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ABSTRACT
The performance of machine learning methods is strongly depen-
dent on the data representation (features) to which they are applied.
For drawings in particular, we cannot rely on texture, color or shad-
ing information; there is little information present in a drawing
beyond the spatial relationships and topology. A topological graph
is an intuitive and powerful data structure and data representation
framework that can capture the topological relations and spatial
arrangement among entities present in images. In this paper, we use
topological features automatically extracted from graph represen-
tations of images for image classification. Our approach is simple,
intuitive, and generic. We compare our method against a traditional
feature descriptor, histogram of oriented gradients (HOG) on the
MNIST data set. The results demonstrate the effectiveness of our
graph approach, especially when applied to small sets of training
data. In addition, our method is very fast to train, and also much
less sensitive to hyperparameters, requiring little hyperparameter
fine tuning.
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1 INTRODUCTION AND RELATEDWORK
The performance of machine learning (ML) algorithms generally
depends on the choice of data representation (or features) to which
they are applied [2, 10]. In ML, feature learning or representation
learning [2] is a set of techniques that allows a system to auto-
matically discover the representations needed for feature detection
or classification from raw data, but feature learning can require a
very large set of training data. Feature engineering is a way to take
advantage of human ingenuity and prior knowledge to compensate
for that weakness. Thus, much of the actual effort in deploying ML
algorithms goes into the design of pre-processing pipelines and
data transformations that result in a representation of the data that
can support effective ML [2, 10]. This feature engineering process
is important but labor-intensive, and highlights the weakness of
ML algorithms [31].

Representation learning approaches for ML on graphs offer a
powerful alternative to traditional feature engineering. In recent
years, for graph-structured data, representation learning on graphs
has consistently improved performance on tasks such as node clas-
sification and link prediction [10]. We extend the use of graph
representation learning to the image domainwhere the graph is con-
structed from data to represent spatial relationships and topology
in the image. Graph representation of an image is a compact repre-
sentation of the pertinent features of drawings and hand-written
figures (as opposed to a pixel matrix); and therefore promises to
reduce the sample complexity of classifying images.

Deep learning has achieved impressive accuracy for labeling
and segmenting natural images, but this performance has not yet
been realized for scientific and technical images. Deep learning
architectures for image analysis use convolutional neural network
(CNN) architectures which learn parameters that are translationally
invariant and build up local features to broader scales. However,
CNNs cannot represent spatial relations among objects contained
in images, as shown in Figure 1. The capsule network, also called
CapsNet [23] can capture hierarchical relationships in an image,
but not more general spatial relationships, such as angles. A graph
neural network (GNN) can capture relationships among objects,
but the graph structure is fixed [10].

Recent work shows that topology and shape analysis are promis-
ing approaches for improving image classification exploiting local
features [3, 6, 13, 17, 24]. Yet, for drawings and scene understand-
ing, we expect relationships at the local and global scales to be
important. To the best of our knowledge, derived features from

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Anchorage ’19, Aug 5, 2019, Anchorage, Alaska Yang and Oyen, et al.

Figure 1:Why spatial relationships and arrangement among
objects matter. CNN cannot tell the difference between the
left and the right, because CNN does not retain spatial re-
lations. A graph-based approach that preserves spatial re-
lationships has clear and intuitive advantages to deal with
such problems.

graph representations (such as number of leaf nodes, bridge num-
ber of graphs, etc.) are not used for features to train ML models –
rather, the features are still in raster (pixel matrix) format in existing
graph-based ML and deep learning methods.

Rather than learning features through deep learning, commonly-
used invariant features for image processing and computer vision
are local shape descriptors such as SIFT [18], SURF [1], and DAISY
[25]. Yet, to efficiently compare and analyze shapes of objects in
images, we need a data structure that can capture and store global
shape information and connectivity. A graph provides the ideal
solution [10].

Skeletonization, also called thinning, is an important preprocess-
ing step in computer vision and image processing tasks such as
shape analysis and vectorization. Thinning generates a compact rep-
resentation of images called a skeleton. A skeleton is a central line
extraction of an object via thinning [15]. The skeleton can be useful
for feature extraction, and representation of objects’ topology, be-
cause a skeleton captures essential topology and shape information
of an object in a simple form [14]. The thinning process reduces re-
dundant information in images and thus reduces image complexity
for tasks such as shape analysis and scene understanding. Thus, in
this work, we generate a skeleton graph from skeletons of images.

2 APPROACH
The core innovation of our approach is to train ML algorithms using
automatically extracted topological features for image classification
based on analyzing the topological relations stored in skeleton
graphs of images. Figure 2 provides the workflow of our method.

Given an input image, the skeleton is extracted after prepre-
cessing such as denoising. A skeleton graph (see Figure 3 for an
illustrative example) is then generated from the image skeleton.
After converting the image to a graph representation, the graph is
analysed, and topological features such as cycles and bridges, are
computed. In this work, topological features extracted from graphs
and used for MLmodels includes the following 15 features: diameter,
radius, spectral radius, density, node connectivity, edge connectivity,
transitivity, algebraic connectivity, and the number of leaf nodes,
junction nodes, cycles, bridges, central points, nodes in periphery, and
connected components (some examples are listed in Table 1, and a
complete list of definitions pertinent to the topological features
extracted from graphs is provided in Appendix B).

The next step is to split the annotated data set into two subsets,
one for training and the other for testing, with a splitting ratio of
70% to 30%. In general, there is not a universally betterML algorithm
for all problems [7]. Thus, we train the images in the training set
(with the extracted topological features) on three well-known ML
algorithms, specifically, random forest (RF), support vector machine
(SVM), and neural net (NN), for image classification.

To make each ML model perform their “best", before training the
ML algorithms, we tune hyperparameters of each ML algorithm on
the training set. Hyperparameter tuning is the process of finding
the set of hyperparameter values of a ML algorithm that produces
the best model results. In general, hyperparameter tuning is crucial
because it is used to search for the best hyperparameters of a ML
algorithm for a given dataset. We use k-fold cross-validation [12, 29]
while fine-tuning the hyperparameters to avoid overfitting, because
it allows performance variation across training sets to be examined
and thus can test how well the trained ML algorithm is able to
handle larger unseen population of data samples.

After fine-tuning, we use the best hyperparameters of each ML
algorithm to train on the training set and the models are evaluated
on the test set.

Input: 
Images

Image pre-processing 
(e.g., denoising)

Image skeleton 
extraction

Topological feature 
extraction from graphs 
(e.g., bridges, cycles) 

Topological 
graph generation 

from skeletons

Output: 
Trained predictive ML models 

using the best parameters 
from hyperparameter tuning

Train ML models 
(RF, SVM, NN)

for image classification 
using extracted 

topological features

Data splitting

Testing set

Training set

ML – Machine Learning
RF – Random Forest
SVM – Support Vector Machine
NN – Neural Net

Hyperparameter
tuning 

(k-fold cross-validation) 
 Evaluation of the 
trained ML models 

using the best parameters

Figure 2: The workflow of our image classification approach
using topological features.

3 EXPERIMENTS AND RESULTS
To test our method, we train on the MNIST data set for handwritten
digits classification [16]. Note that the MNIST images are small and
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Figure 3: An illustrative example of skeleton and skeleton
graph (left: input image, middle: skeleton drawn on the orig-
inal image, right: skeleton graph generated from skeleton).

contain only a single object and so any number of ML approaches
work well on this data. Yet, if the graph-based approach can cor-
rectly identify digits in this data, then we can expect to be able to
identify digits within larger images through sub-graph matching.

In the experiments, we used the first 100, 500, 1000, 1500, and
2000 (training and test set splitting ratio 70% vs. 30%) handwritten
digits examples from the training set of the MNIST dataset to train
RF, SVM and NN models.

For the implementation, we used OpenCV, SymPy [19], Scikit-
image [26], NetworkX [9], and Scikit-learn [20]. Since the extracted
topological features are not image-like (i.e., a pixel matrix), the
training process is much faster. Figure 4 shows examples of skele-
tons and skeleton graphs (drawn on the corresponding skeleton)
representing digits from the MNIST dataset.

Tables 2, 3, and 4 provide the training results and comparison
against traditional image-based features, histogram of oriented gra-
dients (HOG), including how many percentage points of accuracy
each algorithm improved compared with its corresponding baseline
model that uses the default hyperparameters in Scikit-Learn (ver-
sion 0.20.3). For the training accuracy and testing accuracy columns
in the tables, the left value refers to accuracy score of the best
model and right refers to that of the baseline model. We can see
that almost all ML models have better performance when using the
best hyperparameters from tuning, and some models are improved
substantially (e.g., SVM shown in Table 3). From the tables, we
can also see that RF classifier is best with our method, in terms of
accuracy, training time and sensitivity to model hyperparameter.

From Tables 2, 3, and 4, the clear advantages of our method is
that it can provide very good results with a small training data set,
with very fast training time and very robust for hyperparameter
tuning (i.e., its performance is much less dependent on hyperpa-
rameter tuning; see Table 3 for a clear example, the values of the
last two columns of HOG features are much larger than those us-
ing topological features). Fine tuning is recommended in general,
because the ML performance will be (much) better when using
fine tuning. Yet, when using our graph approach, fine tuning does
not improve the result much – which is good – as our approach
reduces engineer and analyst burden in tuning hyperparameters
for practical ML-based applications.

We used the Grid Search in Scikit-learn [20] to tune hyperparam-
eters of the ML algorithms. Detailed settings about the hyperpa-
rameter tuning for each ML algorithm are provided in Appendix D,
particularly Table 5; and we give tuning results including best hy-
perparameters and tuning time in Table 6. While comparing the
model improvement using the best hyperparameters from tuning

Figure 4: Examples of skeletons and skeleton graphs for
MNIST data. The first column shows the image example, and
the second shows the skeleton graph overlaid on the corre-
sponding skeleton.

against the baseline model, we use 10-fold cross-validation. The
main reason we set k as 10-fold is based on the conclusion in liter-
ature, as Witten et al. [29] introduced, tests on different data sets,
with different learning techniques, have shown that 10 is about the
right number of folds to get the best estimate of error.

4 CONCLUSION AND FUTUREWORK
We propose an approach that uses global topological features ex-
tracted from the skeleton graph representation of images for image
classification. Our approach is simple and generic. The approach is
applied to the MNIST data set, and compared against the traditional
feature descriptor, histogram of oriented gradients (HOG), and the
experiment results show the effectiveness of our topological feature-
based method for image classification. Specifically, our approach
achieves very good and reliable results on small training data sets,
and with very fast training and hyperparameter tuning processes,
plus the performance of our approach is much less dependent on
hyperparameter tuning.

In the future, we will extract more invariant topological and
geometric features that can be extracted from graphs; such as ge-
ometry, including angles and orientations, to further improve ML
performance. To further improve the performance (both speed and
accuracy) of our method, we will use the Douglas-Peucker algo-
rithm (also known as Ramer-Douglas-Peucker algorithm or iterative
end-point fit algorithm) [8, 22] and Visvalingam’s algorithm [27] to
simplify the geometry in skeleton graphs (e.g., remove redundant
points on a straight or near straight line segment) – this will make



Anchorage ’19, Aug 5, 2019, Anchorage, Alaska Yang and Oyen, et al.

Table 1: A few extracted topological features corresponding to the four examples shown in Figure 4. ( # refers to number of.
A leaf node is a node with its degree as 1, also called end node or terminal node. A junction node is a node whose degree >2. A
bridge in an undirected connected graph is an edge that disconnects the graph if removing it. The diameter of a graph is the
length of longest path of the shortest paths between any two nodes. )

example # leaf nodes # junction nodes # cycles # bridges # connected components diameter

row 1 2 0 0 36 1 36
row 2 3 1 0 41 1 37
row 3 2 1 1 24 1 24
row 4 1 1 1 9 1 32

Table 2: Results and comparison of ML algorithm performance. (RF: Random Forest; HOG: Histogram of Oriented Gradients;
TF: Topological Features.)

ML Model # Samples
(train, test)

Training accuracy
(best, baseline) (%)

Testing accuracy
(best, baseline) (%)

Training time
(best, baseline)

Improvement of
training accuracy (%)

Improvement of
testing accuracy (%)

RF (HOG)

100 (70,30) 70.00 (+/- 20.65),
45.71 (+/- 20.00) 60.00, 63.33 4 m 11 s, < 1 s 53.12 -5.26

500 (350,150) 89.71 (+/- 2.91),
78.57 (+/- 8.40) 78.00, 69.33 41 m 39 s, < 1 s 14.18 12.50

1000 (700,300) 92.00 (+/- 2.65),
82.00 (+/- 4.34) 89.33, 79.33 25 m 20 s, < 1 s 12.20 12.61

1500 (1050,450) 92.19 (+/- 2.20),
86.00 (+/- 2.52) 92.44, 80.89 29 m 36 s, 1 s 7.20 14.29

2000 (1400,600) 93.07 (+/- 3.77),
87.00 (+/- 3.03) 91.83, 85.50 20 m 17 s, 1 s 6.98 7.41

RF (TF)

100 (70,30) 88.57 (+/- 8.57),
84.29 (+/- 13.48) 90.00, 93.33 48 s, < 1 s 5.08 -3.57

500 (350,150) 97.71 (+/- 2.14),
94.00 (+/- 2.98) 92.67, 92.00 55 s, < 1 s 3.95 0.72

1000 (700,300) 96.00 (+/- 2.10),
94.57 (+/- 1.78) 97.33, 93.33 1 m 3 s, < 1 s 1.51 4.29

1500 (1050,450) 95.33 (+/- 2.39),
95.24 (+/- 2.21) 96.67, 94.22 1 m 11 s, < 1 s 0.10 2.59

2000 (1400,600) 95.86 (+/- 1.42),
94.79 (+/- 1.57) 96.33, 95.00 1 m 21 s, < 1 s 1.13 1.40

the graph analysis part more efficient). While Douglas-Peucker
is the most well-known for simplifying geometry, Visvalingam’s
algorithm [27] is more effective and has a remarkably intuitive ex-
planation: it progressively removes points with the least-perceptible
change. We will investigate both algorithms and evaluate which
one will work best for simplifying skeleton graphs.

Topological skeleton graph representation of images has clear
and intuitive advantages for further advanced image analysis. Thus,
many potential applications, such as intelligent image interpreta-
tion and understanding for visually impaired people in complex
spaces, could benefit from the graph approach.
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A ABBREVIATIONS
The following abbreviations (ordered alphabetically) are used in
this paper:
CNN Convolutional neural network
CPU Central processing unit
GNN Graph neural network
HOG Histogram of oriented gradients
ML Machine learning
NN Neural network
RAM Random Access Memory
RF Random forest
SIFT Scale-invariant feature transform
SURF Speeded up robust features
SVM Support vector machine
TF Topological features

B BRIEF DEFINITIONS OF SOME CONCEPTS
IN GRAPH THEORY

In this appendix, we provide brief definitions to some concepts
(ordered alphabetically; referenced [4, 5, 11, 21, 28]) in graph theory
we used in our graph analysis for topological feature computation.

Algebraic connectivity
The algebraic connectivity of a connected undirected graph
is the second smallest eigenvalue of its Laplacian matrix.

Center
The center of a graph is the set of nodes of graph eccentricity
equal to the graph radius (i.e., the set of central nodes). A
center of a graph is a node with eccentricity equal to the
radius. For a general graph, there may be several centers
and a center is not necessarily on a diameter. A node n is a
central point of a graph if the eccentricity of the node equals
the graph radius. The set of all central nodes is called the
graph center.

Density
The density for a undirected graph is defined asD = 2E/N (N−

1) and for for a directed graph is D = E/N (N − 1), where E
is the number of edges and N is the number of nodes in the
graph.

Diameter
The diameter of a graph is the length of longest path of the
shortest paths between any two nodes.

Eccentricity
The eccentricity of a graph node n in a connected graph G is
the maximum graph distance between n and any other node
m of G. For a disconnected graph, all nodes are defined to
have infinite eccentricity. The maximum eccentricity is the
graph diameter. The minimum graph eccentricity is called
the graph radius.

Edge connectivity
The edge connectivity is equal to the minimum number of
edges that must be removed to disconnect G.

Node connectivity
The node connectivity is equal to the minimum number of
nodes that must be removed to disconnect G.

Periphery
The periphery of a graph is its subgraph induced by nodes
that have graph eccentricities equal to the graph diameter.

Radius
The radius of a graph is the minimum graph eccentricity of
any graph node in a graph. A radius of the graph exists only
if it has the diameter. A disconnected graph therefore has
infinite radius and infinite diameter [28]. (for disconnected
graph, instead of setting the infinite radius or diameter, two
possible solutions: (1) calculate the sum of the diameter, ra-
dius for each component; (2) found the largest component,
and then calculate the diameter and radius for the largest
component subgraph. In this work, we use the second solu-
tion.)

Spectral radius
The spectral radius of a finite graph is defined as the largest
absolute value of its graph spectrum, i.e., the largest absolute
value of the graph eigenvalues. (The eigenvalues of a graph
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Table 5: Hyperparameter settings (from [30]).

ML model Hyperparameter grid Combinations Fits

RF (HOG /
TF)

{ ’n_estimators’: [10,
20, 30, 40, 50, 60, 70,
75, 80, 85],
’max_depth’: [5, 10,
15, 20, 25, 30, 40],
’min_samples_leaf’:
[2, 4, 6, 8, 10],
’max_features’: [’sqrt’,
’auto’, ’log2’, None] }

1400 7000

SVM (HOG /
TF)

{ ’kernel’: [’linear’,
’poly’, ’rbf’,
’sigmoid’], ’gamma’:
[10, 1, 0.1, 0.01, 0.001,
0.00001], ’C’: [0.1, 1,
10, 100, 1000] }

120 600

NN (HOG /
TF)

{ ’alpha’: [1e-5, 5e-5,
1e-4, 5e-4, 1e-3, 1e-2];
’hidden_layer_sizes’:
[(3,5), (5,10), (9,15),
(25,), (50,), (100,),
(200,)]; ’solver’:
[’lbfgs’];
’random_state’:
[None, 2, 4, 5, 7, 9];
’max_iter’: [100, 200,
300, 500]; ’activation’:
[’identity’, ’logistic’,
’tanh’, ’relu’] }

4032 20160

are defined as the eigenvalues of its adjacency matrix. The
set of eigenvalues of a graph is called a graph spectrum.)

Transitivity
The transitivity of a graph is the fraction of all possible

triangles present in the graph. It is computed by the equation
T = (3 * number of triangles) / number of connected triples
of nodes. With this definition, 0 <= T <= 1, and T = 1 if
the network contains all possible edges (i.e., the graph is a
complete graph).

C COMPUTING ENVIRONMENT
In this appendix, we provide the computing environment that we
ran our experiments. We ran all the experiments on a worksta-
tion running on Linux (RedHat:enterprise linux:7.6:ga:workstation)
with Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz (8 processors, and
4 CPU cores for each processor; 64 GB RAM).

D HYPERPARAMETER SETTINGS AND
TUNED RESULTS OF ML ALGORITHMS

In this appendix, we provide some details of the hyperparame-
ter tuning process and results for the three well-known ML algo-
rithms. Table 5 provides the hyperparameter settings including
hyperparameter grids for each ML algorithms we tuned (We used
the hyperparameter setting shown in [30]), and Table 6 presents
the optimized hyperparameters for each ML algorithm and turning
time.

In this research, considering the expensive computation of tuning
many combinations of hyperparameters, we chose 5-fold cross-
validation for the tuning ML modles, even though as introduced in
[30], 10-fold is a better setting. We also used all CPU cores (8 * 4 =
32 cores) available on our Linux workstation. Table 5 provides the
hyperparameter settings we used to search best parameter for each
ML model using Scikit-learn grid search (Grid search is the process
of performing hyperparameter tuning in order to determine the
optimal values for a given ML model). In Table 5, Combinations
refers to the number of hyperparameter combinations and Fits
refers to the number of model fits calculated based on the fold (in
our case, the fold number = 5) used for cross-validation and the
hyperparameter combinations.
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Table 6: Hyperparameter tuning results (RF: Random Forest; SVM: Support Vector Machine; NN: Neural Network; HOG: His-
togram of Oriented Gradients; TF: Topological Features.)

ML model # Samples
(train, test) Tuning time Best parameters

RF (HOG)

100 (70,30) 4 m 11 s {’max_depth’: 5, ’max_features’: ’auto’, ’min_samples_leaf’: 2, ’n_estimators’: 70}
500 (350,150) 41 m 39 s {’max_depth’: 30, ’max_features’: ’log2’, ’min_samples_leaf’: 2, ’n_estimators’: 85}
1000 (700,300) 1 h 25 m 20 s {’max_depth’: 30, ’max_features’: ’log2’, ’min_samples_leaf’: 2, ’n_estimators’: 75}
1500 (1050,450) 2 h 29 m 36 s {’max_depth’: 25, ’max_features’: ’log2’, ’min_samples_leaf’: 2, ’n_estimators’: 80}
2000 (1400,600) 3 h 20 m 17 s {’max_depth’: 10, ’max_features’: ’log2’, ’min_samples_leaf’: 2, ’n_estimators’: 85}

RF (TF)

100 (70,30) 48 s {’max_depth’: 10, ’max_features’: None, ’min_samples_leaf’: 2, ’n_estimators’: 20}
500 (350,150) 55 s {’max_depth’: 10, ’max_features’: None, ’min_samples_leaf’: 8, ’n_estimators’: 30}
1000 (700,300) 1 m 3 s {’max_depth’: 15, ’max_features’: None, ’min_samples_leaf’: 4, ’n_estimators’: 20}
1500 (1050,450) 1 m 11 s {’max_depth’: 25, ’max_features’: None, ’min_samples_leaf’: 4, ’n_estimators’: 30}
2000 (1400,600) 1 m 21 s {’max_depth’: 20, ’max_features’: None, ’min_samples_leaf’: 2, ’n_estimators’: 40}

SVM (HOG)

100 (70,30) 9 s {’C’: 10, ’gamma’: 0.01, ’kernel’: ’rbf’}
500 (350,150) 3 m 5 s {’C’: 0.1, ’gamma’: 10, ’kernel’: ’linear’}
1000 (700,300) 12 m 4 s {’C’: 10, ’gamma’: 0.01, ’kernel’: ’rbf’}
1500 (1050,450) 25 m 41 s {’C’: 1, ’gamma’: 0.01, ’kernel’: ’poly’}
2000 (1400,600) 42 m 38 s {’C’: 0.1, ’gamma’: 10, ’kernel’: ’poly’}

SVM (TF)

100 (70,30) 1 s {’C’: 1, ’gamma’: 10, ’kernel’: ’linear’}
500 (350,150) 1 s {’C’: 1, ’gamma’: 10, ’kernel’: ’linear’}
1000 (700,300) 3 s {’C’: 1, ’gamma’: 0.01, ’kernel’: ’poly’}
1500 (1050,450) 18 s {’C’: 1, ’gamma’: 10, ’kernel’: ’linear’}
2000 (1400,600) 1 m 9 s {’C’: 0.1, ’gamma’: 0.01, ’kernel’: ’poly’}

NN (HOG)

100 (70,30) 1 h 38 m 32 s {’activation’: ’identity’, ’alpha’: 0.0005, ’hidden_layer_sizes’: (25,), ’max_iter’: 300,
’random_state’: None, ’solver’: ’lbfgs’}

500 (350,150) 2 h 38 m 8 s {’activation’: ’identity’, ’alpha’: 0.0005, ’hidden_layer_sizes’: (100,), ’max_iter’: 300,
’random_state’: None, ’solver’: ’lbfgs’}

1000 (700,300) 3 h 47 m 30 s {’activation’: ’logistic’, ’alpha’: 0.01, ’hidden_layer_sizes’: (200,), ’max_iter’: 100,
’random_state’: 2, ’solver’: ’lbfgs’}

1500 (1050,450) 4 h 56 m 51 s {’activation’: ’logistic’, ’alpha’: 0.01, ’hidden_layer_sizes’: (200,), ’max_iter’: 100,
’random_state’: 5, ’solver’: ’lbfgs’}

2000 (1400,600) 5 h 53 m 55 s {’activation’: ’logistic’, ’alpha’: 0.01, ’hidden_layer_sizes’: (100,), ’max_iter’: 100,
’random_state’: 4, ’solver’: ’lbfgs’}

NN (TF)

100 (70,30) 4 m 16 s {’activation’: ’logistic’, ’alpha’: 5e-05, ’hidden_layer_sizes’: (9, 15), ’max_iter’: 300,
’random_state’: 7, ’solver’: ’lbfgs’}

500 (350,150) 11 m 46 s {’activation’: ’identity’, ’alpha’: 0.001, ’hidden_layer_sizes’: (3, 5), ’max_iter’: 100,
’random_state’: 4, ’solver’: ’lbfgs’}

1000 (700,300) 21 m 49 s {’activation’: ’logistic’, ’alpha’: 0.01, ’hidden_layer_sizes’: (100,), ’max_iter’: 500,
’random_state’: 2, ’solver’: ’lbfgs’}

1500 (1050,450) 0:32:23 {’activation’: ’tanh’, ’alpha’: 0.001, ’hidden_layer_sizes’: (25,), ’max_iter’: 300,
’random_state’: 9, ’solver’: ’lbfgs’}

2000 (1400,600) 41 m 13 s {’activation’: ’tanh’, ’alpha’: 5e-05, ’hidden_layer_sizes’: (50,), ’max_iter’: 200,
’random_state’: 9, ’solver’: ’lbfgs’}
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