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ABSTRACT
Most of the existing graph analytics focuses on learning from static
rather than dynamic graphs using hand-crafted network features or
recently emerged graph embeddings learned independently from
a downstream predictive task, solving predictive rather than fore-
casting tasks directly. To address these limitations, we propose (1)
a novel task – forecasting over dynamic graphs, and (2) a novel
deep learning, multi-task, node-aware attention model that focuses
on forecasting social interactions, going beyond recently emerged
approaches for learning dynamic graph embeddings. Our model
relies on graph convolutions and recurrent layers to forecast social
interactions in large samples of real-world dynamic graphs1 – Twit-
ter, GitHub, and YouTube up to seven days in advance. Our model
can successfully forecast (a) retweets and mentions of a specific
news source on Twitter (focusing on deceptive and credible news
sources), (b) user-repository interactions on GitHub (focusing on
cryptocurrency ecosystems), (c) comments to a specific video on
YouTube within the next day with mean absolute error less than 2%
and R2 exceeding 0.78. We demonstrate that learning from connec-
tivity information over time in combination with node embeddings
yields better forecasting results than when we use a two-step ap-
proach with Node2Vec and DeepWalk. Moreover, by evaluating
model generalizability across three social platforms with different
types of interactions we provide novel insights on how the size
of the training and forecasting windows, and graph topological
properties influence forecasting performance.
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1 INTRODUCTION
Neural networkmodels have been successfully used to encode struc-
tural properties of graphs by learning representations over static
graphs [14]. These embeddings have been useful as feature inputs
in a variety of downstream prediction tasks such as node classi-
fication, clustering, and link prediction [12, 13, 24, 25]. However,
learning graph embeddings and then applying them in downstream
prediction tasks is a two-step process, and task-specific supervision

1We use the term graph in this study, even though it is common to refer to these
structures as social networks, to avoid any ambiguity with neural network terminology.

has to be incorporated [13, 17]. Moreover, the fact that node embed-
dings are learned independently from the downstream tasks limits
their predictive utility. Another problem with limiting methods
to work on static graphs only is that most real-world graphs are
inherently dynamic in nature. Online social networks, for example,
gradually change and evolve over time. In order for a model to
forecast future behavior, it needs to take this dynamic nature of
graphs into account. To do so, it has to incorporate information not
only from the present but also from past time periods.

In this work, we look at three real-world dynamic social graphs:
Twitter, Github, and YouTube and model different types of user
interactions. We propose a novel task – forecasting over dynamic
graphs, and a novel node-aware attention model to forecast interac-
tions in real-world social graphs. We incorporate methods that have
been shown to work for static graphs into our method for temporal
dynamic graphs. Our approach is inspired by recent advances in
deep learning approaches for large scale graph analytics, namely
graph convolutional networks [17], graph attention networks [28],
graph RNNs [31], and recently emerged dynamic graph embed-
dings [22, 26, 32, 34]. Our attention mechanism allows to forecast
propagation behavior for nodes without having to build a separate
model for each node. In contrast to previous work, our model:

• is capable of learning from dynamic graphs instead of static
graphs [14];

• takes a sequence of adjacency matrices as input and learns
dynamic graph embeddings optimized towards specific fore-
casting tasks instead of relying on hand-crafted network fea-
tures or learning dynamic embeddings independently from
the prediction problem [22, 34] ;

• is generalizable across social platforms with different types
of communication behavior and interaction patterns;

• has forecasting capabilities instead of predictive capabilities
(going beyond link prediction task);

• unlike any other work, allows forecasting multiple types of
interactions simultaneously e.g., retweet and mention using
a multi-task learning setup.

Furthermore, unlike most previous work we not only evaluate
model generalizability across multiple graphs but also report novel
insights on howmodel performance depends on the structural topol-
ogy of social graphs, and the size of the training and forecasting
windows.



2 RELATEDWORK
There have beenmany research forays into learning representations
for nodes in a graph. Some well-known methods to learn node
representations of static graphs include Node2Vec [12], DeepWalk
[24], and LINE [25]. Since these methods are transductive and are
unable to generate representations for nodes that were not seen
during training. Hamilton et al. [13] proposed GraphSAGE, which
can use node features and neighborhood information to deduce
representations for unseen nodes. These methods aim at static
graphs and do not take into account the evolving nature of real-
world social interaction graphs.

Recently, the focus has shifted towards dynamic graphs and
methods have also been proposed to learn node embeddings for
these graphs. The continuous-time dynamic networks method ex-
tends the concept of a RandomWalk used in both Node2Vec and
DeepWalk by introducing temporal random walks [22] as a way
to learn time-preserving embeddings. Similarly, the DynamicTriad
method uses the inclination of the two unconnected nodes in an
open triad to connect in the future based on their proximity to each
other in order to learn dynamic network embeddings [34]. The
Chimera model takes the temporally evolving nature of graphs into
account for community detection [1]. DyRep model uses temporal
attention to obtain representation that encodes both the structural
and temporal information [27]. The JODIE method also learns dy-
namic embeddings for user-item bipartite networks [19]. Although
these methods work with dynamic graphs, they mostly serve as
a first step towards specific prediction tasks such as node classifi-
cation, link prediction, and community detection. In contrast, our
model learns dynamic changes in graph connectivity information
for the forecasting task directly, while also learning node embed-
dings in the process.

In addition to node-embedding based models, other types of
deep learning models have recently been applied for graph analyt-
ics. These include convolutional neural networks (CNNs) [7, 17],
graph attention networks [28], graph recurrent neural networks
(RNNs) [31], and neural message passing [8, 15]. Recently, Graph
Isomorphism network has been proposed, which provably maxi-
mizes the discriminative power of graph neural network [30]. How-
ever, these approaches have mostly been evaluated on predictive
tasks over static graphs and benchmark datasets except some re-
cent work [26, 31]. Yu et al. [32] use the information from historical
adjacency matrices to directly predict future adjacency matrix by
using matrix factorization. Although this method can perform link
prediction directly, for all other tasks, it still requires a two-step
process. To the best of our knowledge there is limited prior work
on applying deep learning models to enable forecasting capabilities
over dynamic social graphs. Moreover, most of the existing models
for making inference from dynamic graphs neither focused on a
diverse set of social interactions graphs nor applied their modeling
techniques to truly forecasting tasks of user behavior and future
interactions.

3 SOCIAL INTERACTION GRAPHS
In this paper, we worked with three real-world social interaction
graphs from Twitter, GitHub (GitHub viewed as a collaborative

(a) Dynamic social graphs for Twitter (degree > 100): February 2,
2016 (left), September 1, 2016 (middle), November 1, 2016 (right).

(b) Dynamic social graphs for Youtube (degree >50): November 7,
2013 (left), December 1, 2015 (middle), and July 1, 2016 (right).

(c) Dynamic social graphs for GitHub (degree >134): January 1, 2015
(left), August 1, 2016 (middle), and February 1, 2017 (right).

Figure 1: Daily social interaction graphs for the Twitter,
Youtube, and GitHub for three example days: the beginning
of the training, validation and testing periods. Nodes are col-
ored as red = unverified, green = credible news sources for
Twitter; pink = art and entertainment videos, green = game
videos, blue = food and drink videos, black = beauty and
fitness videos, orange = sports videos for YouTube; green =
Monero repositories, red = Ethereum repositories, purple =
Bitcoin repositories for GitHub. Edge color and width repre-
sent the edge weights.

social platform [4, 21]), and YouTube. Each graph can be repre-
sented as a dynamic bipartite network G = (U ,V ,E) that encodes
user-object interactions over time. The example objects include:
(a) deceptive and verified news sources for Twitter, (b) reposito-
ries for GitHub, and (c) videos for YouTube. Users U and objects
V are nodes, while edges E represent the relationships – retweets
and mentions for Twitter, comments for YouTube, and events for
GitHub – between users and objects with each edge being attrib-
uted with a type of interaction and a timestamp. We can see some
visualizations of these graphs in Figure 1. From the figure we can
see that the graphs for different social media platforms differ from
each other. We can also see the dynamic nature of the graphs and
how the graph for one day looks very different from the graph for
another day.

Because we are interested in forecasting specific type of behavior
in different social platforms related to information propagation e.g.,
retweeting, commenting etc., the existing datasets frequently used
to learn dynamic embeddings from social networks are not directly
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Graph Bottom nodes
Top
nodes

# of
bottom
nodes

# of top
nodes
(Users)

Graph size
Average
Degree

Average
Weighted

Degree

Degree
Assortativity
Coefficient

Average
Clustering
Coefficient

Transitivity

Twitter News Sources Users 202 1,779,138 17,079,550 178.93 57,905.06 -0.08 0.93 0.93
GitHub Repos Users 364 92,537 761,613 176.81 1,888.24 -0.13 0.83 0.78
YouTube Videos Users 320 398,989 584,044 44.10 62.88 0.21 0.52 0.75

Table 1: Twitter, GitHub and YouTube aggregated graph topological characteristics.

applicable, and are often small (between 20K and 300K edges) [22].
Unlike most of earlier work [34], we design our subsampling strat-
egy from dynamic social networks in such a way to not only focus
on interesting interaction behavior between users and repositories,
user and video and users and news sources, but also cover time
period of one year and more.

3.1 Twitter Graph
We took advantage of a large publicly available Twitter dataset
collected by Volkova et al. [29] that consists of 17,186,702 user posts
that are either retweets and mentions of verified and deceptive
news accounts e.g. @NYTimes, @infowars previously used for
deception classification tasks. We looked at a time interval between
February 1, 2016 to January 8, 2017. When looking at the actual
retweet and mention counts, we found that for many news sources
there was very sparse retweet or mention activity for most days
in the timeframe. We selected news sources with either retweet
or mention activity in at least 25% of the days in that timeframe,
which resulted in a set of 202 news accounts and 1,779,138 users
who retweeted or mentioned them. We decided on this number in
order to be able to work with news sources having at least some
signal for the model to learn from, while also being left with a
substantial number of news sources to train on.

3.2 GitHub Graph
For the GitHub social graph, we took advantage of a large publicly
available GitHub dataset2. For this study, we considered the GitHub
archive from January 2015 to September 2017, especially focusing
on the 27,344 repositories that mentioned three cryptocurrencies
in particular – Bitcoin, Monero, or Ethereum in the topic field or
description. Cryptocurrencies have recently been in the forefront
as something that holds much potential and yet at the same time
seeming like prime examples of a disruptive piece of technology.
We looked at 10 event types explained in [11] that include Watch,
Fork, Issue and Issue Comment, Push, Commit Comment, Pull
Request, and Pull Request Review Comment events. We subsampled
repositories for the same reason as Twitter news sources, but since
this data was collected over a longer time period, we selected the
repositories that had activity in at least 10% of the days in that
timeframe resulting in 364 repositories and 92,537 users.

3.3 YouTube Graph
For YouTube, we worked with a set of 80,155 videos and their corre-
sponding comments posted by 2,363,861 users between November
7, 2013 and February 2, 2017 from a publicly available Youtube 8M
dataset.3 For our experiments, we subsampled videos with activity
in at least 20% of the days over that timeframe and relied on the
2https://www.githubarchive.org/
3https://research.google.com/youtube8m/index.html

largest connected component, which resulted in a list of 320 videos
and 398,989 users who commented on them.

3.4 Bipartite Graph Projections
For all datasets, the graphs are either bipartite or nearly bipartite.
For example, on Github, there are interactions between users and
repositories but not between two repositories. Even when a reposi-
tory gets forked into a new one, the action is being undertaken by
a user. We need to create an adjacency matrix from the graph in
order to feed it to our model. The first option would be to create
an adjacency matrix in a similar way to creating one for a general
graph. This will produce a highly sparse matrix with at least half
of the values being zeros, which can be problematic [5].

The second option is to perform a one-mode projection of the
bipartite graph. For our use case, we need graphs projected onto
news sources, repositories, or videos and thus these constitute
the set of bottom nodes for their respective platforms - the users
constitute the set of top nodes. We also weighted the edges of each
projected graph by the frequency of common associations of the
two bottom nodes with the top node.

For the Twitter dataset, the original graph is not exactly bipartite.
Some news sources can retweet from other news sources and they
can also mention each other. Although this only represented 0.031%
of the total activity in the Twitter data, these direct associations
show a closer relationship between the two news sources and they
need to be given more importance. We first removed these edges
to create a purely bipartite graph for Twitter and then obtained
a weighted, projected graph by increasing the weight of edges
between news sources with these connections. Since direct links
represent stronger connections, each direct connection is given
double the weight given to associations made through top nodes.

3.5 Graph Topological Characteristics
We report the topological characteristics for these three graphs in
Table 1 and provide some discussion below:

• Density There are fewer users in the GitHub graph than in
the YouTube graph. Since we are exclusively dealing with
cryptocurrency repositories on GitHub, it is likely that the
same groups of users contribute to the similar repositories.
However, the average degree and the average weighted degree
for GitHub is higher compared to that for YouTube, likely
because there are less shared interests between the users on
YouTube. The YouTube graph is the most sparse compared
to both GitHub and Twitter. Moreover, the Twitter graph
has the highest density (0.89), compared to GitHub (0.49) and
YouTube (0.42), respectively.

• Homophily Degree assortativity coefficient represents to
what extent nodes in a graph associate with other nodes,
being of similar sort or being of opposing sort. We found that
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nodes on Twitter and GitHub have less homophily compared
to YouTube.

• Social relationships Twitter graph has higher average clus-
tering coefficient and transitivity compared to GitHub and
YouTube. It demonstrates that Twitter is a small-world net-
work with large clustering coefficient, small average path
(1.93 compared to 2.23 and 5.02 for GitHub and YouTube,
respectively) compared to two other graphs. Twitter has
tighter social relationships than YouTube and GitHub.

4 NODE-AWARE ATTENTION MODEL
We present the overall architecture of the proposed multi-task node-
aware attention model in Figure 2. The model takes in daily social
interaction graphs represented as adjacency matrices, day of the
week information, and the distribution over activity from previous
n days as inputs and forecasts the distributions of comments for
videos (YouTube), interactions with repositories (GitHub), retweets
and mentions for news sources (Twitter) for the next day. Before
calculating daily distribution vectors, we perform L1 normalization
to a range between 0 and 1 for dependent variables for each day
using min-max normalization.

Our model first applies a graph convolution neural network
layer (GCN) [17] on daily adjacency matrices for social interaction
graphs to obtain daily summary vectors. We use a featureless ver-
sion of GCN. Learning graph convolutions in the spatial domain
is challenging because a concept of sequence or ordering of the
nodes in the network does not exist. However, convolutions in the
spatial domain can be represented by a multiplication operation in
the spectral domain. Graph CNNs [7] are one of the earlier works
to explore this idea which improves upon the earlier work [3] by
offering strictly localized filters, which reduces the complexity from
quadratic to linear.

We also learn vectors for each day of the week, referred to as
day of the week vectors since user activity can be different based

Figure 2: Node-aware attention model (NAAM).
A1,A2, . . . ,An represent the input sequence of past n
days adjacency matrices.

on the day of the week. Since the activity of the future is likely
to be close to the activity in the recent past, our model also in-
cludes historical distribution vectors (e.g., the number of comments
on Youtube videos for the past n days). Our model then combines
the concatenation of the flattened output vectors obtained by ap-
plying the GCN on each day’s adjacency matrix (daily summary
vectors), with the corresponding day of the week’s vector, and the
historical distribution vectors. The sequence of combined vectors
(x1, x2, . . . , xn) are fed through a Recurrent Neural Network (RNN)
layer, which is either an LSTM or a bi-directional LSTM (BiLSTM)
to get higher feature representations hi for each timestep i . We
learn the relative importance of these hi to the task by applying
node-aware attention. Node-aware attention takes the appropriate
node vector n and hi and computes the score for each of the inputs
as follows:

score(hi,n) = vT selu(Wahi +Wnn + ba) (1)

where, Wa and Wn are the weight matrices, v is the weight
vector, and selu [18] is the nonlinear activation function. The node
vectors are initialized with orthogonal vectors. However, we allow
these vectors to be learned during training. This will allow the node
vectors to learn embeddings that capture the similarities among
them. We then normalize these scores using a softmax function, so
that they sum to 1 as shown in Equation 2.

αi =
exp(score(hi,n))∑
i′ exp(score(hi′ ,n))

(2)

Here, αi are the weights measuring the importance of each of
the previous n day vectors. We take a weighted average of hi using
αi to get the final feature representations (r) from previous n days.

r =
∑
i
αihi (3)

We then concatenate the final feature representation vector r
with the node vector n, and feed the combined representation
through a non-linear layer to get the predicted variable. We use
mean squared error (MSE) as our loss function and train the net-
work using the Adam optimizer [16]. For multi-task setting (MT),
the total loss is the addition of all individual task loses, i.e.,Ltotal =

Ltask1 + Ltask2, where for instance task1 is retweet and task2 is
mentions tasks for the Twitter domain. The additional tasks act as
regularizers and help to learn a generalized model [6, 10].

5 EXPERIMENTAL SETUP
ForecastingExperiments. To evaluate the proposed node-aware

attention model we run a set of forecasting experiments across the
three domains. We pass daily adjacency matrices from the past n
days as input to our model in order to output forecasts for up to k
days in advance. Specifically, we forecast daily distributions of:

• retweets and mentions to news sources on Twitter (output
daily vector size = 202);

• comments to videos on YouTube (daily vector size = 320);
• repo interactions on GitHub (daily vector size = 364).

We experiment with two different setups: a single task (ST) and a
multitask (MT) setup. For YouTube and GitHub, we run experiments
with only the single task setup since we only have one forecasting
task for them. However, for Twitter we run experiments in both
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single andmultitask setups; the total loss is the addition of the losses
from both the retweet and mention forecasting tasks, i.e., Ltotal =
Ltask1 + Ltask2 . In the single task setup, we built separate models
for retweet and mention forecasting tasks. Whereas in the multitask
setup, we built a single model to forecast both. For complementary
tasks like retweet and mention forecasting, a multitask setup can
boost the performance on both tasks, and one task can act as a
regularizer for another task to avoid overfitting.

The data shapes we used as input in training and test subsets for
each social interaction graph include:

• Twitter Xtrain (41612, 7, -) stands for (the number of train-
ing instances, the number of days in training window, his-
torical activity); this is the input before concatenating with
the day of the week vector and the daily summary vectors
(output of GCN), Xval (10908, 7, -), Xtest (12524, 7, -). Evalu-
ation period is 69 days total. Train period: February 1, 2016 to
August 31, 2016. Test period: November 11, 2016 to January
8, 2017.

• GitHubXtrain (207844, 7, -),Xval (64428, 7, -),Xtest (74620,
7, -) ; Evaluation period is 212 days total. Train period: Janu-
ary 1, 2015 to July 31, 2016. Test period: February 1, 2017 to
August 31, 2017.

• YouTube Xtrain (239040, 7, -), Xval (65920, 7, -), Xtest
(73280, 7, -) . Evaluation period is 236 days. Train period:
November 7, 2013 to November 30, 2015. Test period: July 1,
2016 to February 21, 2017.

Parameter Tuning. Using our validation set, we tuned the
following parameters: dropout rates {0.2, 0.4, 0.5}, weight initial-
ization schemes {Glorot Uniform [9], LeCun Uniform [20]}, Adam
optimizer learning rate {10−4, . . . , 10−1}, the number of hidden neu-
rons in different layers {100, 200}, attention units {1, 100}, graph
convolution hidden units {8, 16, 32}, and batch size {4, 32, 64} with
the early stopping criteria that had a maximum epoch count of 200.
We initialized daily vectors and node embeddings with orthogonal
vectors of size 7 and 32, respectively. This initialization ensured that
both day and node vectors do not have any similarities in the begin-
ning of training. However, since we also learn these embeddings
during training, if there are similarities among them, the iterative
updates of the embedding vectors will capture that.

Baselines. We define following three different baselinemethods
to evaluate the superiority of our proposed model.

• Previous Day This baseline ignores all past n-day features
and only uses the past 1 day values to predict the next day’s
values of activity on GitHub, comments on YouTube, and
retweets and mentions on Twitter. Although simple, this is a
very strong baseline as the change in the amount of activity
from day to day is small.

• ARIMAThe autoregressive integratedmoving average (ARIMA)
model is a commonly used architecture when forecasting the
price or return of stocks [2, 23, 33]. This model also considers
the past history when making future predictions. We ran a
grid search over the p (0-4), d (0-2), and q (0-2) parameters.

• Node EmbeddingsWe use Node2Vec [12] and DeepWalk [24]
embeddings to train node embedding vectors for each day.
We sequentially use previous day embeddings to initialize

current embeddings, and then fine tune these embeddings.
We use a sequence of previous n = 7 days node embeddings
as the input to an LSTM layer and use the final output from
the LSTM layer for forecasting.

EvaluationMetrics. To evaluate the performance of our model,
we report six metrics in the results tables. Specifically, we measure
Pearson correlation, mean squared error (MSE), root mean squared
error (RMSE), maximum absolute error (MAE), median absolute
error (MEAE), and the coefficient of determination R2. These evalu-
ation metrics were calculated over the testing time period for each
repo/video and then averaged.

6 EXPERIMENTAL RESULTS
6.1 Forecasting Retweets and Mentions from

Dynamic Twitter Graphs
For Twitter, we present forecasting results for retweets and men-
tions of 202 news sources on the next day, as well as up to k = 7
days in advance. Retweet and mention forecasting tasks are two
independent but complementary tasks. If a news source is popular
at a certain time, it will likely receive a high number of mentions
as well as retweets. We report experimental results in Table 2 for
both single task and multitask settings.

We observe that the previous day baseline has a high R2 value of
0.75 for forecasting of mention distributions and 0.72 for forecast-
ing of retweet distributions for the next day. However, our models
outperform all baselines. Among our defined baselines, node em-
beddings with LSTM method performed the worst, showing that a
two-step process of first learning node embeddings and then ap-
plying them to the prediction task works worse than a one-step
learning process. Instead, our model learns node embeddings along
with the actual task. For retweet forecasting, we obtain the best
R2 of 0.79 from the NAAM with the BiLSTM layer in the single
task setting. For mention forecasting, the same model yields the
highest R2 of 0.81 in the single-task setting. The models with the
BiLSTM layers also have the lowest MSE, MAE, and MEAE values
and the highest Pearson. Similar to the previous day baseline, it
is more difficult to forecast retweets than mentions, although the
performance is not too different.

Visualizing actual versus predictedmentions for some ex-
ample news sources on Twitter. Figure 3 shows the actual and
predicted mention forecasting results for some example verified and
unverified news sources on Twitter. We can see that for most news
sources where there is significant activity over time, our model is
able to forecast mentions successfully. The forecasted trend closely
follows the actual trend. For some news sources like de sputnik
and vesti news, our model is also able to match the actual mention
values.

6.2 Forecasting Repo Interactions from
Dynamic Github Graphs

For Github, we present the results for forecasts one day in advance
for 364 repositories in the cryptocurrency ecosystem in Table 3.
We also show results for the previous day baseline, which was
the strongest baseline out of all four in the Twitter forecasting
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Model Task Forecast MSE × 10-5 MAE × 10-3 MEAE × 10-4 RMSE × 10-3 Pearson R2

Previous day baseline – mention 4.98 1.73 2.70 7.06 0.87 0.75
– retweet 6.56 1.93 2.24 8.10 0.86 0.72

ARIMA model – mention 5.76 1.63 2.63 7.59 0.86 0.74
– retweet 8.37 1.91 2.62 9.15 0.83 0.69

Node2Vec + BiLSTM – mention 9.23 3.91 19.5 9.61 0.77 0.53
– retweet 6.63 2.43 5.50 8.14 0.85 0.72

DeepWalk + BiLSTM – mention 7.58 3.47 16.9 8.71 0.79 0.61
– retweet 6.72 2.78 8.89 8.20 0.85 0.71

NAAM + 2 LSTM layers

ST mention 4.38 1.75 3.04 6.62 0.88 0.78
ST retweet 5.79 1.92 2.17 7.61 0.87 0.75
MT mention 5.35 2.06 3.64 7.32 0.86 0.73
MT retweet 6.59 2.17 2.50 8.12 0.85 0.72

NAAM + BiLSTM layer

ST mention 3.77 1.60 2.88 6.14 0.90 0.81
ST retweet 4.90 1.95 2.48 7.00 0.89 0.79
MT mention 4.30 1.79 3.31 6.56 0.88 0.78
MT retweet 5.11 1.93 2.68 7.15 0.88 0.78

Table 2: Next day forecasting results for retweets andmentions for Twitter (trainingwindow = 7 days) for a single task (ST) and
multi task (MT) setups obtained using our node-aware attention model (NAAM). The results for the best performing models
are highlighted in bold.

Figure 3: Forecasting results for the number of mentions (actual and predicted) for example news sources on Twitter.

Model MSE × 10-5 MAE × 10-3 MEAE × 10-4 RMSE × 10-3 Pearson R2

Previous day baseline 3.98 1.89 3.30 6.31 0.83 0.66
NAAM + 2 LSTM layers 3.84 2.05 7.54 6.20 0.82 0.67
NAAM + BiLSTM layer 3.62 1.98 7.00 6.02 0.83 0.69**

Table 3: Next day event forecasting results for GitHub (training window = 7 days). The results for the best performing models
are highlighted in bold. **Significant over the previous day baseline at p < 0.01

Model MSE × 10-5 MAE × 10-3 MEAE × 10-4 RMSE × 10-3 Pearson R2

Previous day baseline 2.57 2.52 7.81 5.07 0.85 0.69
NAAM + 2 LSTM layers 2.84 2.38 1.27 5.33 0.84 0.66
NAAM + BiLSTM layer 2.36 2.19 9.93 4.85 0.86 0.72*

Table 4: Next day comment forecasting results for Youtube (training window = 7 days). The results for the best performing
models are highlighted in bold. *Significant over the previous day baseline at p < 0.05

experiments. Unlike Twitter, we have a single task setting for Github
and forecast the event activities in these repositories. We can see
from the table that similar as in the Twitter domain, our NAAM

with the BiLSTM layer obtains the best R2 of 0.69 and MAE of 2%.
The previous day baseline has an R2 of 0.66.

For Github event forecasting, the previous day baseline has
strong performance because the level of activity across users for
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Figure 4: Forecasting results for the number of user-repo interactions (the actual and predicted) for example repositories on
GitHub.

Figure 5: Forecasting results for the number of comments (the actual and predicted) for example videos on YouTube.

certain repositories remains consistent from day to day. Our model
outperforms the previous day baseline in most metrics. Our model
with the LSTM layer also outperforms the baseline when the perfor-
mance is measured using R2 and comes very close to the baseline
for most other metrics.

Visualizing actual versus predicted user-repository inter-
actions for some example repositories on GitHub. Similar to
the results for Twitter, we can see from Figure 4 that the forecasted
trend of user-repository interaction events closely follows the ac-
tual trend for Github as well for most repositories. The model does
very well for the Ethereum repository, which has a high level of
interaction activity throughout the time period. For repositories
that have very low activity throughout the time period, our model
forecasts periodic highs and lows owing to the day of the week
vector being fed to our model. When the actual activity signal is
low, our model falls back on the trends for the days of the week.

6.3 Forecasting Video Comments from
Dynamic YouTube Graphs

For Youtube, table 4 shows the results for forecasting the comment
volume for 320 videos. Similar to Github, the model forecasts on
a single task. Our model with the BiLSTM layer is again able to
beat the baseline with an R2 of 0.72. Except for MEAE, this model
outperforms both the baseline and our model with the LSTM layer.
The LSTMmodel also comes close to the baseline and is able to beat
the baseline for MEAE. The model is good at picking up signals
where there is enough activity in a video. For videos with low
activity, the previous day baseline is strong since most days have
zero activity.

Visualizing the number of actual versus predicted com-
ments for some example videos on YouTube. We present our

results for the example videos in Figure 5. Again, our results closely
emulate the actual comment activity on YouTube for most videos.
Although it is hard for our model to forecast high peaks, it can still
match the points where there are likely to be spikes in user-video
interactions. For videos where the activity is low, as in the last video
in the Figure, the model forecasts periodic highs and lows with low
variability as seen in the results for Github as a consequence of
incorporating the day of the week vector into the model.

7 EXTENDED ANALYSIS ON THE TWITTER
DATA

Evaluating the effect of the training and forecasting win-
dow size on model performance. The size of the training win-
dow can have contradictory effects on model performance. On one
hand, if we take a longer training window, the model can see more
of the past behavior and can use it to make informed decisions.
On the other hand, the retweets and mentions for a given day are

Figure 6: The effects of varying training and forecasting
window sizes onmodel performance for the Twitter dataset -
for NAAM+BiLSTM layer. The results formention forecasts
are shown as triangles, and retweet forecasts as circles.
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more likely to resemble those in the days closest to that day. Taking
this into consideration, a longer training window can also hinder
the model by creating confusion with unrelated past behavior. To
investigate this effect, we ran our models with window sizes of 14,
10, 3, and 1. The results for each of these window sizes are shown in
Figure 6 (left). For mentions, the largest window size of 14 results
in the best R2 of 0.80 and Pearson of 0.91 while for the retweets,
a window size of 3 has the best R2 of 0.78. Mentions are sparser
than retweets in our data, which is probably why a longer training
window helps mention prediction.

Similar to experimenting with variable training window sizes, we
also varied the forecasting window size. Different from the above
experiment with training window size, forecasting further into the
future has a clear effect on model performance – it becomes a grad-
ually more difficult task as we increase the forecasting window. We
can see these effects in Figure 6 (right). It is easiest to forecast both
retweets and mentions when doing so for one day in advance. As
expected, forecasting user behavior the next day yields the highest
R2 and Pearson correlation than forecasting user behavior up to
7 days in advance. The best training window is 12 days for fore-
casting mentions, and 9 days for forecasting retweets the next day.
Although the performance does decrease as we predict further into
the future, the performance degradation is much slower than what
we had expected, evidence that our model is robust to generating
forecasts for more than one day in advance.

Model Forecast Pearson R2

Our best model – historical mention 0.84 0.70
retweet 0.85 0.72

NAA replaced with self-attention mention 0.90 0.80
retweet 0.88 0.78

Our best model mention 0.90 0.81
retweet 0.89 0.79

Table 5: Ablation study of different NAAMmodel variations
for forecasting on Twitter social graph.

Experimenting with NAAM model variants. Here, we in-
vestigate the effects of removing or replacing parts of our model
(ablation study). Table 5 shows our best model results and compares
them to different variations. The first variant is the removal of the
historical information, including old retweet and mention counts
as well as the day of the week information. Although the model
still performs well, the results clearly show that historical infor-
mation is crucial. The previous day baseline results, which uses
the previous day’s retweet and mentions distributions also support
this finding. On the other hand, replacing node aware attention
(NAA) by self-attention does not seem to have a similar amount
of deprecating effect on the results. The results are lower than our
model’s best performance, but not by a large margin. This could
possibly be attributed to the fact that the final representation still
retains the node embedding information in this variant of NAAM
and thus it is still node-aware in some way. Finally, the results
also show that the combination of historical information and node
attention is beneficial to our model.

8 DISCUSSION
The effect of the graph size. The factor that seems to most

heavily affect the performance of our model is the number of nodes
in the projected graph. There are 202 news sources in the Twitter
graphs, 320 videos for the Youtube graphs, and 364 repositories
for the GitHub graphs. Our model’s performance is highest for
Twitter (MAE 1.6%) and is lower in the order of node counts for
YouTube and GitHub (2.19% and 2%). However, we should also note
that although the GitHub graphs have nearly double the number of
repositories than the number of news sources for Twitter graphs,
the difference in performance is comparatively lower between them.
Our node attention method creates tailored representations for each
node from the aggregate graph structure representations and this is
likely the reason why the performance does not see a large decline
with the increase in the number of nodes.

The effect of the graph density. Although the baseline per-
formance is higher for the Twitter graph, the improvement over
the baseline is also highest for Twitter. As we can see from Table 1,
the Twitter graphs have more user activity and so there are more
connections (the Twitter graph is denser compared to YouTube and
GitHub graphs), which in turn means there is a stronger signal
from which our model can learn. The GitHub graphs and, espe-
cially, the YouTube graphs have sparse activity - which we can see
from the average degree and average weighted degree. Interestingly,
YouTube graph has the highest homophily and longest average path
(5 degrees of separation compared to 2 for Twitter and GitHub) -
but the forecasting performance is lower than that for Twitter and
higher than that for GitHub.

The effect of the training period length. The YouTube graph
has a training period that is over five months longer than that of
GitHub and more than three times than that of Twitter. This does
seem to be of advantage since the results on the YouTube graphs are
better than for GitHub even though the YouTube graphs are sparser.
Even though there is more training data from longer periods of
time for both GitHub and YouTube than Twitter, our model cannot
overcome the sparseness of the adjacency matrix for the former
two datasets, as these are its main sources of input.

9 SUMMARY
In this paper, we proposed a novel task – forecasting over dynamic
social graphs and a novel node-aware attention model that forecasts
user interactions in real-world dynamic graphs. Our model yields
the best performance when forecasting mentions of news sources
on Twitter (MAE 1.6%, Pearson 0.90, R2 0.81), video comments on
YouTube (MAE 2.19%, Pearson 0.86, R2 0.72), and repo interactions
on GitHub (MAE 1.89%, Pearson 0.83, R2 0.69). We also showed
that it is beneficial to use a unified model rather than a two-step
process of first learning embeddings for nodes independently using
the state-of-the-art embedding techniques such as Node2Vec and
DeepWalk, and then using them for the downstream forecasting
task.We report that when forecasting social interaction on a smaller
size, denser graphs like Twitter our model performs significantly
better than forecasting interactions on GitHub and YouTube. Note,
learning dynamic graphs over longer time periods e.g., YouTube
versus GitHub improves model performance.
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