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ABSTRACT

Graph representation learning based on graph neural networks
(GNNs) can greatly improve the performance of downstream tasks,
such as node and graph classification. However, the general GNN
models do not aggregate node information in a hierarchical man-
ner, and can miss key higher-order structural features of many
graphs. The hierarchical aggregation also enables the graph repre-
sentations to be explainable. In addition, supervised graph repre-
sentation learning requires labeled data, which is expensive and
error-prone. To address these issues, we present an unsupervised
graph representation learning method, Unsupervised Hierarchical
Graph Representation (UHGR), which can generate hierarchical rep-
resentations of graphs. Our method focuses on maximizing mutual
information between “local” and high-level “global” representa-
tions, which enables us to learn the node embeddings and graph
embeddings without any labeled data. To demonstrate the effec-
tiveness of the proposed method, we perform the node and graph
classification using the learned node and graph embeddings. The
results show that the proposed method achieves comparable results
to state-of-the-art supervised methods on several benchmarks. In
addition, our visualization of hierarchical representations indicates
that our method can capture meaningful and interpretable clusters.
Reproducibility: Our code and experimental data are available at
this link!.
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« Information systems — Data mining; « Mathematics of com-
puting — Graph algorithms; « Computing methodologies —
Unsupervised learning.
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1 INTRODUCTION

Graph representation learning has been used in many domains
that are related to graph-structured data, including bioinformat-
ics [9], chemoinformatics [18, 29], social networks [8] and cyber-
security [40]. There are two important tasks in graph analysis,
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i.e., label predictions on nodes and graphs. For instance, in the
study of chemical molecules, researchers apply graph classifica-
tion [22, 23, 43] to help discover chemical properties of new mol-
ecule by predicting labels of the molecule, where a molecule can
be represented as a graph with the atom represented as nodes and
chemical bond represented as edges.

Graph neural networks (GNNs) are applied to graph-based data
to improve prediction performance due to their ability to learn
high-level features by propagating, transforming, and aggregating
neighborhood information across edges [11, 14]. There are vari-
ous neighborhood aggregation methods to capture the structures
and attributes of graphs, including the average aggregation [19],
generalized aggregation [14] and attention-based aggregation [39].
However, these techniques sometimes miss key structural features
for large, sparse, and noisy real-world graphs. In these cases, the
most valuable information is often contain in several small sub-
graphs, which conventional aggregations methods often struggle
to capture.

To solve this problem, Lee et al. [22] present the Graph Attention
Model (GAM), which focuses on small parts of graphs in order to
predict the labels of the entire graphs. In order to improve embed-
ding quality, the GAM model also integrates global information
from various parts of the graph via different random sets of nodes.
This suggests that local and global information are both impor-
tant in graph representation learning. In the analysis of real-world
graphs, it is necessary to gather information from individual nodes
and edges as well as the subgraphs of graph that represent dis-
criminative patterns. Recently, Ying et al. [43] proposed a graph
pooling module, DIFFPooL, to generate hierarchical representations
of graphs for the purpose of graph classification. This mechanism al-
lows GNNs to encode the local and global structural information to
obtain the final graph representation. Although the above methods
perform well in the graph classification task, they are task-specific
and focus on supervised learning. These methods depend highly
on vast quantities of labeled graph data, which is often costly and
error-prone in the real world. To address this problem, Velickovi¢ et
al. [39] applies mutual information maximization to learn node rep-
resentations of graph-structured inputs without using labelled data,
and demonstrates competitive performance to supervised learning
on several node classification benchmarks.
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Inspired by this work, we propose a novel unsupervised learning
method, Unsupervised Hierarchical Graph Representation (UHGR),
to learn hierarchical graph representations based on mutual infor-
mation maximization, which includes node embeddings and graph
embeddings. We summarize the main contributions as follows:

e We propose an unsupervised hierarchical graph representa-
tion learning method to capture the local and global struc-
tural information of arbitrary sized graphs, which does not
depend on any task-specific information (e.g., class labels).
This method is generic enough to be used in various scenar-
ios such as node embedding and graph embedding.

e We demonstrate that the graph representations from the
proposed model can achieve comparable node and graph
classification performance to supervised baseline methods
on real-world data sets.

o The proposed method can learn meaningful and interpretable
clusters across different levels of coarseness based on the
structural information of graphs, as demonstrated through
our visualizations.

The remainder of this paper is organized as follows: section 2
illustrates our proposed method; the discussions of experimental
results are provided in section 3; section 4 reviews the related work;
finally, we discuss the conclusions in section 5.

2 PROPOSED METHOD

Inspired by the recent success of unsupervised learning based upon
mutual information maximization [16, 39], we propose a novel
unsupervised embedding framework, UHGR, to capture structural
information and learn a hierarchical graph representation. This
method is based on the maximization of mutual information be-
tween “local” features from neighbors of one node and high-level
“global” features from the entire graph, which enables us to learn
both node and graph representations.The proposed method utilizes
the unsupervised learning method to aggregate structural informa-
tion to generate hierarchical representations. This unsupervised
method makes the graph representations feasible for various down-
stream tasks, such as node and graph classification. Meanwhile, our
method overcomes the shortcomings of previous studies that do
not integrate different structural information of graphs well. To
evaluate our method, we apply the learned representations on the
node and graph classification tasks, and compare the classification
results with several baseline methods.

2.1 Preliminaries

The undirected graph G = (X, A) is comprised of n nodes, each with
f features. Here, X € R(™f) where the original node features xj is
read directly from files and represented by row i of X. Furthermore,
the adjacency matrix A € {0, 1}{"") contains a nonzero entry A; i
to indicate an edge between nodes i and j. The goal of this work
is to create different levels of low-rank encodings of G, which we
accomplish by training an encoder to cluster local parts of the graph
and create more coarsened graphs, eventually output the final rep-
resentation of the original graph. Each coarsened graph has its own
node features and an adjacency matrix that are trainable. In order to
train the encoder module, we apply a hierarchical approach where
G is repeatedly coarsened from Gy = (Hi, A1), ...,Gr(Hj, A;) and
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H represents the learned representations. The H; and A; are from
the original graph, and the Hj is the final graph representation of
the original graph. Following this scheme, the number of nodes
in the successively coarsened graphs is non-increasing. Because
H; e RMXi represents the node embeddings of leveli, if i < j, then
n; < nj. The feature vector corresponding to the coarse nodes is
determined by a separate hierarchical level, G;—; — Rf", which
learns node embeddings of level i from the previous level i — 1 of
coarseness.

This paper uses graph neural networks (GNNs) to create repre-
sentations of the graphs at different levels, which is able to capture
hierarchical structures and generate flexible graph embeddings. A
key component of the proposed method is how to cluster partial
parts of the graph and generate more coarsened graphs based on
the output of GNNs without any labels. In the following parts, we
outline the different modules of UHGR and illustrate how to learn
hierarchical graph representations based on mutual information
maximization.

2.2 Encoder module

The hierarchical encoder mainly depends on message-passing func-
tion M. The message-passing function M is used to iteratively com-
pute node representations from their neighborhood’s features [43]:

H® = m(A,HEY), (1)

where H*) are the node embeddings of the k-th step from message-
passing function M, which depends on the adjacency matrix A and
the previous node embeddings H*=1_ At the initial step (k=1), HO
is initialized by the original node features X. After K iterations, the
module outputs the final node embeddings Z = H (k) The message-
passing function M can be implemented by different types of GNNs.
In this work, we consider two general GNNs: Graph Convolutional
Networks (GCNs) [19] and Graph Attention Networks (GATs) [38].

Graph Convolutional Networks. GCNs implement M using
the following rule:

H® = o(D~2 AD~ s HE- Dy (k-1 @)

where A = A + I is the adjacency matrix with self-loops and D;; =
2 A; j is the corresponding degree matrix. For the nonlinearity

o, we apply the parametric ReLU function [15], and W~V is a
trainable weight matrix.

Graph Attention Networks. GATs leverage self-attentional
layers to set learnable weights to measure the importance of neigh-
borhoods when aggregating feature information from node’s neigh-
bors. When computing new feature representation for a central
node, each neighborhood receives a different weight by measuring
the relation between its feature vector and the central node’s vector.
Node i and its neighborhood node j have the following relations:

eij = a(Wxj, Wxj), 3)

ajj = softmax;(e;;), 4)

where e;; is the attention coefficients and a represents a single-
layer feed-forward neural network to perform self-attention on
the nodes. The shared weight matrix W is used for every node
to perform linear transformation. a;; indicates the importance of
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Figure 1: The architecture of the Unsupervised Hierarchical Graph Representation (UHGR) model. The left module (a) is an
Encoder that creates the node representations H by exploiting the node feature X and the adjacency matrix A. The middle
module (b) utilizes hierarchical graph pooling to create the graph summary 5. The right module (c) is a Discriminator trained
to discriminate if a pair of H and 5 is generated from the same graph or not.

node j’s features to node i after normalizing e;; during the feature
aggregation process.

2.3 Graph pooling module

To assign nodes to clusters at each hierarchical layer, we apply
DIFFPOOL [43] to create node embeddings and adjacency matrix
for next coarsened layer (i+1) from layer i.

A GNN(A(i),H(i)), 5)

AU+, g+ = pIFrPOOL(AY), (). (6)

The graph pooling module takes the adjacency matrix A®)) and
the features of the nodes or cluster nodes at layer i as the input
of the GNN module to get the new embedding matrices Z0 of
nodes or cluster nodes. Then the DIFFPOOL module takes the node
embedding matrices 7" and the adjacency matrix A®) to generate
a coarsened adjacency matrix AU+ and new embeddings HU+D)
for each of the nodes or cluster nodes in this coarsened graph.
Then, the new coarsened graphs are fed to the GNN module to
generate a coarser version of the input graph. This whole process
is repeated several times until the final graph representation is
generated, which contains only one general node or cluster node.
Compared to other hierarchical representation learning methods,
our model learns a hierarchical representation strategy automati-
cally, which doesn’t depend on the specific task and can be trained
end-to-end. Generally, this unsupervised manner embeds the orig-
inal graph to a coarser one by grouping the similar subgraphs
together.

2.4 Discriminator module

Similar to Deep InfoMax [16, 39], we introduce a discriminator
module to help training the Encoder module and Graph pooling
module, which enables our model to output the satisfied represen-
tations. The discriminator module trains the encoder to maximize
the mutual information between a high-level graph representation
and local features of the graphs and it is able to capture the unique
graph representation for each graph individually. The local features
are also included in the learned node embeddings, which represents
the hierarchy of the original graphs. In this context, the final output
representation of hierarchical learning is the graph-level summary
representation §, and the local graph features are from the node
embeddings of the original graph H = {Hl, ﬁz, o ﬁn}. Therefore,

our hierarchical model can be written by the following equation:
§ = R(GNN(A, H)), ™)

where A represents an adjacency matrix of the original graph, and
R : R™f — RS is used to obtain a hierarchical graph-level repre-
sentation. GNN module can be any node embedding module such
as GCN and GAT. The readout function R utilizes the unsupervised
hierarchical process to summarize the graph-level vector s.

For the objective function, we follow the same loss function
as DGI [39], which computes the standard binary cross-entropy
between graph samples from the joint and the product of marginals:

L=3 i m ( ; E(q, a)llog D(hs, 5)]+
2 B, 4llog(1 ~ Dk, 53)]), ®)
j=1
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Table 1: Data set summary used in node classification task

Data set Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3

Table 2: Data set summary used in graph classification task

Data set Graphs Classes Avg.# Nodes Avg.# Edges
COLLAB 5,000 3 74.49 2,457.78
D&D 1,178 2 284.32 715.66
PROTEINS 1,113 2 39.06 72.82

NCI1 4,110 2 29.87 32.30

where a discriminator D : Rf x Rf — R, is employed to repre-
sent the probability scores of the local-global pair. The negative
samples are drawn by combining the summary vector s with the

local features h; from other graphs. Through minimizing these log-
expectation terms, our model can effectively extract useful local
and global information of the input graph based on the mutual
information maximization.

3 EXPERIMENTS

We evaluate the graph representation learned from UHGR on both
graph classification and node classification tasks. In each case, UHGR
is used to learn graph and node representations in a fully unsu-
pervised manner. The graph and node classification tasks are per-
formed by directly feeding the learned representations into simple
linear classifiers. We also conduct the visualization experiments on
learned representations to verify whether it’s reasonable to assign
clusters in an unsupervised manner.

3.1 Data sets

To evaluate the ability of UHGR to learn hierarchical representa-
tions from arbitrary complex graphs, we perform it on a variety of
real-world graphs chosen from the commonly used benchmarks.
For the node classification task, we consider the transductive learn-
ing setting and choose three standard data sets, Cora, Citeseer,
and Pubmed [30], as summarized in Table 1. We employ the same
training, validation and testing settings as those in DGI [39], and
report the node classification accuracy on the testing data, aver-
aged over 50 runs of training. For graph classification task, we use
protein data sets including D&D [6, 32] and PROTEINS [2, 6], the
chemical molecules data set NCI1 [32, 41], and the scientific collab-
oration data set COLLAB [42]. More information on these data sets
is shown in Table 2. For this graph classification task, we perform
10-fold cross-validation to evaluate the performance, and apply the
average over 10 folds as the final accuracy result. The visualization
experiments are conducted on the data sets for graph classification
tasks. We feed the original graph to output a coarser one based on
the learned hierarchical cluster assignments.
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3.2 Experimental setup

As discussed in section 2, UHGR includes encoder module, graph
pooling module and discriminator module. The encoder module
encodes node representations using one GAT layer or one GCN
layer. During the graph pooling module, we apply two DIFFPOOL
layers to all of the data sets. Three GCN layers are performed
between these two DIFFPOOL layers. In the hierarchical cluster
setting, the number of clusters after DIFFPOOL layer is set be to 10-
30% of the number of nodes or clusters before pooling. The Readout
function in the discriminator module is built on the top of the
DIFFPOOL architecture, which enables us to learn the hierarchical
graph representations. Finally, the discriminator module relies on
the mutual information maximization to achieve the unsupervised
graph learning. We also apply Batch normalization [17] after each
layer. All models are trained for 1000 epochs with early stopping
applied when the validation performance stops improving. We
apply PyTorch framework [26] to build graph neural network model
and run it on NVIDIA Tesla V100 GPU. In order to demonstrate the
effectiveness of our proposed model, we evaluate it on the following
three tasks: node classification, graph classification, and analysis of
hierarchical cluster assignment.

Reproducibility: Our source code and experimental data are avail-
able at https://github.com/ifding/uhgr.

3.3 Results for Node Classification

Table 3 lists the node classification results on data sets Cora, Cite-
seer and Pubmed using our method and other existing methods.
For the operation of node embeddings, we test two different GNN
module variants: GATs and GCNs. The GATs module outperforms
GCNs on most of the benchmarks, indicating that self-attention
mechanism is more suitable for capturing local structural infor-
mation. For the Cora and Citeseer data sets, we set both hidden
dimension and output dimension to 320 and 400, respectively. And
for the Pubmed data set, 128-dimensional hidden size and output
size for GCN model and 100-dimensional hidden size and output
size for GAT model are tested in our experiments. The node repre-
sentations with larger hidden dimension and output dimension may
be more powerful, and will be further optimized in future work.
According to the results, our model achieves better classification
performance than DeepWalk, and obtains comparable performance
with supervised learning methods.

3.4 Results for Graph Classification

Table 4 compares the graph classification performance of our unsu-
pervised learning method with other supervised learning baselines
on datasets COLLAB, D&D, PROTEINS and NCI-1. The results
show that our unsupervised method obtains similar performance
as DIFFPOOL method on the PROTRINS benchmark and achieves
comparable results with supervised methods, e.g. GRAPHSAGE,
indicating that our method can learn useful graph representations
even without graph labels. We also find that GAT-UHGR model per-
forms better than GCN-UHGR model on the datasets COLLAB and
PROTEINS, and performs worse than GCN-UHGR model only on
the D&D dataset. This suggests that different graph datasets need
different Encoder layer to capture useful representations in order
to achieve better classification performance. Compared with other
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Table 3: Node classification accuracies using different methods on datasets Cora, Citeseer and Pubmed. First column lists the
type of data available during each graph representation learning method (X: node features, A: adjacency matrix, Y: node labels,

X,A: unsupervised node representation learning, X,A,Y: supervised node classification).

Available data Method Cora Citeseer Pubmed

X Raw features 479 +04% 493 +0.2% 69.1 +0.3%
A DeepWalk 67.2% 43.2% 65.3%

X, A DeepWalk + features 70.7 £ 0.6% 51.4 £0.5% 74.3 +0.9%
X, A DGI 823+0.6% 71.8+0.7% 76.8 £ 0.6%
X,AY GCN 81.5% 70.3% 79.0%
X,AY GAT 83.0+0.7% 725+0.7% 79.0+0.3%
X, A GAT-UHGR (ours) 785+ 0.1% 62.6 £03% 77.4 %+ 0.6%
X, A GCN-UHGR (ours) 76.7 £ 0.1% 62.5+0.1% 75.1 +£0.3%

Table 4: Graph classification accuracies using different methods on datasets COLLAB, D&D, PROTEINS and NCI-1. First column
lists the type of data available during each graph representation learning method (X: node features, A: adjacency matrix, Y:
node labels, X,A: unsupervised graph representation learning, X,A,Y: supervised graph classification).

Available data Method COLLAB D&D PROTEINS NCI-1
X, AY GRAPHSAGE 68.3% 75.4% 70.5% -

X, AY SET2SET 71.8% 78.1% 74.3% -

X, AY DIFFPOOL 75.5% 80.6% 76.3% 79.3%
X, A graph2vec - - 75.4 % 75.0 %
X, A GAT-UHGR (ours)  67.4% 75.6% 75.9% 66.6%
X, A GCN-UHGR (ours) 66.9% 774% 74.7% 66.6%

unsupervised model, e.g., graph2vec [25], GAT-UHGR model obtains
comparable classification results on PROTEIN data set. However,
graph2vec utilizes a SVM classifier to perform 1024-dimensional
embeddings of graphs, where our method directly uses the graph
representations to train and test a simple linear classifier. For the
embedding dimensions, we simply set it to 20-360 to demonstrate
the validity of the learned hierarchical representations, and doesn’t
further optimize this hyperparameter to achieve better classification
performance due to hardware limitations.

3.5 Visualization of hierarchical representation

In addition to generating useful representation for classification
tasks, our model can also create meaningful and interpretable rep-
resentations in a hierarchical way. To evaluate the meanings of the
learned hierarchical graphs, we visualize the cluster assignments
after the DIFFPOOL layer. Figure 2 shows the visualization of node
assignments on the graphs from different data sets. Different node
colors represent different node cluster labels from cluster assign-
ment probabilities. Figure 2 (a) is the node assignment on COLLAB
data set and it is clear that our model can capture the hierarchical
structure in these graphs. From Figure 2 (b) and (c), we also observe
that many meaningful structures, including clique-like, tree-like
and cycle-like structures, are captured by the model. This is because
the DIFFPOOL layer computes the node assignment based on the
node feature matrix and adjacency matrix, thus the input nodes
with similar features and local structure obtain similar node assign-
ment. Even if the subgraphs with similar patterns are far away, our
model can still assign them into the same cluster. In general, our

unsupervised learning method based on mutual information can
capture different hierarchical structures.

4 RELATED WORK

Graph Neural Network. A wide variety of graph neural networks
have been applied in node classification [10, 20, 38] and graph classi-
fication tasks [5, 7, 22, 43, 44] in recent years. In node classification,
GAT [38] stacks masked self-attentional layers to classify a node
by attending over its neighbors in different weights. LGCN [10]
builds a trainable graph convolutional layer to select a fixed num-
ber of neighboring nodes in order to transform graph data into
grid-like data, which is suitable for typical convolutional opera-
tions. PPNP [20] combines graph convolutional networks (GCN)
and PageRank to overcome the problem that the size of the observed
neighborhood of a node is difficult to extend. In graph classifica-
tion, the main challenge is to build a useful low-dimensional graph
representation based on the node embeddings of the entire graph.
One straightforward solution, presented by Duvenaud et al. [7] and
Velickovi¢ et al. [39] is to sum or average a graph’s node embed-
dings. However, this solution ignores the structural information of
graphs and considers that all nodes contribute the same weight to
the calculation of graph representation. Therefore, DIrFPooL [43] is
proposed for graph classification that can learn hierarchical graph
representations with a graph pooling module. Although this method
solves the problem that existing GNN methods are flat and ignore
hierarchical structure of graphs, it needs to learn under the super-
vision of graph-level labels. In addition, the real-world graphs are
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Figure 2: Visualization of hierarchical cluster assignment on data sets (a) COLLAB, (b) NCI1, (c) PROTEINS. The nodes of same
color are merged into one cluster in the next layer and the dotted lines represents the cluster membership.

usually large and noisy, GAM [22] is proposed for the attention-
based graph classification, which utilizes the attention mechanism
to focus on small but informative parts of graphs. Combining local
and global information on (hyper)graphs in the hierarchical set-
ting has a long successful history. For example, in computational
optimization domain, the multiscale solvers for (hyper)graph par-
titioning [31], separators [13], and ordering [28] are among the
top state of the art methods that preserve excellent time/quality
trade-off. However, all of these approaches depend on task-specific
information to learn node embeddings or graph embeddings. In
addition, most of them ignore the hierarchical representation of
graphs, and thus have limited capabilities of capturing the natural
structures of the real-world graphs [43].

Graph Representation Learning. Learning a high quality rep-
resentation not only enables us to capture the latent variables of the
data [1], but also helps improve the performance of downstream
tasks. For graph-structured data, the learned low-dimensional rep-
resentations (embeddings) can encode information of a graph’s
nodes, or the entire graph in the case of the GNN model. Many
of the existing graph representations are focused on node embed-
dings by using random walk based objectives [12, 14, 27]. In ad-
dition, LINE [35] and FOBE/HOBE [33] focus on modelling first-
order and second-order relationships between node neighborhoods
to learn node embeddings and graph embeddings. VERSE [36] is
a simple graph embedding framework based on similarity mea-
sures. Glimer et al. [11] propose a common framework to learn
message passing algorithms and aggregate the node embeddings.
Janossy Pooling [24] is a permutation-invariant aggregator func-
tion to learn node embeddings. Velickovi¢ et al. [39] propose an
alternative unsupervised node embedding method based on mutual
information [39]. HARP [3] proposes a hierarchical paradigm to
learn low-dimensional representations of a graph’s nodes. This par-
adigm utilizes a smaller graph that approximates the original global
structure to obtain good initializations for learning representations
of the original graph.

Additional research focuses on learning representations of entire
graphs in an unsupervised manner, which is quite different from
the task of node embedding. In node embedding, the goal is to learn
a low-dimensional vector to represent a node independently of

supervised label information (e.g., node labels and graph labels).
Graph2vec [25] is an unsupervised graph embedding method in-
spired by the document embedding models [21], but may not cap-
ture global structure, as this method only uses subtrees for graph
embeddings. Taheri et al. [34] generate sequences from graphs and
train a long short-term memory (LSTM) autoencoder model to
embed these graph sequences into continuous vectors. The LSTM
network cannot be operated in parallel and is not appropriate to
model large graphs. Some recent approaches have proposed apply-
ing the attention mechanism on graphs [4, 22] that can determine
which parts of the graph should have more attention. Yet the at-
tention mechanism only focuses on local information which is not
enough to achieve satisfactory node or graph representations. Re-
cently, BAvEsPooL [37] is proposed to use variational Bayes based
on an encoder-decoder architecture to learn hierarchical graph rep-
resentations in an unsupervised manner. Using Encoder-decoder
architecture leads to this method being overly focused on node-
based details, rather than more high-level node/graph embeddings.
Different from previous representation learning methods, in this
work we use an unsupervised learning framework based on mu-
tuainformation with contrastive loss, to learn hierarchical graph
representations.

5 CONCLUSION

In this paper, we propose an unsupervised hierarchical representa-
tion learning model based on mutual information, UHGR, to learn
node embeddings and graph embeddings. The mutual information
maximization between global representation and local parts of the
graphs can encourage the model to learn related structural infor-
mation in all locations. This unsupervised learning model is able to
learn task-independent graph representations. In addition, it can
learn hierarchical graph representation, which is meaningful and
easy to interpret. To demonstrate the effectiveness of the model,
we perform node classification and graph classification tasks based
on the learned representations. The results show that our unsu-
pervised model can achieve comparable results with the supervised
methods on several tested data sets. Finally, through visualization
of the hierarchical cluster assignment, we show that our model is
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able to generate hierarchical representations by clustering different
meaningful structures which increases interpretability.
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