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ABSTRACT

Graphs are versatile data structures that have permeated a large
number of application fields, such as biochemistry, knowledge
graphs, and social networks. As a result, different graph represen-
tation learning models have been proposed as effective approaches
to represent graph components in downstream machine learning
tasks, such as node classification and recommendation. However,
most representation learning models in graphs do not natively work
on heterogeneous (multi-relational) graphs and consequently are
not able to learn embeddings for different relations in the graph.
In this paper, we extend and improve existing models by enabling
an edge-based transformation procedure in order to learn embed-
dings for different relations in heterogeneous graphs. In addition,
we show that by incorporating a sequential model to learn more
expressive representations, temporal dynamics in social networks
can be captured. Finally, we examine our model within the context
of two very disparate heterogeneous graphs, a knowledge graph
dataset and a professional social network dataset, to illustrate our
point and show the effectiveness of our approach. By learning edge-
based transformations, our model yields a Mean Reciprocal Rank
score that is more than 4 times higher than the homogeneous
counterpart for the knowledge graph dataset. By incorporating
the temporal dynamics, our model improves the HITS@1 score by
more than 15% compared with the baseline model for the profes-
sional social network dataset.

CCS CONCEPTS

« Information systems — Data mining; - Computing method-
ologies — Machine learning.

KEYWORDS

Graph Representation Learning, Social Networks, Heterogeneous
Graphs, Temporal Dynamics

ACM Reference Format:

Bo Yan, Matthew Walker, and Krzysztof Janowicz. 2019. A Time-Aware
Inductive Representation Learning Strategy for Heterogeneous Graphs. In
Proceedings of 15th International Workshop on Mining and Learning with

*This work was done when Bo Yan interned at LinkedIn.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MLG’19, August 2019, Anchorage, Alaska USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06.

https://doi.org/10.475/123_4

Graphs (MLG’19). ACM, New York, NY, USA, Article 4, 8 pages. https://doi.
0rg/10.475/123_4

1 INTRODUCTION

Representation learning on graphs, namely encoding nodes and
edges in a vector space, has drawn an increasing amount of traction
in both industry and research recently in parts due to the ubiquity
of graphs in terms of diversity and quantity. While social networks
are among the most relatable examples of graphs in everyday life,
graphs are also the fundamental data structures for many other
fields such as the molecular interaction network in biochemistry,
the road network in transportation, and knowledge graph in data
management. The sheer amount of information encoded in these
graphs has also intrigued us — Facebook has more than 2 billion
monthly active users (nodes), LinkedIn has more than 590 million
members (nodes), and DBpedia (a crowd-sourced and community
effort-based knowledge graph) has more then 18 million nodes and
1.7 billion triples, each of which is composed of a source node, an
edge, and a target node.! In addition to the ubiquity of graphs,
another major reason for the rise of graph representation learning
is the proven efficacy of bottom-up machine learning algorithms
in obtaining low-dimensional representations in languages [8, 18]
and vision [15, 16].

Although existing methods may be applied, graph representa-
tion learning has its own challenges. Because of the versatility and
uniqueness of graphs (e.g., graph isomorphism), there is no regular
structure, such as the 1D sequence in natural languages and the 2D
grid in images, to facilitate the modeling process. Instead, the struc-
tural information is inherently embedded in the various ways in
which different nodes are connected with each other. Traditionally,
this structural information is represented using summary statis-
tics of the graph, such as clustering coefficients, or handcrafted
features that capture the neighborhood structures. In many cases,
the spectrum of the graph, i.e., the eigenvalues of the adjacency
matrix or Laplacian matrix, has also been used in order to explore
the connectivity structure. Besides the challenge of effectively and
meaningfully capturing the intrinsic graph structure for better
representing the graph components (such as nodes, edges, and sub-
graphs), more often than not, some extrinsic information associated
with these graph components may play a significant role as well.
For example, in order to empower friend recommendation features
— People You May Know — on Facebook or career recommendation
features — Jobs You May Be Interested In — on LinkedIn, information
such as personal background, education, interests, and skills should
be taken into consideration when learning representations for the

!The statistics for Facebook and LinkedIn are up-to-date as of 2018. The statistics for
DBpedia are from the 2016-10 data dump.
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friendship graph and the career network. Moreover, the structure of
graphs that models information as flexible as careers or friendships
evolves over time, e.g., as people move up the career ladder.

In light of this, we propose a time-aware inductive representa-
tion learning strategy for heterogeneous graphs that can be used
for recommendations on social networks and apply it to the world’s
largest professional social network — LinkedIn — to recommend
new career possibilities, education opportunities, and professional
connections. This graph representation learning strategy considers
both the intrinsic graph structure and the extrinsic knowledge about
nodes and edges in the graph. For the intrinsic graph structure, we
sample the local neighborhood nodes to inform the embeddings for
center nodes. For extrinsic knowledge, we initialize the node and
edge embeddings with prior knowledge, such as using information
about a person’s skills, education history, and employment history.
Because of these mechanisms, our model is inductive, meaning
the model is capable of generating embeddings for nodes unseen
during the training phase, which is very useful for evolving graphs
commonly encountered in social networks like LinkedIn. More-
over, unlike other graph embedding models [6, 11, 14] which are
exclusively applied to graphs with one type of nodes and edges
and only care about embedding nodes, our model aims to embed
both nodes and edges into the same vector space so as to handle
heterogeneous graphs. Figure 1 shows examples of a single-relation
graph and a heterogeneous graph. Due to its generality, a heteroge-
neous graph is more expressive in terms of modeling interactions
between different types of nodes such as members (users), careers,
and institutions. In addition, our method considers the temporal
component of the graph. Although the temporal aspect is normally

company2
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member2 attended works at
attended
member1 membert follows
university1
/company1
follows works at
memberd attended
university2

member3
Member connection graph Heterogeneous graph
Figure 1: The connection graph on the left shows how mem-
ber1l, member2, and member3 are connected. In addition to
expressing the connection information for these 3 members,
the heterogeneous graph on the right also provides informa-
tion about education and employment relations.

neglected by graph embedding and recommendation models, stud-
ies [22, 23] have shown that temporal information is beneficial for
modeling the dynamics and progression of professional growth,
thus we would like to include such component in our model.

Contributions. Below, we identify the main contributions of our
work:
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e We propose a method for encoding different relation types in
heterogeneous graphs as well as techniques to ensure those
representations are learned efficiently.

e We propose capturing temporal dynamics within social net-
works by introducing a sequential model to understand the
state evolution when evaluating graph entity representa-
tions.

e We evaluate our approach by performing experiments on two
real-world datasets, which have different network character-
istics, thus demonstrating the effectiveness of our approach
across settings. In the evaluation on the knowledge graph
dataset, by encoding different relation types, our model can
improve the Mean Reciprocal Rank score by more than 4
times. In the evaluation on the social network dataset, by
capturing the temporal component, our model can improve
the HITS@1 score by more than 15%.

Outline. The remainder of this paper is organized as follows.
Section 2 summarizes related work. Section 3 describes our hetero-
geneous graph embedding model in detail. Section 4 presents the
two major datasets over which we test our model and shows the
evaluation results. Section 5 summarizes the presented research.

2 RELATED WORK

Graph Embeddings. Existing work on graph embeddings can
be classified into three categories: factorization-based approach,
random walk-based approach, and neighborhood aggregation and
convolution-based approach. Inspired by techniques in dimensional
reduction, matrix factorization-based approaches are among the
early methods for graph embedding learning. Methodologies in
this family include Laplacian eigenmaps method [3], graph fac-
torization algorithm [2], GraRep [6], and High-Order Proximity
preserved Embedding (HOPE) method [19]. Their major difference
lies in the graph proximity measures in their models. In order to
improve embedding efficiency and model performance, Random
walk-based methods embrace the idea of stochasticity in measur-
ing graph proximity. Perozzi et al. [20] showed that by perform-
ing truncated random walks, their DeepWalk model was able to
learn latent representations of nodes by capturing local structural
information. Node2Vec [10] justified their biased random walk
algorithm by providing an intuitive explanation of the relation-
ship between breadth-first search/depth-first search and structural
equivalence/homophily in graphs. More recently, neighborhood
aggregation and convolution-based approach has drawn a lot of
attention for they provide consistent gains over node classification
and link prediction benchmarks compared to other approaches [12].
The basic idea behind this approach is to generate node embeddings
by aggregating local neighborhood information, which is consid-
ered a convolution operation because each node embedding is a
function of the neighboring node embeddings. Kipf and Welling
[14] developed a semi-supervised graph convolutional network
model for node classification tasks. However, their model is not
inductive and requires the full graph Laplacian. Hamilton et al.
[11] used a sample-and-aggregate strategy (GraphSAGE) to learn
node embeddings in graphs in an inductive manner. The Graph-
SAGE model has some major advantages over previous models: 1)
it has a parameter sharing mechanism which allows more efficient
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learning process, 2) it leverages node attribute information which
facilitates the inclusion of extrinsic knowledge about the graph,
3) it is inductive and can be effectively used in evolving graphs.
Inspired by their model, we build upon their algorithm and attempt
to fix the Achilles’ heel of the model, i.e., only able to be applied
to homogeneous graphs natively, by extending it to heterogeneous
graphs and learn node and edge embeddings simultaneously.

Social Network Modeling. Our work also relates to existing work
on modeling social networks. As mentioned before, although both
intrinsic graph structure and extrinsic knowledge are important
in the modeling process, most work only considered one aspect.
For example, Adamic and Adar [1] used link structure and Liben-
Nowell and Kleinberg [17] compared different proximity measures,
such as graph distance, common neighbors, and Jaccard’s coeffi-
cient, to predict new interactions in the network. Cetintas et al. [7]
extracted keywords from user profiles in order to identify similar
people in professional social networks. Xu et al. [23] modeled the
career trajectories of different people in the social network by con-
sidering temporal information. This work is similar to ours in that
it also acknowledges the importance of the temporal component
in analyzing career progression. But their work did not model the
interaction between different members in the professional social
network, thus failing to take into account the intrinsic graph struc-
ture. Our model not only considers the temporal aspect, but also
embraces the complementary strengths of intrinsic and extrinsic
information.

3 REPRESENTATION LEARNING MODEL

In this section, we describe the basic workflow of our model using
an encoder-decoder framework. We further break down each piece
in the model and explain the strategy to incorporate relation trans-
lation. Finally, we discuss different aggregators and explain ways
in which the temporal component could be incorporated.

3.1 Framework

In order to explain different components of our model in a more or-
ganized fashion, we follow the general encoder-decoder framework
proposed by Hamilton et al. [12]. As shown in Figure 3, this model
is an iterative process that generally contains 4 steps: 1) embedding
initialization, 2) neighborhood sampling, 3) embedding aggregation,
4) affinity and loss calculation. For our model, the encoder uses
sampling and aggregation strategies to encode nodes and edges by
considering the neighborhood information; the decoder component
calculates the affinity between each node defined using the graph
adjacency matrix or the transition matrix in the random walk.

3.2 Encoder

In general, the purpose of the encoder component is to map each
node and edge to low dimensional representations. In particular,
for a graph G = (V,E), each node v € V is mapped into a d di-
mensional vector and each edge type 7 is mapped into a square
matrix of dimension d X d. The input to the encoder stage is the
initialized embeddings for nodes and edges. Because the model
takes into account extrinsic knowledge, information not inherently
available from the graph structure is usually used to initialize the
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node embeddings. Depending on the actual dataset used, differ-
ent inijtialization embeddings could be applied. For example, for
knowledge graphs in which nodes are usually associated with la-
bels, the initial node embeddings can be word embeddings for the
node labels; for professional social networks where nodes could be
members, the initial node embeddings can be derived from member
background information and skill sets. A detailed explanation for
embedding initialization with respect to our datasets is in Section 4.
For edge embedding initialization, one-hot embeddings are applied.

Two major stages, namely sampling and aggregation, are applied
in the encoder part. The intuition is that in order to consider the
intrinsic graph structure in the model we gather information about
the neighborhood to generate embeddings. However, some nodes
in the graph may have thousands of (one-degree) neighbors while
others may have very few, which makes indiscriminately aggregat-
ing neighboring nodes biased and inefficient. A simple but effective
strategy is to sample the neighborhood. Instead of conducting uni-
form random sampling, for each node we sample its neighboring
nodes based on the pairwise connectivity. This is distinct from
undirected single-relation graphs, because in directed heteroge-
neous graphs (or directed multi-relational graphs) we are focusing
on each pair of nodes may have multiple edges connecting each
other and these edges can be of different directions. Nodes with a
large number of edges connecting them are considered having high
connectivities. Neighboring nodes that have higher connectivities
with respect to center nodes will be sampled more frequently. After
sampling the neighboring nodes, the model aggregates the embed-
dings of neighboring nodes using shared parameters to obtain the
embeddings for center nodes. It is important to note that, by sam-
pling neighboring nodes, the model also takes care of the associated
edges (relations) in the graph, and in the process of aggregating
neighboring nodes the model first applies a linear transformation
using edge embeddings. In edge-based transformation, each relation
type embeds a different semantic component in the heterogeneous
information network. In the example shown in Figure 2, node A

SR

M, transformed space

>
>
Original space

M transformed space

Figure 2: An example for edge-based transformation.

is connected to node B and C via edge e; and e;. Because e; and
ez have different relation types, our model transforms node A em-
beddings using the respective edge type embeddings M; and M,
before aggregating them.

The pseudocode for the encoding stage is described in Algo-
rithm 1. The input for this algorithm contains several elements. The
graph G(V, E) is by default a directed heterogeneous graph where
multiple different edge types exist. However, this algorithm can also
handle single-relation graphs in which the edge embeddings are set
to identity matrices. The neighbor samples N(v) = {(u, 7)|(u,v) €
E and edge (u, v) has type 7} are the direct results from the sam-
pling stage, where both the neighboring nodes u and the types of
the edge 7 are tracked for the center node v. Input features x,, are
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Figure 3: A general encoder-decoder workflow.

the initialized embeddings for node v. K represents the maximum
hops from which the center node embedding is aggregated. Since
the edges are one-hot encoded, the edge embeddings can be instanti-
ated using Xavier initialization [9]. The weight matrices can also be
initialized using the Xavier method and are shared among all nodes
for each hop. The model uses non-linear activation functions. For
the aggregators AGG, we discuss different options in Section 3.4.

Line 1 of Algorithm 1 shows that the initial node representa-
tions hY, are the input features. The maximum hop K determines
the depth to which the center node reaches to aggregate infor-
mation from its local neighborhood. For each node, information
is aggregated from its immediate neighbors by first applying a
linear transformation on the representation of the previous itera-
tion {Mrhﬁ_l, Y(u,7) € N(v)}, which results in the neighborhood
embeddings hlk\l(v)
of Algorithm 1. After obtaining the neighborhood embeddings at
step k, the algorithm concatenates the previous node embeddings
hﬁ_l with the neighborhood embedding, multiplies the concate-
nated embeddings by a shared weight matrix WK, and applies the
nonlinearity (o function) to transform the representation into the
current status h];. The algorithm then goes back to the outer for
loop and executes the next step k + 1. The final node embeddings
Encoder(v) = z, are obtained by applying an L2 normalization on
the representations in the last step hX . Intuitively, at each itera-
tion (outer for loop) in Algorithm 1, information about the local
(immediate) neighborhood is aggregated towards each node and
after K iterations such information is incrementally propagated
between different layers of neighborhood which leads to richer
representations of nodes.

The hop size K essentially determines the search depth or the
extent to which neighborhood information is propagated towards
the center node. A smaller K creates a more localized neighborhood
but makes the aggregation more efficient while a larger K value
entails a more global view of the graph but at the cost of higher
computation complexity. The encoder in Figure 3 shows an example
where K = 1, namely there is only one layer. In this example, node
A has immediate neighbors A;, Az, Az, A4, and As and node B has
immediate neighbors B1, Ba, B3, and By. Suppose in a particular

of the current iteration k as shown in line 4

training iteration Aj, As, and As are sampled for node A and B,
By, and By are sampled for node B before the aggregation stage. As
there is only one layer, the representations for A and B are obtained
by applying linear transformation based on the incoming edges
and the aggregation operation of the sampled neighboring nodes.

Algorithm 1: Encoder(v)

:Graph G(V, E); neighbor samples N(v); input
features x,; hops K; edge embedding M for each
edge (relation) type 7; weight matrices wk;
activation function o; aggregator AGG

Output:Node embedding z,, for eachv € V

1 hY «x,

2 fork=1k<K;k=k+1do

Input

3 foreach v € V do

4 h’;\l(v) — AGG({M;hk=1 Y(u, 1) € N(v)})
k k k-1 wk

5 hk g(w - CONCAT (h% ,hN(v)))

6 end foreach

7 end for

8 7 < L2 normalized h¥

3.3 Decoder

The purpose of the decoder is to map pairs of node embeddings
to real values. These affinity values are calculated using the low
dimensional representations of nodes in the embedding space and
are expected to quantify the proximity of nodes in the original
graph, ie., if two nodes are close to each other in the original
graph, their affinity should be high in the embedding space. This

reconstruction mechanism can be formalized in Equation 1:
Decoder(zy;, 2v;) ~ sG(vi, vj) (1)

where sg is a user-defined graph-based proximity measure be-
tween nodes (such as adjacency) on graph G = (V,E) and z,, =
Encoder(vj).

In order to train the model to learn meaningful representations
of nodes and edges, we need to minimize the empirical loss £, i.e.,
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the difference between the affinity Decoder(zo,, zo;) and the graph-
based proximity measurement sg(v;,v;) as shown in Equation 2:

L= ) UDecoder(zy;,20,), 56(vi,0))) @

(vi,v;)€D

where D is a set of training node pairs and ¢ is a loss function that
measures the discrepancy between the reconstructed proximity
value Decoder(zy,, 2v;) and the real proximity value s (vi,v;). In
this work, for the proximity measure, we use the indicator function
given by Equation 3:

1 (vi,vj) c€E

0 otherwise

sG(vi,vj) = { 3)
As shown in Figure 3, backpropagation is then used to update the
parameters (in this case including the edge embeddings) in order
to minimize the loss.

After experimenting with both hinge loss and cross entropy loss,
hinge loss shows better empirical performance for our model. In
this case, we adopt the negative sampling strategy paired with
hinge loss for the optimization as it has also proven to be effective
in other graph embedding models [5]. In negative sampling, the
positive samples are node pairs that are indeed connected by edges
while the negative samples are the ones that are not. In practice,
we collect our negative samples for each node by randomly sample
from the unigram distribution where nodes with more adjacent
nodes are more likely to be selected. Empirically, similar to the
Word2Vec model [18], we apply a distortion rate of 0.75 for the final
probability calculation as shown in Equation 4:

deg(vi)*/*
31 (deg(o))?/4)
where deg(v;) is the degree of node v; and there are n nodes in the
graph.
We propose to use the dot product between the edge-transformed
source node embedding ZI,-MTW o and the target node embedding

P(vr) = @

Zy; as the affinity, namely Decoder (z,,, zvj) = zZi va,«vj Zy; where
Zy, is the source node embedding, z,; is the target node embedding,
and the edge/relation between the source node and target node has
type 7u,v;- Equation 5 shows the loss function we are using in the
model:

_ T T
L= Z ([ZviMTvivj Lol = 2o My, 0, 20 + AL
/

(vj,05)

A i i (Mro,o, (k. 1) 1K, z))z)

k=11=1

i»0;)eD, (v;,v,)eD!
(v; vj)e (v; v])e

®)

where the first term in the summation is the hinge loss, the second
term in the summation is the regularization of the edge embeddings,
D defined by Equation 6:

(vi,v5)

Diy, o) = @)1, 0) £ EAD) € V) ©)

(vi, v
is the set of negative samples composed of node pairs with target
nodes replaced by random nodes, A is the margin for hinge loss,
is a hyperparameter that controls the regularization, vaiv- (k,1) is
the element in row k and column [ of M., I(k,I) is the element

in row k and column [ of an identity matrix, and m is the dimension
of the square matrices. Ideally, negative samples should have small
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affinity values while positive samples should have large affinity
values. The regularization restricts the edge embeddings such that
they are close to the identity matrix. Stochastic gradient descent
is applied to update the parameters needed to obtain the node
embeddings as well as the edge embeddings.

Forcing the edge embeddings to be close to the identity matrix
implies that the embedding spaces of different node types should
not be significantly rotated from one another. Though we did con-
sider and test some other strategies, this approach gave the best
results. Standard L1 and L2 regularization approaches on the edge
embeddings cause significant distortion in the norm taken in the
hinge-loss term. We found some success in enforcing the edge em-
beddings to have row-wise unit L2 norm. This can be interpreted as
finding the principal component in the source space corresponding
to a dimension in the target space. However, this technique seems to
over constrain the edge embeddings compared to the approach we
settled on. For multi-relational, directed graphs, it may be profitable
to try a regularizer of the form:

D (M, Mey o, (k1) ~ 1k D) )

k=11=1

which enforces the edge embedding of one relation is the inverse
of the opposite relation. We did not have a suitable use case to test
this strategy on.

3.4 Aggregators

While there are many options for choosing the aggregators in Al-
gorithm 1, we examine two of them — mean aggregator and Long
Short-Term Memory (LSTM) aggregator — in our model. These
two candidates have their own advantages and disadvantages. Be-
cause, unlike other machine learning tasks which usually operate
on n dimensional lattices (such as sentences, images, or 3D vol-
umes) [11], a graph usually does not have an ordered structure,
aggregators that are able to handle arbitrarily ordered node inputs
are usually desired. Mean aggregator in this sense is a good candi-
date for generic cases in graph representation learning, however,
because of its simplicity, its representational capacity is limited. On
the contrary, the LSTM aggregator creates a sequential ordering
of nodes in the neighborhood. This ordering is artificial in some
cases in that it is not permutation invariant but in other cases it is
indeed useful in that for some applications sequential information
(e.g., temporal component) plays an important role. For example,
Xu et al. [23] have shown that by considering temporal information
a better professional similarity measure can be developed based
on career trajectories using LinkedIn data. Because LSTM aggrega-
tor can model long term sequential dependencies, it has a higher
representational capacity than the mean aggregator.

The idea of the mean aggregator is to calculate the element-wise
mean of the edge-transformed neighbor samples {Mrhﬁ’l, Y(u,7) €
N(v)}. By substituting AGG with the mean aggregator, line 4 of
Algorithm 1 can be written as:

k—
hk - Z(u,r)EN(v) MThu !
N(@) IN(v)|

where |[N(v)| is the cardinality of N(v), namely the number of
neighbor samples for each node. By applying this mean aggregator

®)
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and removing the edge transformation term M, this algorithm
is almost equivalent to the graph convolutional network model
proposed by Kipf and Welling [14] except that the “skip connection”
created by the concatenation in the algorithm could lead to signifi-
cant improvements [11]. In Section 4, we will show that the edge
transformation term My is essential for learning more expressive
embeddings for heterogeneous graphs.

While ordering the neighboring nodes may make the algorithm
not permutation invariant, there are many cases where such order-
ing is meaningful and necessary to uncover the implicit structure
of the underlying data. In order to illustrate our point, we focus on
the temporal structure on the heterogeneous graph from LinkedIn
(one of the datasets we are using in the experiment which will
be explained in detail in Section 4). For a professional network
that has relations about member connections, employment, and
education, each link is associated with a timestamp, e.g., the time
when two members are connected, when a member takes on a
new position, and when a member graduates from a university. In
order to provide better career recommendations using the graph
embedding model, it is important to consider the temporal dynam-
ics of a member’s professional connections, career progressions,
and educational achievements. For instance, a member majored in
mathematics in undergraduate study may end up being interested
in a more applied field such as machine learning which is evident
in his recent connections, new intern jobs, and graduate focus. A
good career recommendation system should consider this subtle
but important dynamics in the member’s professional interests and
recommend a position in machine learning related fields rather
than a position as an economist because the member had an intern-
ship in the financial sector during the undergraduate study. LSTM
maintains a cell state and controls the information flow using forget
gate, input gate, and output gate [13]. Because of these features,
we employ the LSTM aggregator (Figure 4) to encode the temporal
information in the network. The output O is then assigned to the

i Densely
LSTM Cell LSTM Cell Connected [¢]

Layer
edge-transformed ~ edge-transformed
neighbor sample 1 neighbor sample 2

edge-transformed
neighbor sample p

Figure 4: The edge-transformed samples are from
{thﬁ_l,\v’(u, 7) € N(v)} and they are ordered chrono-
logically.

neighborhood embeddings and line 4 of Algorithm 1 can be written
as hir @ < 0.

4 EXPERIMENT AND RESULTS

In this section, we conduct experiments on two datasets for our
model and show the evaluation results: one from a general knowl-
edge graph and one from a heterogeneous professional social net-
work. These two datasets are used to examine closely and separately
the two major improvements in our model, namely the edge-based
transformation and the temporal component.

B. Yan et al.

4.1 Datasets

FB15K? is a subset of the large collaborative knowledge graph Free-
base. It contains 14,951 nodes and 1,345 relation (edge) types. The
dataset is partitioned into a training set with 483,142 triplets (source
node, relation, target node), a validation set of size 50,000, and a
test set with 59,071 triplets. Unlike the citation data, Reddit data, or
the protein-protein interactions data that are typically used graph
embedding learning models [11, 14] which ignore relation types,
FB15K has more than 1,000 different relation types which make it
unrealistic to learn comprehensive graph representations without
considering these different relations. We examine the performance
of our model compared with different baseline models using the
FB15K dataset in order to verify whether incorporating edge-based
transformation is beneficial to the representation learning process.

The second dataset we are using is the subgraph of the LinkedIn
graph. This subgraph is a heterogeneous network that contains 3
different relations: member connection, employment, and education.
This dataset was generated by selecting LinkedIn members who
have self-selected their location as the San Francisco Bay Area.
The member connection graph was then pruned by finding the
k-core graph with k = 50 and subsampled for 0.1% of connections.
After this reduction, all employment and education relations for
remaining members were added. Timestamps for all relations are
available. We are left with approximately 500,000 nodes of all types
and 2 million edges of all relation types. Relations are sorted by
timestamp, and the first 80% chronologically form the training
set, the next 10% are the validation set, and the final 10% are the
test set. As mentioned in Section 3.4, this LinkedIn heterogeneous
graph is used to test the effectiveness of explicitly incorporating
the temporal component in our model.

4.2 Experiment

Unlike previous graph embedding models which use node classi-
fication to evaluate the performance, we use the link prediction
task to examine our models. This task provides a direct test of the
embedding similarity rather than a test of an additional task. For
every testing sample (source node, relation type, target node), the
target node is removed. In order to predict the target node, an ap-
proximation is calculated by applying an edge transformation on
the source node using the learned embeddings. This approximation
is then compared to each of the candidate nodes in our dataset
using cosine similarity. These candidate nodes can be ranked based
on the similarity scores with respect to the approximation. We cal-
culate the Mean Reciprocal Rank (MRR) based upon the position at
which the true target node appears in the ranking. In addition, we
calculate the HITS@1 and HITS@5 scores which measure the per-
centages that the true target node appears in the first one and first
five nodes in the ranking. In contrast to recommendation systems
that are purely based on finding nearest neighbors [24], this link
prediction task naturally becomes a recommendation task on the
LinkedIn graph and particularly it translates to recommending new
professional connections, positions, or educational opportunities
in the future. For example, by predicting the target node given a
member and the employment relation, the system is essentially
answering the question of discovering the most plausible job that

Zhttps://everest.hds.utc.fr/doku.php?id=en:transe
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the member could take on in the future that would make the current
LinkedIn graph more complete. Because there are millions of nodes
in the LinkedIn dataset, we randomly sample 19 false target nodes
to make a candidate size of 20 for each test in the LinkedIn graph
experiment.

In order to initialize the node embeddings, for FB15K data, since
each node (entity) in the graph has a description, we take advan-
tage of such information. We use the node labels and keywords
provided by Xie et al. [21] and adopt the fastText [4] model to ob-
tain word embeddings because it handles out-of-vocabulary words
and considers the morphology of words by viewing each word as
a bag of character n-grams. The model makes use of the distribu-
tional semantics assumption, i.e. encoding words by considering
the contextual words. However, unlike the skip-gram model [18],
the fastText model is designed to optimize the binary classifica-
tion task of predicting the presence (or absence) of context words
given target words. The model learns the embeddings by finding the
parameterization settings that minimize the following loss function:

i Z f(scorewt,wc) + Z é’(—SCOFew,,n) )

t=1LceC; neN; ¢

where we denote the logisticloss € : x > log(1+exp™™), score,, w,
denotes the scoring function for the target/center word w; and the
context word we, n is a negative context word from a set of nega-
tive examples N; ) sampled from the vocabulary, the context Ct
is a set of word indices surrounding word w;, and T is the maxi-
mum index of a sequence of words wj, ..., wr. In order to encode
the morphology of words, each word w is represented as a set
of character n-grams G,, C {1,...,r} where r is the size of our
dictionary of n-grams. For each n-gram g, there is a vector represen-
tation o4 associated with it. Then the scoring function is defined
as SCorew,, w, = XgeG,, o;—vWC where v, is the vector represen-
tation for word wc. The initial node embeddings are the average
embeddings for the node labels and keywords in the FB15K data.
Joining the FB15K data with the initial embeddings and converting
to our input format is carried out on a single machine.

In the LinkedIn data, the nodes are initialized by internally gen-
erated embeddings. These embeddings were created for specific
entities, such as company, school, skill, and job title by minimizing
the KL-divergence of the observed co-occurence probability and
the probability implied by the sigmoid of the inner product of the
embeddings of two entities. To generate embeddings for members,
we perform a mean pooling over each of the different entity types
and then concatenating the title and skill embeddings representing
each type for each member. Our initial member embeddings have
dimension 50, and we generate 50 dimensional embeddings for
schools and companies.

The models are implemented and trained using version 1.9 of
TensorFlow on a single NVIDIA K80 GPU. The hidden and output
dimension of the model is 50. The edge embedding matrices are 50
by 50. We performed hyperparameter tuning using a grid search
on the learning rate, regularization coefficient (1 in Equation 5),
dropout rate, and the hinge-loss margin (A in Equation 5). As men-
tioned earlier, we also experimented with different objectives and
regularizers.
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4.3 Results

Table 1 shows the evaluation results on the FB15K dataset. Two
baselines are used in this evaluation. The initial embedding baseline
model uses the initial node embeddings as the final embeddings,
which means that no training is involved. The second baseline is
the model that excludes edge-based transformation which means
that different relation types are treated the same in the learning pro-
cess. We compare these baseline models with our proposed model
using both mean aggregator and LSTM aggregator. This evaluation
shows that our model with mean aggregator yields the best results
on FB15K. The LSTM aggregator is slightly worse than the mean
aggregator because we are not able to model any sequential pattern
in the FB15K dataset, which implies that a permutation invariant
model (e.g., using the mean aggregator) is a better choice in this
case. Our model using the mean aggregator has an MRR score that
is more than 4 times higher than the model without edge-based
transformation. This improvement verifies that incorporating edge-
based transformation is beneficial to the representation learning
process. Table 2 shows the evaluation results on the LinkedIn

Model MRR | HITS@1 | HITS@5
Initial Embeddings | 0.053 | 0.022 0.078
W/O Edge-based | o | 07 0.180
Transformation
Our Model W/ 1o | 0317 | 0.547
Mean Aggregator
Our Model W/
LSTM Aggregator 0333 | 0.240 0.431

Table 1: Results for FB15K dataset

Model MRR | HITS@1 | HITS@5
WIO Edge-based | ) o0 | 4316 | 0701
Transformation
Our Model W/
Mean Aggregator 0.504 0.356 0.671
Our Model W/
LSTM Aggregator 0.516 | 0.366 0.688

Table 2: Results for LinkedIn dataset

dataset. For MRR and HITS@1 metrics, our model yields better
results. In particular, our model with the LSTM aggregator has the
best results for these two metrics: the MRR score is increased by
more than 5% and the HITS@1 score is increased by more than
15% compared with the baseline. This is because our model with the
LSTM aggregator not only considers different relation types but also
takes into account the temporal dynamics on the LinkedIn graph.
For the slight decrease in HITS@5, we suspect it is because 1) there
are only 3 different relations in the LinkedIn dataset (compared
with 1,345 different relations in FB15K) and 2) nodes associated with
different relations are not balanced (e.g., there are much more nodes
associated with professional connection relation than with employ-
ment or education relation). These two facts about the LinkedIn
dataset might be the culprit for the slight decrease in performance.
In general, however, the results from Table 1 and Table 2 show that
incorporating edge-based transformation is beneficial to the repre-
sentation learning process and explicitly incorporating temporal
component is helpful for capturing the dynamics in the graph.
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5 CONCLUSIONS

In this paper, we introduced a graph representation learning model
that works on heterogeneous graphs by taking into account edge-
based transformations. We showed that this approach provides
a substantial improvement over one that ignores the relational
context.

We further proposed the idea of explicitly considering the tem-
poral dynamics of the graph by using the LSTM aggregator in our
model. When temporal information is relevant and available, this
approach shows improvement in identifying new links in the graph.

By applying the model on both FB15K and LinkedIn datasets,
we demonstrated the effectiveness of our time-aware inductive
representation learning strategy for two very different classes of
heterogeneous graphs. The FB15K dataset has a very high number
of relations compared to the number of nodes and edges in the
graph, a characteristic which is common among knowledge graphs.
However, as knowledge graphs are often hand-curated, the over-
all number of nodes and edges is generally small. The LinkedIn
dataset, on the other hand, has a very large number of nodes and
edges, but the number of relations is very low. These characteristics
are common of web-scale social networks. Our results show our
approach is useful for graphs at very different places in the graph
size-relation density spectrum.

We propose different prongs on future work. Within the ap-
plication space, exploring the transferability of the embeddings
learned here to supervised utilities of high interest. As we have
learned embeddings for schools, companies, LinkedIn members
and the relations between all three, these are relevant to predict-
ing possible connections between members, likely applicants to
jobs, qualified applicants to jobs, interesting members to follow and
others. Incorporating interactions within social networks (e.g. mes-
sages, comments on posts) as relation types is another interesting
avenue. This would allow us to understand if certain interaction
channels are preferred for engaging users in different directions
along the graph and therefore how to predict which channel for
notifying members about activities and opportunities within the
network.

Another path to explore is developing an inductive approach
to generating edge embeddings. Our model, while an inductive
method for generating node embeddings, is still transductive on
the edge embeddings. Adapting the method to inductively generate
edge embeddings would be extremely in useful in situations where
new relations are regularly discovered or created. In the context of
social networks, the deployment of new features introducing ways
for users to interact is an example of how new relations can enter
the graph.
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