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ABSTRACT

We propose Covariant Compositional Networks (CCNs), a
novel neural network architecture for learning on graphs.
CCNs use tensor representations for vertex features which
can then be manipulated with permutation covariant tensor
operations as opposed to the standard symmetric operations
used in other graph neural network models. These permuta-
tion covariant operations allow us to build more expressive
graph representations while still maintaining permutation
invariance.

For learning small-scale molecular graphs, we investigate
the efficacy of CCNs in estimating Density Functional The-
ory (DFT), a widely used but expensive approach to compute
the electronic structure of matter. We obtain promising re-
sults in for this task and outperform other graph learning
models on the Harvard Clean Energy Project [4] and QM9
[13] molecular datasets.
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1 INTRODUCTION

A central problem in graph learning domains is how to con-
struct expressive vector representation of graphs which can
later be used in downstream tasks like graph regression or
graph classification. This is challenging because a graph’s
representation must have a fixed length regardless of the size
of the graphs in the dataset and the representation must be
invariant to permutations of the graph’s vertices. Tradition-
ally, researchers addressed these challenges by using graph
kernels. Among the most successful of these kernels is the
famed Weisfeiler-Lehman graph kernel [15], which builds a
multi-level representation of a graph through a series of mes-
sage passing and hashing steps. However, kernels methods
scale quadratically in the size of the dataset, making them
unfeasible beyond a few thousand datapoints. Graph neural
networks have emerged as a scaleable alternative to graph
kernels. Most graph neural networks can be seen as a differ-
entiable extension of the Weisfeiler-Lehman algorithm that
replaces the fixed hashing step with a learnable non-linear
mapping. These networks produce permutation invariant
representations of graphs by aggregating local and global
vertex information through a series of symmetric operations
on vertices (usually by summing vertex features in a 1-hop
neighborhood around each vertex). We argue that the per-
mutation invariant vertex aggregation operations performed
by most graph neural networks limit their expressive power.

Thus, we propose Covariant Compositional Networks
(CCNs) as an alternative. Section 2 describes the general
architecture underlying CCNs. In our compositional nets
framework, we represent vertex features with higher covari-
ant tensors (defined in Section 3). These structured tensors
representations then naturally give rise to the tensor opera-
tions defined in Section 4 which have the crucial property of
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maintaining permutation covariance. Section 5 describes the
full architecture of a compnet as well as two types of CCNs
that can be implemented. Lastly in Section 6, we describe our
experiments on two molecular graph datasets: the Harvard
Clean Energy Project [4] and QM9 [13], where our model
outperforms competing graph neural networks on graph
regression tasks.

2 COMPOSITIONAL NETWORKS

In this section, we introduce a general architecture called
compositional networks (comp-nets) for representing
complex objects as a combination of their parts and show
that graph neural networks can be seen as special cases of
this framework.

Definition 2.1. Let G be an object with n elementary parts
(atoms) & = {ey, .., en }. A compositional scheme for G is
a directed acyclic graph (DAG) M in which each node v is
associated with some subset P, of & (these subsets are called
parts of G) in such a way that:
(1) In the bottom level, there are exactly n leaf nodes in
which each leaf node v is associated with an elemen-
tary atom e. Then P, contains a single atom e.
(2) M has a unique root node v, that corresponds to the
entire set {eq, .., e, }.
(3) For any two nodes v and v’, if v is a descendant of v/,
then P, is a subset of P,.

One can express message passing neural networks in this
compositional framework. Consider a graph G = (V,E) in
an L + 1 layer network. The set of vertices V is also the set of
elementary atoms &. Each layer of the graph neural network
(except the last) has one node denoted by v and one feature
tensor denoted by f for each vertex of the graph G. The
compositional network N is constructed as follows:

(1) Inlayer £ = 0, each leaf node v} represents the single
vertex P? = {i} for i € V. The corresponding feature
tensor f} is initialized by the vertex label /;.

(2) In layers ¢ = 1,2,..,L, node vf is connected to all
nodes from the previous level that are neighbors of
i in G. The children of vf are {vf_1|j : (i,j) € E}.
Thus, P! = Ujii,j)eE 7)].5_1. The feature tensor f is
computed as an aggregation of feature tensors in the
previous layer:

fE=a{f e P
where ® is some aggregation function.
(3) In layer ¢ = L + 1, we have a single node v, that
represents the entire graph and collects information
from all nodes at level £ = L:

P. =V
fr=2({fHieP})
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In the following section, we will refer v as the neuron, and
and f as its corresponding receptive field and activation,
respectively.

3 COVARIANCE

Standard message passing neural networks used summa-
tion or averaging operation as the aggregation function ®
of neighboring vertices’ feature tensors. These aggregation
functions cannot capture any information about the connec-
tivity of vertices’ neighborhoods. Therefore, we introduce
permutation covariance below and argue that it is a desir-
able property for our neural activations f.

Definition 3.1. For a graph G with the comp-net NV, and
an isomorphic graph G’ with comp-net N’, let v be any
neuron of N and v’ be the corresponding neuron of N’.
Assume that P, = (ep,, .., ep,,) While P, = (eg,, .., €q,,), and
let 7 € S;,; be the permutation that aligns the orderings of
the two receptive fields, i.e., for which €qnia) = Epa- We say
that NV is covariant to permutations if for any 7, there is
a corresponding function R, such that f,, = R,(f,).

This definition says permuting the vertices of graph G
must change the activations of its vertices in a predictable
manner that is controlled by some fixed function R, that
depends on the permutation 7.

4 MESSAGE PASSING
First order Message Passing

We call standard message passing zero’th order message
passing where each vertex is represented by a feature vector
of length ¢ (or ¢ channels). When we sum together vertex
features of this form, we lose identity information on where
certain vertex features originated from. Hence, we propose
first order message passing by instead representing each
vertex v by a matrix: £ € RIPs1x¢_ Each row of this feature
matrix corresponds to a vertex in the neighborhood of v.

Definition 4.1. We say that v is a first order covariant
node in a comp-net if under the permutation of its receptive
field $, by any 7 € Sp, |, its activation transforms as f, +—
P, f,, where P, is the permutation matrix:

[mmé{L”@:i )

0, otherwise

The transformed activation f,, will be:

[fv’]a,s = [fv];r‘l(a),s

where s is the channel index.

Second order Message Passing

Instead of representing a vertex with a feature matrix (a 2nd
order tensor) as done in first order message passing, we can
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. t l
represent it by a 3rd order tensor f¢ € RIZoXIPulxc and
require these feature tensors to transform covariantly:

Definition 4.2. We say that v is a second order covariant
node in a comp-net if under the permutation of its receptive
field #, by an 7 € S|p,), its activation transforms as f, —
P, f,PL. The transformed activation f,, will be:

[fv’]a, b,s = [fv]n"l(a), x=1(b),s

where s is the channel index.

Third and higher order Message Passing

Following this pattern, we can define third, fourth, and in
general, k’th order nodes in a comp-net. Their activations
are k’th order tensors which transform under permutations

as f, = fi:
[fv’]il,iz,..,ik,s = [fv]n*l(il),yrl(iz),..,ﬂ’l(ik),s (2)

All but the channel index s (the last index) is permuted when
we go from f, to f,/ after some permutation 7z of the re-
ceptive field P,. In general, we will call any quantity which
transforms according to this equation (ignoring the channel
index) a k’th order P-tensor.

Definition 4.3. We say that v is a k’th order covariant
node in a comp-net if the corresponding activation f, is a
k’th order P-tensor, i.e., it transforms under permutations of
%, according to 2.

Tensor aggregation rules

The previous sections prescribed how activations must trans-
form in comp-nets of different orders. Tensor arithmetic
provides a compact framework for deriving the general form
of the permutation covariant operations. For convenience,
we denote tensors as capital letters. Since the activation f
is a tensor in general, we will denote it by capital F in the
following sections. Recall the four basic operations that can
be applied to tensors:

(1) The tensor product of A € 7% with B € 77 yields a
tensor C = A® B € TP where:

c =A B

i1,02, - ik+p i1, 005 -0 i Dlket1s Tkt2s - o5 letp

(2) The contraction of A € 7 along the pair of dimen-
sions {a,b} (assuming a < b) yields a k — 2 order
tensor:

Civig,..ig = E Aiy iatodsiasts oo ip1dibess -k
j

where we assume that i, and i have been removed
from the indices of C. Using Einstein notation, this can
be written much more compactly as

.. .= .. . iq ib
Ciyig, i = Aiyig,,ix 0
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where §'@ is the diagonal tensor with 6%/ = 1ifi = j
and 0 otherwise. We also generalize contractions to
(combinations of) larger sets of indices

{{a},.a ), {a], a5 }}
as the (k — X, p;) order tensor:

q

1 1 2 2 q
S Apy §%0-8p, ... §U g

C.=A

i1, 0, . ik

(3) The projection of a tensor is defined as a special case
of contraction:

— i i i
A lal,--,ap_ Ail,iz,--»ika agta ... §la

where projection of A among indices aj, .., ap is de-
notedas A |4, a,-

Proposition 4.1 shows that all of the above operations as well
as linear combinations preserve the permutation covariance
property of P-tensors. Therefore, they can be applied within
the aggregation function ®.

Proposition 4.1. Assume that A and B are k’th and p’th
order P-tensors, respectively. Then:

(1) A® B is a(k + p)’th order P-tensors.
q q
(2) Aiy iy i 841 - 590 is a (k= 3, p;) th order
P-tensor.

(3) If Ay, .., A, are k’th order P-tensors and ay, .., a, are
scalars, then 3’ ; a;A; is a k’th order P-tensor.

Propositions 4.2, 4.3 and 4.4 show that tensor promotion,
concatenation and taking tensor products with the local ad-
jacency matrix preserve permutation covariance, and hence
can be applied within ®.

Proposition 4.2. Let node v be a descendant of node v’ in a
comp-net N with corresponding receptive fields: P, = (ep,, .. €p,,)
and Py = (eq,,...eq,,). We remark that P, C P,s. Define
X'V € R™™ gs an indicator matrix:

’ 1, i =P
TR I 3)
’ 0, otherwise
If F, is a k’th order P-tensors with respect to permutations
(ep,» --» €p,,) the following promoted tensor is a is a k 'th order
P-tensor with respect to permutations of (eq,, .., €q,, ):

, ,
Foodin i =007 X ol @)

In equation 4, node v’ promotes P-tensors from its child
nodes v with respect to its own receptive field $,, by the
appropriate y*~"" matrix such that all promoted tensors
F,_,,» have the same size. We remark that promoted tensors
are padded with zeros.
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Proposition 4.3. Let nodes vy, .., v, be the children of v in
a message passing type comp-net (the corresponding vertices
of these nodes are in P, ) with corresponding k’th order tensor
activations F,,, ..., F, . Let

v,—>V] v,—WJ

[th—>v]i1,4., ix = [X inji1 " [X s Jke [FVt]jl,n,jk
be the promoted tensors (t € {1,..,n}). We concatenate or

stack them into a (k + 1)’th order tensor:
(Fultin.ir = [Frysvlin, i

Then the concatenated tensor F,, is a (k + 1) th order P-tensor
of v.

The restriction of the adjacency matrix to P, is a second
order P-tensor. Proposition 4.4 gives us a way to explicitly
add topological information to the activation.

Proposition 4.4. IfF, is a k’th order P-tensor at node v, and
A |p, is the restriction of the adjacency matrix to P, then
F, ® A lp, is a(k + 2)’th order P-tensor.

Second order tensor aggregation with the adjacency
matrix

The first nontrivial tensor contraction case occurs when
Fy v, .. Fy, -y are second order tensors, and we multiply
with A |p, , since in that case 7~ is 5th order (6th order if we
consider the channel index), and can be contracted down to
second order in the following ways:

(1) The 1+1+1 case contracts 7~ in the form 7;, ;. 'a1 §'a §'as,

i.e, it projects 7 down along 3 of its 5 dimensions. This
can be done in (g) = 10 ways.

(2) The 1+2 case contracts 7~ in the form 7{1,__,1-55"“1 Slaplas
i.e., it projects 7~ along one dimension, and contracts it
along two others. This can be done in 3(}) = 30 ways.

(3) The 3 case is a single 3-fold contraction 7, . _; §araz a3,
This can be done in (3) = 10 ways.

Totally, we have 50 different contractions that result in 50
times more channels. In practice, we only implement 18
contractions for efficiency.

5 ARCHITECTURE

Recent work on graph neural networks [1, 3, 8, 11] can all
be seen as instances of zeroth order message passing where
each vertex representation is a vector (1st order tensor) of ¢
channels in which each channel is represented by a scalar
(zeroth order P-tensor). This results in the loss of certain
structural information during the message aggregation step.

Our architecture represents vertices with higher-order ten-
sors which can retain this structural information. There is
significant freedom in the choice of this tensor structure, and
we now explore two examples, corresponding to the tensor
structures, which we call “first order CCN” (CCN 1D) and
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“second order CCN” (CCN 2D), respectively.

Starting with an input graph G = (V,E), we construct a
compositional network with L + 1 levels, indexed from 0 (in-
put level) to L (top level). Initially, each vertex v is associated
with an input feature vector I, € R® where ¢ denotes the
number of channels. The receptive field of vertex v at level £
is denoted by P! and is defined recursively as follows:

o =0
Pr=1 U PL =1L (5)
(u,v)€E

The vertex representation of vertex v at level £ is denoted by
a feature tensor FY. In zeroth order message passing, F! € R¢
is a vector of ¢ channels. Let N be the number of vertices
in P¢. In a first order CCN, each vertex is represented by a
matrix (second order tensor) F, € RN*¢ in which each row
corresponds to a vertex in the receptive field P{, and each
channel is represented by a vector (first order P-tensor) of
size N. In a second order CCN, F [‘,’ is promoted into a third
order tensor of size N X N X ¢ in which each channel has a sec-
ond order representation (second order P-tensor). In general,
we can imagine a series of feature tensors of increasing order
for higher order message passing. Note that the components
corresponding to the channel index does not transform as
a tensor, whereas the remaining indices do transform as a
P-tensor. The tensor F transforms in a covariant way with
respect to the permutation of the vertices in the receptive
field P{.

Now that we have established the structure of the high order
representations of the vertices at each site, we turn to the task
of constructing the aggregation function ® between levels of
the network. The key to doing this in a way that preserves
covariance is to “promote-stack-reduce” the tensors at each
level of the network.

We start with the promotion step. Recall that we want to accu-
mulate information at higher levels based upon the receptive
field of a given vertex. However, not all vertices in a given re-
ceptive field have same sized tensors. To account for this, we
use an index function y that ensures all tensors are the same
size by padding them zeros when necessary. At level £, given
two vertices v and w such that P{~1 ¢ P{, the permutation
matrix y," " of size |PL| x |PL is defined as in Prop. 4.2.
In CCN 1D & 2D, the resizing is done by (broadcast) matrix
multiplication y - F5 ™' and y x F4 x xT where y = xp "
respectively. Denote the resized tensor as F.,_, . (See step
7 in algorithm 2.) This promotion is done for all tensors of
every vertex in the receptive field, and stacked/concatenated
into a tensor one order higher. (See Prop. 4.3. Notice that the

stacked index has the same size as the receptive field.) From
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here, as in CCN 2D, we can compute the tensor product of
this higher order tensor with the restricted adjacency matrix
(subject to the receptive field) and obtain an even higher or-
der tensor. (See Prop. 4.4.) Finally, we can reduce the higher
order tensor down to the expected size of the vertex repre-
sentation using the tensor contractions described in Prop. 4.1.

Including all possible tensor contraction will introduce ad-
ditional channels to the vertex representations. To avoid
an exponential explosion in the number of channels with
deep networks, we use a learnable set of weights that re-
duces the number of channels to a fixed number c. These
weights are learned through backpropagation. The last step
of our aggregation function @ is to pass this tensor through
an element-wise nonlinear function Y such as a ReLU. (See
steps 4 and 9 in algorithm 2.)

Finally, at the output of the network, we again reduce the
vertex representations F{ into a vector of channels ©(F) =
Ff lil,..,i,, where iy, .., i, are the non-channel indices. (See
Prop. 4.1.) We sum up all the reduced vertex representations
of a graph to get a single vector which we use as the graph’s
representation. This final graph representation can then used
as an input to a final fully connected layer for regression or
classification tasks. In addition, we can construct a richer
graph representation by concatenating the shrunk represen-
tation at each level. (See steps 12, 13 and 14 in algorithm 2.)

The development of higher order CCNs require efficient ten-
sor algorithms to successively train the network as higher
order tensors are often too large to store in memory. To ad-
dress this challenge, we do not construct the tensor product
explicitly. Instead we introduce a virtual indexing system for
a virtual tensor that computes the elements of tensor only
when needed given the indices. This allows us to implement
the tensor contraction operations efficiently on GPUs.

For example, consider the operations in step 8 in algorithm 2.
This requires performing contractions over several indices on
the two inputs 7 = {F{_, |w € P}, in which 7, = F,
is of size |PL| x |PL| x c,and A = A l?f' The correspond-
ing tensor element can be efficiently computed on-the-fly as
follows:

iV

7;1,i2, i3, 14, I5,15 = (ﬁl)iz,is, i * ﬂl’m is (6)

where i is the channel index.

In our experiments using CCN 2D, we implement 18 dif-
ferent contractions (see Prop. 4). Each contraction results in
a |P!| x |PL| x c tensor. The result of step 8 is F; with 18
times more channels.
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Figure 1: Tensor activations of our CCN-1D architecture on
C2H4 molecular graph. The tensor activations of each vertex
in a CCN 1D model are shown after 0, 1, and 2 rounds of
message passing in (a), (b) and (c). The number of rows and
columns in the activation tensor are respectively equal to
the size of the receptive field.

To better illutrate the CCN 1D and CCN 2D models, we’ll run
through an example of the message passing and aggregation
steps on the molecular graph of C2Hy. See Algorithm 1 for
the pseudocode for CCN 1D and Algorithm 2 for CCN 2D.

Figure 1 shows a visualization of CCN 1D’s tensors on
C;H,4’s molecular graph. The central vertices es and e4 are
carbon (C) atoms, and vertices e;, e;, e5 and e are hydrogen
(H) atoms. Edge (es, e4) is a double bond (C, C) between two
carbon atoms. All other edges are single bonds (C, H) be-
tween a carbon atom and a hydrogen atom. In the initial layer
¢ = 0, the receptive field of every atom e only contains itself,
thus its representation F. is a tensor of size 1Xc¢ where c is the
number of channels (see figure 1(a)). In the first layer ¢ = 1,
the receptive field of a hydrogen atom contains itself and the
neighboring carbon atom (i.e., Pél = {e1, e3}), thus tensors
for hydrogen atoms are of size 2x c. Meanwhile, the receptive
field of a carbon atom contains itself, the another carbon and
two other neighboring hydrogens (i.e., P;S = {eq, ez, e3,€4})
and Pel4 = {es, eq, €5, €6}), thus F‘gs,Fel4 € R¥¢ (see figure
1(b)). In all later layers denoted £ = oo, the receptive field of
every atom contains the whole graph (in this case, 6 vertices
in total), thus F°> € R (see figure 1(c)).

Figure 2 shows a visualization of CCN 2D’s tensors on
C,H, molecular graph after a few steps of message passing.
In the bottom layer £ = 0, |P?| = 1and F? € R for every
atom e (see figure 2(a)). In the first layer £ = 1, |P}| = 2
and F! € R¥*?*¢ for hydrogen atom e € {ey, ez, €5, e}, and
for carbon atoms |P,,| = |P} | = 4 and F},F; € R¥*¢
(see figure 2(b)). In all other layers £ = oo, P;° = V and
F € RO6%¢ (Ve) (see figure 2(c)).

Figure 3 shows the difference between zeroth, first and
second order message passing (see from left to right) with
layer £ > 2. Note that after 2 rounds of message passing
on the graph of C;Hy, every vertice’s receptive field will
consist of all 6 vertices in the graph. In a zeroth order model
(figure 3(a)), the vertex representation will still be vector of
¢ channels. In a first order model (figure 3(b)), the vertex

m



Anchorage ’19, August 05, 2019, Anchorage, AK

Hy et. al

Algorithm 1: First-order CCN

Algorithm 2: Second-order CCN

1 Input: G, [,, L

2 Parameters: Matrices W, € R*¢, W, .., W € RZe)xc
and biases by, .., by. For CCN 1D, we only implement 2
tensor contractions.

3 FO «— Y(Wyl, + bpl) (Vv € V)

a4 Reshape F0to 1 xc (Vv € V)

5 for{=1,..,L do

6 forveVdo

7 FL_,, « x xF{t where y = xi_,, (Yw e PY)

8 Concatenate the promoted tensors in
{F¢_, |w € PL} and apply 2 tensor
contractions that results in fi € RIPvIx@e),

9 F5 — Y(Fi X Wp + bg]].)

10 end

11 end

12 F 3,y O(F)) (V)

L
13 Graph feature F « P F{ e RU+De
£=0
14 Use F for downstream tasks.

Figure 2: Tensor activations for our CCN-2D architecture
applied to a C;Hy molecular graph. The tensor activations
of each vertex in a CCN 2D model are shown after 0, 1, and
2 rounds of message passing in (a), (b) and (c). Here the rows
and columns correspond to the size of the receptive field,
whereas the depth of the tensor is determined by the num-
ber of channels.

representation is a matrix of size 6 X c—each channel is
represented by a vector of size 6. In a second order model
(figure 3(c)), the vertex representation will be a 3rd order
tensor of size 6 X 6 X c—each channel is represented by matrix
of size 6 X 6.

6 EXPERIMENTS

We now compare our CCN framework (Section 5) to sev-
eral standard graph learning algorithms. We focus on two
datasets that contain the result of a large number of Density
Functional Theory (DFT) calculations:
(1) The Harvard Clean Energy Project (HCEP), con-
sisting of 2.3 million organic compounds that are can-
didates for use in solar cells [4].

1 Input: G, [, L
2 Parameters: Matrices W, € RE*¢, W, .., W € RU8e)xc
and biases by, .., br.

3 FO «— Y(Wyl, + byl) (Vv € V)

4 Reshape FOto1x1xc (Vv eV)

5 for{=1,..,L do

6 forv e Vdo

7 Fl_,, — x xF5 U x yT where y = ¢,
(Yw e PY)

8 Apply virtual tensor contraction algorithm
(Sec.4) with inputs {F{_, |w € P} and the
restricted adjacency matrix A le to compute
F. e RIP/XIPIx(80)

0 FC o Y(F, x W + bel)

10 end
11 end

12 FC 3,y O(F)) (V)

L
13 Graph feature F « @ Fl e RLA+De
£=0
14 Use F for downstream tasks.

Figure 3: Geometry of the tensor activations in zeroth (CCN
0D), first (CCN 1D), and second (CCN 2D) order message pass-
ing algorithms. Vertices have a vector (zeroth order), matrix
(first order), and second order tensor representations corre-
sponding as shown in (a), (b), and (c).

(2) OM9, a dataset of ~134k organic molecules with up to
nine heavy atoms (C, O, N and F) [13] out of the GDB-
17 universe of molecules [14]. Each molecule contains
data including 13 target chemical properties, along
with the spatial position of every constituent atom.

DFT [5, 9] is the workhorse of the molecular chemistry com-
munity, given its favorable tradeoff between accuracy and
computational power. Still, it is too costly for tasks such as
drug discovery or materials engineering, which may require
searching through millions of candidate molecules. An accu-
rate prediction of molecular properties would significantly
aid in such tasks.
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We are interested in the ability of our algorithm to learn us-
ing only the adjacency matrices and vertex labels of graphs,
and using additional physical features of the graphs. As such,
we perform three experiments. We start with two experi-
ments based only upon atomic identity (vertex labels) and
molecular graph topology (adjacency matrices):

(1) HCEP: We use a random sample of 50,000 molecules
of the HCEP dataset; our learning target is Power Con-
version Efficiency (PCE), and we present the mean
average error (MAE). The input vertex feature [, is a
one-hot vector of atomic identity concatenated with
purely synthesized graph-based features.

(2) OM9(a): We predict the 13 target properties of every
molecule. For this text we consider only heavy atoms
and exclude hydrogen. Vertex feature initialization is
performed in the same manner as the HCEP experi-
ment. For training the neural networks, we normalized
all 13 learning targets to have mean 0 and standard
deviation 1. We report the MAE with respect to the
normalized learning targets.

To test our algorithm’s ability to learn on DFT data based
upon physical features, we perform the following experi-
ment:

(3) QM9(b): On the QM9 dataset, we use both physical
atomic information (vertex features) and bond infor-
mation (edge features) including: atom type, atomic
number, acceptor, donor, aromatic, hybridization, num-
ber of hydrogens, Euclidean distance and Coulomb
distance between pair of atoms. All the information is
encoded in a vector.

To include the edge features into our model along with
the vertex features, we used the concept of a line graph
from graph theory. We constructed the line graph for
each molecular graph in the following way: an edge
of the molecular graph corresponds to a vertex in its
line graph, and if two edges in the molecular graph
share a common vertex then there is an edge between
the two corresponding vertices in the line graph (see
Fig. 4). The edge features become vertex features in
the line graph. The inputs of our model contain both
the molecular graph and its line graph. The feature
vectors F, between the two graphs are merged at each
level £. (See step 12 of the algorithm 2).

In QM9(b), we report the mean average error for each
learning target in its corresponding physical unit and
compare it against the Density Functional Theory (DFT)
error given by [2].

For the HCEP experiment, we compared CCNs to lasso, ridge
regression, random forests, gradient boosted trees, optimal
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assignment Weisfeiler-Lehman graph kernel [10] (WL), neu-
ral graph fingerprints [1], and the “patchy-SAN” convolu-
tional type algorithm (referred to as PSCN) [12]. For the first
four of these baseline methods, we created simple feature
vectors from each molecule: the number of bonds of each
type (i.e., number of H-H bonds, number of C-O bonds, etc.)
and the number of atoms of each type. Molecular graph fin-
gerprints uses atom labels of each vertex as base features.
For ridge regression and lasso, we cross validated over A. For
random forests and gradient boosted trees, we used 400 trees,
and cross validated over max depth, minimum samples for a
leaf, minimum samples to split a node, and learning rate (for
GBT). For neural graph fingerprints, we used 3 layers and a
hidden layer size of 10. In PSCN, we used a patch size of 10
with two convolutional layers and a dense layer on top as
described in their paper.

For QM9(a), we compared against the Weisfeiler-Lehman
graph kernel, neural graph fingerprints, and PSCN. The set-
tings for NGF and PSCN are as described for HCEP. For
QM9I(b), we compared against DFT error provided in [2].

We initialized the synthesized graph-based features of each
vertex with computed histogram alignment features, inspired
by [10], of depth up to 10. Each vertex receives a base la-
bel I, = concat? HY where HY € R (with ¢ being the
total number of distinct discrete node labels) is the vector
of relative frequencies of each label for the set of vertices
at distance equal to d from vertex v. Our CCNs architecture

contains up to five levels.

In each experiment we separated 80% of the dataset for train-
ing, 10% for validation, and evaluated on the remaining 10%
test set. We used Adam optimization [7] with the initial
learning rate set to 0.001 after experimenting on a held out
validation set. The learning rate decayed linearly after each
step towards a minimum of 107°.

Our method, Covariant Compositional Networks, and other
graph neural networks such as Neural Graph Fingerprints
[1], PSCN [12] and Gated Graph Neural Networks [11] are
implemented based on the GraphFlow framework [6].

Tables 1, 2, and 3 show the results of HCEP, QM9(a) and
QM9I(b) experiments, respectively.

Discussion

On the subsampled HCEP dataset, CCN outperforms all other
methods by a large margin. In the QM9(a) experiment, CCN
obtains better results than three other graph learning algo-
rithms for all 13 learning targets. In the QM9(b) experiment,
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Figure 4: Molecular graph of C;Hjy (left) and its correspond-
ing line graph (right).

I [ Test MAE | Test RMSE |

Lasso 0.867 1.437
Ridge regression 0.854 1.376
Random forest 1.004 1.799
Gradient boosted trees 0.704 1.005
WL graph kernel 0.805 1.096
Neural graph fingerprints 0.851 1.177
PSCN 0.718 0.973
CCN 1D 0.216 0.291
CCN 2D 0.340 0.449

Table 1: HCEP regression results. MAE and RMSE results of
each model on predicting the Power Conversion Efficiency
(PCE) for graphs on the test set of HCEP. Lower values are
better.

| Target | WLGK [ NGF [ PSCN [ CCN 2D ||
alpha | 046 [ 043 ] 020 | 0.16

Cv 059 | 047 | 027 | 0.23
G 051 | 046 | 033 | 0.29
gap 072 | 0.67 | 0.60 | 0.54
H 052 | 047 | 034 | 0.30

HOMO 0.64 0.58 | 0.51 0.39
LUMO 0.70 0.65 | 0.59 0.53

mu 0.69 0.63 | 0.54 0.48
omegal 0.72 0.63 | 0.57 0.45
R2 0.55 0.49 | 0.22 0.19
U 0.52 047 | 0.34 0.29
uo 0.52 047 | 0.34 0.29

ZPVE 0.57 0.51 | 043 0.39

Table 2: Results of training various learning algorithms on
the QM9(a) dataset. Mean Absolute Error (MAE) results of
training QM9(a) on WLGK, NGF, PSCN, and CCN 2D to pre-
dict each of the 13 learning targets discussed in the main
text. All MAEs are presented with respected to the standard-
ized learning targets. Lower results are better.

our method gets smaller errors comparing to the DFT calcu-
lation in 11 out of 12 learning targets (we do not have the
DFT error for R2).

Hy et. al
H Target | CCNs | DFT error \ Physical unit ‘

alpha 0.19 0.4 Bohr®

Cv 0.06 0.34 cal/mol/K

G 0.05 0.1 eV

gap 0.11 1.2 eV

H 0.05 0.1 eV
HOMO | 0.08 2.0 eV
LUMO 0.07 2.6 eV

mu 0.43 0.1 Debye
omegal | 2.54 28 cm™!

R2 5.03 - Bohr?

U 0.06 0.1 eV

Uo 0.05 0.1 eV
ZPVE | 0.0043 0.0097 eV

Table 3: Regression results of CCN-1D architecture applied
to QM9(b). A comparison between CCN prediction error and
DFT error known as “chemical accuracy””

7 CONCLUSION

We extended Message Passing Neural Networks using higher-
order tensors and tensor aggregation operations that pre-
serve permutation covariance. Our resulting models outper-
form other graph learning models on prediction tasks over
the Harvard Clean Energy Project and QM9 datasets, high-
lighting the potential of our CCN architecture for learning
expressive graph models.
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