledge-based systems 46 (2013), 109–
132.

[4] Achi Brandt, James J. Brannick, Karsten Kahl, and Irene Livshits. 2011. Bootstrap

AMG. SIAM J. Scientific Computing 33, 2 (2011), 612–632.

[5] Jie Chen and Ilya Safro. 2011. Algebraic distance on graphs. SIAM Journal on
Scientific Computing 33, 6 (2011), 3468–3490.

[6] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:

Scalable representation learning for heterogeneous networks. In Proceedings of

the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 135–144.

[7] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods

for online learning and stochastic optimization. Journal of Machine Learning
Research 12, Jul (2011), 2121–2159.

[8] Ming Gao, Leihui Chen, Xiangnan He, and Aoying Zhou. 2018. BiNE: Bipartite

Network Embedding. In The 41st International ACM SIGIR Conference on Research
& Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, USA,

715–724. https://doi.org/10.1145/3209978.3209987

[9] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications,

and performance: A survey. Knowledge-Based Systems 151 (2018), 78–94.
[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855–864.

[11] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation:

A new estimation principle for unnormalized statistical models. In Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics.
297–304.

[12] Emmanuel John and Ilya Safro. 2016. Single-and multi-level network sparsifica-

tion by algebraic distance. Journal of Complex Networks 5, 3 (2016), 352–388.
[13] Jon M Kleinberg. 1999. Authoritative sources in a hyperlinked environment.

Journal of the ACM (JACM) 46, 5 (1999), 604–632.
[14] Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.

The annals of mathematical statistics 22, 1 (1951), 79–86.
[15] Jure Leskovec and Andrej Krevl. 2015. {SNAP Datasets}:{Stanford} Large

Network Dataset Collection. (2015).

[16] Sven Leyffer and Ilya Safro. 2013. Fast response to infection spread and cyber

attacks on large-scale networks. Journal of Complex Networks 1, 2 (2013), 183–199.
[17] Oren E Livne and Achi Brandt. 2012. Lean algebraic multigrid (LAMG): Fast

graph Laplacian linear solver. SIAM Journal on Scientific Computing 34, 4 (2012),

B499–B522.

[18] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[19] Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro.

2019. Janossy Pooling: Learning Deep Permutation-Invariant Functions for

Variable-Size Inputs. In International Conference on Learning Representations.
https://openreview.net/forum?id=BJluy2RcFm

[20] Uwe Naumann and Olaf Schenk. 2012. Combinatorial scientific computing. CRC
Press.

[21] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[22] Dorit Ron, Ilya Safro, and Achi Brandt. 2011. Relaxation-based coarsening and

multiscale graph organization. Multiscale Modeling & Simulation 9, 1 (2011),

407–423.

[23] Ruslan Shaydulin, Jie Chen, and Ilya Safro. 2019. Relaxation-Based Coarsening

for Multilevel Hypergraph Partitioning. SIAMMultiscale Modeling and Simulation
17 (2019), 482–506. Issue 1.

[24] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from

overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[25] Justin Sybrandt, Ruslan Shaydulin, and Ilya Safro. 2019. Hypergraph Partitioning

With Embeddings. arXiv preprint arXiv:1909.04016 (2019).
[26] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. International World Wide Web

Conferences Steering Committee, 1067–1077.

[27] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018.

VERSE: Versatile Graph Embeddings from Similarity Measures. In Proceedings of
the 2018 World Wide Web Conference (WWW ’18). International World Wide Web

Conferences Steering Committee, Republic and Canton of Geneva, Switzerland,

539–548. https://doi.org/10.1145/3178876.3186120

[28] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.

2008. Extracting and composing robust features with denoising autoencoders.

In Proceedings of the 25th international conference on Machine learning. ACM,

1096–1103.

[29] Muhammed A Yıldırım, Kwang-Il Goh, Michael E Cusick, Albert-László Barabási,

and Marc Vidal. 2007. Drug—target network. Nature biotechnology 25, 10 (2007),

1119.

[30] Chenzi Zhang, Shuguang Hu, Zhihao Gavin Tang, and T-H. Hubert Chan. 2017.

Re-revisiting Learning on Hypergraphs: Confidence Interval and Subgradient

Method. In Proceedings of the 34th International Conference on Machine Learning
(Proceedings of Machine Learning Research), Doina Precup and Yee Whye Teh

(Eds.), Vol. 70. PMLR, International Convention Centre, Sydney, Australia, 4026–

4034. http://proceedings.mlr.press/v70/zhang17d.html

https://madgrades.com
https://doi.org/10.1145/3209978.3209987
https://openreview.net/forum?id=BJluy2RcFm
https://doi.org/10.1145/3178876.3186120
http://proceedings.mlr.press/v70/zhang17d.html

	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods and Technical Solutions
	2.1 First-Order Bipartite Embedding
	2.2 High-Order Bipartite Embedding
	2.3 Combination Bipartite Embedding

	3 Algorithmic Analysis
	4 Empirical Evaluation
	5 Significance and Impact
	6 Sensitivity Study
	7 Conclusions
	Acknowledgments
	References

