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ABSTRACT
Competitive Influence Maximization (CIM) problem studies the
competition among multiple parties where each party aims to max-
imize their profit while competing against other parties. Recently,
Reinforcement-Learning based models have been proposed to ad-
dress the CIM problem. However, such models are unscalable and
incapable of handling changes in the network structure. Motivated
by the recent success of Deep Reinforcement Learning models
and their capability to handle complex problems, we propose a
novel Deep Reinforcement learning based framework (DRIM) to ad-
dress the multi-round competitive influence maximization problem.
DRIM framework considers the community structure of the social
network for budget allocation and feature extraction with deep Q
network in order to reduce the computational time of seed selection.
The proposed framework employs the quota-based ϵ-greedy pol-
icy to explore the optimality of influence maximization strategies
and budget allocation for each community. Experimental results
show that the proposed DRIM framework performs better than the
state-of-art algorithms to tackle the multi-round CIM problem.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
InfluenceMaximization, Competitive InfluenceMaximization, Deep
Reinforcement Learning, Social Networks, Q-Learning

ACM Reference Format:
Tzu-Yuan Chung, Khurshed Ali, and Chih-Yu Wang. 2019. Deep Reinforce-
ment Learning-based Approach to Tackle Competitive Influence Maxi-
mization. In Proceedings of 2019 ACM SIGKDD conference (KDD19 (MLG
Workshop)) (MLG’19). ACM, New York, NY, USA, Article 4, 8 pages. https:
//doi.org/10.475/123_4

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MLG’19, August 2019, Anchorage, Alaska, USA
© 2019 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

1 INTRODUCTION
Viral marketing has been recognized as one of the most effective
marketing tactics in advertising and branding today. It exploits
social media, such as Facebook, Twitter, and YouTube, to promote
products or brands to the public. The companies select key cus-
tomers in a social network or media using such tactic in order to
spread their product’s attractive features in pursuit of the "word-
of-mouth" effect. Such problem, identification of key customers
to maximize the "word-of-mouth" effect, is referred as Influence
Maximization (IM), one of the widely studied research topic in the
social network [10, 17, 29].

Competitive influence maximization (CIM) problem, which con-
siders multiple parties competing for their influences in the social
network, is a natural but more practical extension to traditional IM
problem. Specifically, CIM problem aims to select the best seeds
in response to the other competitors’ decisions with the goal of
maximizing their influence. In a CIM model, the influences from
each party are allowed to cascade simultaneously among the social
network, which may interfere with each other.

There have been increasing research efforts in addressing com-
petitive diffusion optimization with heuristic methods under the
extensions of IM propagation models [3]. However, most of them
fail to consider community structures in social networks. Efficient
competitive influence algorithm should properly identify and uti-
lize the hidden community structure within the network in order
to maximize the influence spread with the limited budget invest-
ment. Despite the significant developments on the incorporation
of community structures for a traditional single party IM[9, 31],
to our best knowledge, the study on CIM considering community
factor is still lacking.

To illustrate community-based CIM, let us consider the social
network in Figure 1. Given the social network where two parties
are competing against each other for the influence. We assume that
nodes 1, 3 and 5 in community 1 and nodes 12 and 13 in community
2 have been activated by party A (blue) and B (green), respectively.
If party A has enough budget to select two more seeds, it should
select node 4 to expand the influence within community, and then
select node 11 to block the influence of party B. If party A selects
node 7 as the seed instead of node 11, then the influence will flow
to node 2, 6, 8 and 9 which will be activated by node 4, leading to
influence overlap. Even though there are three communities in the
network, community 3 may be too small worth spending budget
(i.e., selecting seed node) since it may only activate three nodes at
most. This example shows that the community structure indeed
affects the seed selection strategy of parties in CIM problem.

https://doi.org/10.475/123_4
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Figure 1: The community structure of an social network

In light of these concerns, we aim to address the following chal-
lenges in community-aware CIM problem. (1) How shall we de-
termine the number of seeds to be allocated in each community?
(2) What kind of seed-selection strategy shall we adopt for each
community given the occupation status? To address the aforemen-
tioned community-aware CIM issues, we extend the CIM problem
to the community structures of a network. First, instead of selecting
seeds only in the first round, we consider a more realistic setup in
which the parties might keep taking actions based on the current
network state and the expected reactions of other parties within
given rounds. Second, each party can spend a limited amount of
budget in each round on key nodes. The key (or influential) nodes
are selected according to different strategies based on the network
state of communities.

Consequently, we address a multi-round competitive influence
maximization (MRCIM) problem. In MRCIM problem, multiple par-
ties compete against each other in a way that maximizes their
rewards considering budget and community structures. Each party
would prefer to find an optimal combination of strategies to utilize
their budget efficiently for each community in such a competi-
tive environment. However, it has been proved that the selection
of seeds is an NP-hard problem even with single party IM. The
data-driven approach has been proposed [23] to leverage real-time,
history, or simulated data input for reinforcement learning (RL) to
determine the optimal strategy based on the pre-defined network
states. Nevertheless, this approach is not scalable due to the com-
plexity of state space and incapable of handling network structural
or settings change in the network, such as budget adjustment.

Recently, the deep reinforcement learning (DRL) technique has
demonstrated huge success in playing Atari and Go games [24, 32].
It shows a powerful data-driven method for handling more complex
problems. Inspired by the enormous success of DRL methods in
various domains, We propose a DRL based competitive Influence
Maximization framework (DRIM), with the capability to learn an op-
timal multi-party IM strategy by considering budget allocation and
community structures in it. Our framework achieves high scalabil-
ity, flexibility and solution quality by (1) addressing the competing
process of CIM using community structure of the network, (2) uti-
lizing existing influence maximization strategies in communities
as the action space, and (3) developing quota-based ϵ-greedy pol-
icy for training and evaluation with deep Q network. Further, we
propose three different models, namely DRIM-seq, DRIM-com
and DRIM-Q to tackle proper budget allocation and seed-selection
issues in the proposed problem.

Our major contributions are summarized as follows:

• To the best of our knowledge, we are the first to apply the
DRL technique to CIM problem. In this approach, we propose
a DRIM framework with the definitions of network state,
community-based strategy action, and deep Q network for
reward function approximation.
• We propose a quota-based ϵ-greedy policy to determine the
strategies and budget allocation for each community.
• Experiment results indicate that DRIMmodel achieves better
results than the state-of-art algorithm (STORM) [23].

2 RELATEDWORK
In this section, we specifically review the related research efforts
on CIM problem, which considers influence diffusion of multiple
competing products or concepts that interfere with each other. For
the general knowledge of influence maximization problem, inter-
ested readers can refer to [21] for the comprehensive introduction.
Among the rich body of literature, we briefly review the IM models
that consider the network’s structural properties to solve it.

Bharathi et al. [2] first modeled the CIM problem with the exten-
sion of the independent cascade model and resort to game theory
to analyze the "first mover" strategies in terms of the expected dif-
fusion. Carnes et al. [7], on the other hand, propose two influence
diffusion models to simulate the competing process and consider
the CIM problem from the followers’ perspective. Both of these
works formulate the CIM problem considering competitors’ known
strategy and show that at least 1 − 1/e approximation guarantee
can be achieved with a greedy strategy against the competitor con-
ditioned on competitor’s known strategy or predicted accurately.

Some efforts such as [6, 13] proposed a popular strategy known
as the influence blocking maximization, that the parties will try
to block the effect of the other competitors and minimize their
influence. It is a variant of CIM and these studies have provided
greedy solutions for this problem. Borodin et al. [3] presented sev-
eral models and proved the proposed models as NP-hard to achieve
an approximation.

Community structure is a unique feature of social networks. It
is a subset of nodes in the graph with strong connections between
them and fewer edges to nodes in different communities. There exist
several efficient algorithms[4, 9, 12, 14, 31] handling the IM problem
by exploring the community structure. Community structure is also
exploited to solve the CIM problem [5].

Recently, Lin et al. [23] proposed a reinforcement learning based
framework to tackle the CIM problem. Different from previous
works, Lin et al. [23] considers a more complex but realistic setup
that each competitor makes multiple decisions to select seed(s) in
multiple rounds. Either in case of known or unknown opponents’
strategies, the proposed framework, STORM[23], is capable of learn-
ing an optimal policy based on the network state. However, they did
not consider the community structure of the social networks and
the budget allocation for each community. In addition, their hand-
crafted state design could lead to inefficient state representation
and therefore reach a suboptimal solution.

3 PROBLEM FORMULATION
We model a social network,G = (V, E), as a weighted and directed
graph, whereV and E are the set of nodes and edges, respectively.
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We then assume there is a set of parties P who are interested in
promoting the ideas to the individuals in the social network through
social relations. The ideas proposed by each party are incompatible,
that is, one individual will only accept at most one idea from these
parties. We define the acceptance of an individual to an idea of
party l as the occupation status of the node in graph G. A node
can be activated if it accepts the idea of the party. We denote the
occupation status of a node u as su ∈ P ∪ {0}, in which su = 0
means the node remains inactive. Once a node u accepts the idea
of a party l , it cannot switch its occupation status to other parties.

The parties select the seed node(s) in each round. At the be-
ginning of a round t , each party l selects the seeds in turns by
determining a set of nodes F l

t from those who are still not occu-
pied. The budget of each party is k , that is, each of them can select at
most k seeds. After each party has selected seeds, the ideas diffuse
at the same time following the competitive diffusion process. We
denote the nodes occupied by party l at the end of the diffusion
process asVl = {u |su = l}. In this paper, we use the competitive
linear threshold (CLT) model, but it is applicable to use competitive
independent cascade (CIC) model as well.

Definition 3.1. COMPETITIVE LINEARTHRESHOLD (CLT) Given
the graph G = (V, E) and set of party P, each node v picks an
activation threshold ρv . At round t , the nodev is activated by party
l ∈ P if the total weight of its active in-neighbors exceeds the
threshold, i.e.,

∑
u ∈Olt

wu,v > ρv , where Olt ⊆ V is the activated

nodes set of party l before t th round andwu,v is the edge weight
from node u to v .

The influence from each party will be propagated at the same
time after the seed nodes have been activated. When the conflict
happens, meaning that if more than one party have the right to
activate the same node v , we adopt the majority rule that the node
v will be activated by party pi whose total influence is highest on
v ; in other words,

∑
u ∈Oit

wu,v >
∑
u ∈O jt

wu,v for any party j. We
now formally define the MRCIM problem as follows.

Definition 3.2. MULTI-ROUNDCOMPETITIVE INFLUENCEMAX-
IMIZATION (MRCIM) The MRCIM problem consists of T rounds.
In each round, the parties begin in turn by selecting k seeds among
G from nodes which are not occupied. The influence propagation is
performed with the CLT model at each round and will be continued
till T rounds or until no more nodes can be activated. The goal of
party l in MRCIM is to maximize its overall influence after
T rounds, that is,

Flt ,1≤t ≤T
|Vl | subject to competitive linear

threshold model.

4 PRELIMINARIES
4.1 Reinforcement Learning and Deep Q

Networks
Reinforcement learning refers to reward-oriented algorithm, in
which an agent learns how to solve tasks based on a scalar re-
ward signal through interacting with an environment E. During
interaction with the environment, the agent learns a policy π (s), a
function that maps states to actions, to define the way of behaving
in a certain situation. An optimal policy aims to maximize the ac-
cumulative reward

∑∞
k=0 γ

krt+k+1, where γ ∈ [0, 1] is a discount

factor that controls the weight it gives to future reward. RL models
value function V and action function Q to estimate how good the
policy π is in maximizing the reward in the long run.

The common model-free algorithm, Q-learning, does not require
a model of the environment and allows us to approximate the V and
Q functions even having no knowledge beforehand regarding state
transition probabilities. The Q value is updated by the following
equation as proposed in [34]:

Qt+1(st ,at ) = (1 − α)Qt (st ,at ) + α(rt+1 + γV (st + 1)) (1)

Q-learning uses the greedy policy π (s) =a Q(s,a) to maximizes the
expected total reward.

Though reinforcement learning has achieved certain success
in various applications, it is generally intractable in large scale
problems due to the high dimensional state and action space. The
advent of deep learning helps us to reduce the burden of feature
extraction to approximate the value functions. Instead of learning
action values in all states, we can learn a parameterized value
function Q(s,a;θ ) constructed by a neural network that returns
an approximate Q value with the parameters θ . A deep Q network
(DQN) was first proposed by Mnih et al. [24, 25]. DQN consists of
a neural network with multiple layers and given an n-dimensional
state; it returns a vector of action value Q(s, ·;θ ) inm size. In light
of the instability of Q estimation with an online network, they also
proposed target Q network that is the same as the online network
except that the parameters θ− are frozen for a fixed number of
iterations and updated from the online network, i.e., θ− = θ . The
target network is helpful for estimating target Q(s ′,a′;θ−) and
stabilize the algorithm. The target YQ in DQN is:

YQ = r + γ max
a′

Q(s ′,a′;θ−) . (2)

Another key component of DQN is the experience replay [22].
During training, the agent observes and collects the experience
in the form of e = (s,a, r , s ′) over times and sampled a batch of
experience uniformly at random to train the network.

4.2 Community Detection
Several approaches have been proposed to uncover community
structures in a social network [15, 19, 27]. Most of these works
consider the spectral properties of a network to infer communities
and its structure. However, such techniques do not perform well to
detect communities on sparse networks [18, 26]. Recently, the non-
backtracking methods [1, 18] have shown significant performance
in detecting communities and their structure even on sparse net-
works. Inspired by its performance, we adopt spectral algorithms
based on a non-backtracking walk [18] to detect the communities
in a social network.

5 PROPOSED FRAMEWORK
Since themulti-round competitive influencemaximization (MRCIM)
can be proved as an NP-hard problem by reducing it to a broad fam-
ily of competitive influence[3]. We refer to data-driven or learning-
based models to look for an approximated solution that can max-
imize the influence in the long run. Although traditional RL had
success to tackle MRCIM [23], previous approaches lack scalability
and were limited to fairly small networks. When the network gets
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Figure 2: Deep Q-learning framework in training stage

complicated, this problem becomes intractable since the knowledge
space would be too large to store each state-action pair. In this paper,
we propose a Deep Reinforcement Learning based competitive In-
fluence Maximization framework (DRIM) to handle the complexity
by combining two techniques: deep reinforcement learning (DRL)
and community detection. The most important property of DRL
is that deep neural networks can automatically find compact low-
dimensional features of high-dimensional data without compromise
of hand-crafted features. In addition, we observe that the influence
diffusion highly depends on the inherent community structure in
the social network. The community information should be extracted
and treated as features in the proposed learning algorithm. Figure 2
illustrates the flow of our framework. The agent observes the state
of a network and takes a set of community-based actions derived
from the deep Q network to achieve the maximum influence spread.
The influence propagation is performed after the parties selected
k seeds among the network and then the state transition will be
stored in the experience pool. To handle budget allocation problem,
we further propose a Q-learning algorithm with the quota-based
ϵ-greedy policy to determine the number of seeds to be allocated
in a given community and determine which nodes to select for this
community in the evaluation and training of Q-value at each round.

5.1 Framework Structure
The goal of the agent in the proposed framework (DRIM) is to learn
the optimal policy π for seed placement strategy that maximizes its
expected accumulated rewards. At each step t , The agent observes
a set of features that represent the network state st ∈ S and selects
an action at from the set of legal actions A.

Environment. The environment is the proposed competitive
influence diffusion model discussed in Definition 3.1 which propa-
gates the influence of active nodes based on the CLT model.

Reward. We evaluate the agent based on the number of acti-
vated nodes in the last round, which is designed as the delayed
reward. The agent will receive a delayed reward r lt as, 0 if t < T and
|Vl |.|p |/v if t = T . Where |Vl | is the expected number of nodes
activated by party l in the terminal state. Squashing the rewards
to the range [0, |P |] confines the scale of the error derivatives and
generalize across a wide variety of possible situations.

Action. We formulate the action space by extending the meta-
learning approach proposed in [23] to include the properties of

community structure in the target social network. Specifically, we
couple the community selection and seed placement strategy into a
pair-wise meta-learning framework. Each action determines which
seed placement strategy to take in which community. When a cer-
tain strategy is selected for a certain community, the strategy is
applied in subgraph defined by the community in order to select
the seed node rather than on the whole social network. 1 Further,
readers are requested to review the seed-selection strategies pro-
posed in [23] except we apply those seed-placement strategies on a
community level.

State. Existing learning-based framework [23] resorted a set of
handcrafted features to represent the network state. The perfor-
mance of the proposed framework [23] relies on the quality of the
feature representation in the designed state space. Here, we take
advantage of DQN to design more high-dimensional features to rep-
resent the current activation state and the network condition. The
following are the feature vectors that we have designed based on
the correlation between the principle of strategies and the rewards.

(1) Dout : Number of free out-degree
(2) W out : Summation of free out-edge weight
(3) Bl : Summation of free out-edge weight for nodes which are

the neighbors of party l
(4) Ol

x : Activation state by party l after x rounds, where x ∈
{0, 1, 2}

(5) Cm : identity of community cm , where the community iden-
tity of each node is detected by the non-backtracking spectral
method [18]

When learning from high dimensional feature vector observations,
the different aspects of the observations may have various scale
from network to network. This makes it difficult for the neural
network to use the same hyper-parameters which generalize across
the different environments. We address this issue by normalizing
each feature vector to [0, 1] so as to reduce the error derivatives.

Deep Q network. The combination of each feature we defined
implies a huge state space. Several methods have been proposed to
represent the features in low dimension space, such as kernel-based
method [28], randomized trees [11], and neural networks [30] to
approximate the Q-value. In the DRIM framework, we create a
neural network, which is similar to the neural network structure as
in [25], to estimate the Q-value calculated by Eq. (1). As illustrated in
Figure 3, we utilize the above features to represent the environment
state as the input features of the deep Q network. The rectified linear
unit (ReLU) is used as the activation function in hidden layers, and
the linear layer is added for calculating action value as output. With
one forward pass, the Q-value for all actions could be derived from
the deep Q network, leading to great improvement in efficiency.

5.2 Training Setup of DRIM
Experience replay. To perform experience replay we store the
experience et = (st ,mt , Ât , rt , st+1,mt+1) at each time step t in
an experience poolM = {e1, ..., et }, wherem denotes the action
mask used to avoid the agent from selecting invalid action, i.e., the
action that selects seeds in a community where the nodes are fully

1Notice that the proposed learning algorithm can include any kind of IM strategy as
the candidate in meta-learning.
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activated. During training, we perform mini-batches Q-learning up-
dates to samples of experience (st ,mt , Ât , rt , st+1,mt+1) ∼ U (M),
drawn uniformly at random from the experience pool.

5.3 Deep Reinforcement Learning Framework
and Value Function Approximation

Quota-based ϵ-greedy policy. In the MRCIM model, we assume
that each party can invest a limited amount of budget, k , on the
potential nodes at each round. Ideally, we can train a Q-network
for estimating the value of the combination of strategies, but this
requires a large action space of |A|K , which could make learning
challenging. To come up with a model that is capable of finding the
global maximumwithout searching in large action space, we further
propose quota-based ϵ-policy during the training phase to tackle
the budget allocation issue by exploring the combinatorial strategy
that comprises the basic strategies defined in Section 5.1. The moti-
vation of quota-based ϵ-policy is based on the observation[9] that
placing too many seeds in the same community is inefficient due to
influence overlapping. In order to determine how much budget to
allocate in a given community, we design a quota formula based on
the number of free nodes in communities. Let C = {c1, c2, ..., cm }
denote a set of communities in the network and each ci has ni
number of free nodes. Then the quota of seeds nodes allocated in
ci with a budget k is defined as:

quota(ci ) =
k × ni∑m
j=1 nj

. (3)

After the quota for communities is determined at each step, the
agent gathers a set of strategies based on the quota-based ϵ-greedy
policy:

πc (s) ={
{aic |a

i
c ∈ Ac ; i = random(n); c ∈ C, quota(c) > 0} probability ϵ

{a |a =ac ∈Ac Q (s, ac ); c ∈ C, quota(c) > 0} otherwise
(4)

whereAc is the valid action set in a given community c and includes
the seeds by the selected action in c to complete for the quota of c .
Quota-based ϵ-greedy policy greatly reduces the action space for
budget k and prevent the curse of dimensionality. For example, the
naive model that each party has k budget at each step leads to a
combinatorial action space with dimensionality: |A|k , while the
model based on quota-based ϵ-policy reduces the action space size
to |A| × |C |, which is significantly smaller than the former.

In the training phase, the agent selects the valid strategy under
the mask using quota-based ϵ-policy derived from action-value
function Q . It updates the parameters of Q-network for a fixed
number of steps using a sample of experience drawn uniformly at
random from the experience pool. Since MRCIM is a finite round
game, Qt+1(st ,at ) is guaranteed to converge to the optimal policy
through Q-learning [33]. The target vector of the neural network
can be calculated by Eq. (2) and then we can train the Q-network
with parameters θi at each iteration i by minimizing a sequence of
loss functions.

E
(s,m,Ât ,r ,s′,m′)∼U (M)

[(
YQ −

∑
ac ∈Ât

Q (s, ac ; θi ) ×
quota(c)

k

)2]
(5)

We calculate the loss function by normalizing the Q value esti-
mation with respect to the allocated quota. If we directly use the
summation of meta-action values that participate in strategy com-
bination, it may overestimate the action values and result in a large
variance. The parameters of the target network are only changed
every given step and keep fixed between individual updates for
more stable training. The training process then enters the updated
state st+1. More details are provided in Algorithm 1.

Algorithm 1 DQN for multi-round competitive influence max-
imization

1: Initialize neural network Q with random weights
2: Copy neural network Q and store as Q̂ (· |θ−)
3: Initialize experience poolM to capacity N
4: while training is not terminal do
5: st ← s0,mt ←m0
6: for t = 1, T do
7: Select a set of valid strategies Ât according to the

quota-based ϵ -greedy policy andmt

8: Perform each strategy in Ât
9: Simulate the opponents’ strategy
10: Propagate influence and observe state st+1,

maskmt+1 and reward rt
11: Store transition (st ,mt , Ât , rt , st+1,mt+1)

inM
12: st ← st+1,mt ←mt+1
13: if t mod training frequency == 0 then
14: Sample random minibatch of transitions

fromM
15: Update the value function Q approximator

by (5)
16: end if
17: end for
18: end while

5.4 Estimation Models of Combinatorial
Strategy for Budget Allocation

Ideally, we could train the deep Q network with various budget
settings for estimating the value of the combination of meta-actions,
but this involves a large multiplicative computational overhead
that grows with the number of players and budgets, which could
make the Q-learning challenging. For more general models, we
leverage a pre-trained Q-network with a given budget setting to
approximate the Q-value of combinatorial action. We propose three
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models, namely DRIM-seq, DRIM-com, and DRIM-Q to determine
the budget allocation and strategies for each community with pre-
trained Q-network.

DRIM-seq The naive way to determine the k seeds is to se-
quentially pick a particular meta-action with the maximum Q-
value in following k steps, where each meta-action selects a sin-
gle node as seed without propagation. We can then estimate the
action-value of the combination of meta-action Q(st ,ut ), where
ut = {at ,at+1, ...,at+k }.Q(st ,uit ) represents the expected accumu-
lated rewards by performing the combinatorial strategy. That is,
we learn a deterministic policy π ′(s) defined as:

π ′(st ) = {π (s
0
t ),π (s

1
t ), ...,π (s

k
t )} , (6)

where π (sit ) is the deterministic policy for the action choice, i.e.
π (sit ) = ait , and the next state si+1t is determined after the agent
activates the seed selected by action ait . A greedy policy from Q-
learning is used to compute these policies:

π (sit ) =ait ∈Ai Q(sit ,a
i
t ) , (7)

where Ai is the set of legal actions in such state sit .
DRIM-comAnother direct approach to utilize the pre-trained Q-

network is to adopt the community quota formula to select quota(c)
seeds for each community c based on the meta-action with the
maximum Q-value. This is basically the quota allocation of a quota-
based e-greedy algorithm we proposed in Section 5.3, that is, we
allocated the budget according to Eq. (3), and select the action of
each community according to the output of deep Q network given
by Eq. (4)

DRIM-Q Finally, We present a quota formula that adapts our
DRIM models for budget allocation. In the testing phase, instead
of using the quota formula based on the number of free nodes in
communities, we dynamically assign the quota according to the
maximum Q-value in each community. The quota formula based
on the Q-value is calculated by Eq. (8), which is proportional to the
maximum Q-value in each community ci .

quotaQ (ci ) =
k ×maxaci ∈Aci

Q(s,aci )∑m
j=1maxacj ∈Acj

Q(s,ac j )
(8)

Although the action value is not exactly a linear function of the
quota for communities, we can still heuristically estimate the ex-
pected reward contributed by meta-action in each community and
assign corresponding quota to it by Eq. (8). After the quota is de-
termined by Eq. (8), we may select the action of each community
derived from the maximum Q-value for each community.

6 EXPERIMENTS
6.1 Experimental Setup
We conducted experiments to evaluate the efficiency of the pro-
posed models in terms of influence spread. The datasets we used
consists of two real-world social networks and two synthetic net-
works. The real social networks are obtained from the Stanford
Large Network Dataset Collection website [20] while the synthetic
datasets in our experiments are generated using the stochastic block
model [16] to produce graphs containing communities. The statis-
tics of networks can be found in Table 1. In the experiments, we use
the CLT model as the diffusion model. While the edge weights and

the activation threshold of nodes are set randomly in a range be-
tween 0 and 1.With respect to the Q-learning agent, fully-connected
neural networks are used for the state representation learning. The
neural network has three hidden layers, and each layer is comprised
of 512 neurons. In the training phase, the experience replay is used
and the memory size is set to 35,000 tuples of (s,m,a, r , s ′,m′). We
use RMSProp algorithm for learning with stochastic gradient de-
scent where the batch size is set to 32, while the learning rate is
held fixed to 0.00025. The value of ϵ used in quota-based ϵ-greedy
is annealed down from 1 to 0.1 throughout training and we assign
0.99 to the discount factor.

Table 1: Datasets

Name #Nodes #Edges #Comm Description

Facebook 4,039 88,234 10 Social circles from Face-
book

C-GrQc 5,242 14,496 9 Collaboration network of
Arxiv General Relativity

SBM-10 3,000 14,921 10 Synthetic network gener-
ated by stochastic block
model

SBM-1 3,000 14,789 1 Synthetic network gener-
ated by stochastic block
model

In the experiments, DRIM-seq, DRIM-com, and DRIM-Q are eval-
uated in different budget settings, k . In addition, the state-of-art
algorithm STORM [23] for CIM is also implemented for comparison.
Random strategy, in which the strategies are selected randomly,
serves as the baseline of non-strategic seed selection. Two naive
methods, Community Degree and Global Degree, are implemented
as the baseline performance of the fixed strategy. Specifically, Global
Degree is the traditional maximum degree algorithm while Commu-
nity Degree is the community-aware version of maximum degree
algorithm [8]. Finally, DRIM-Opt is the optimal DRIM model which
represents the performance upper bound of DRIM when the budget
in training and testing stages are the same, and the budget alloca-
tion is according to the quota of each community. We train those
models for a total of 10,000 episodes against the community-based
degree strategy in four networks and in each episode the parties
take actions and influence is propagated for T = 7 rounds. All
of these evaluations are measured by running a workload of 500
episodes. The experiments are implemented by C++ on a server
with Intel XEON E5 2.3GHz 36 cores processors and 512GB RAM.

6.2 Experimental Results
6.2.1 Evaluation on budget setting. In the first experiment, we ex-
amine the effectiveness of the proposed models’ performances in
terms of reward by assuming both parties have different budget
settings during testing. In this case, we have trained the models
in advance by assuming both parties have the same budget on a
facebook network, that is, k = 5. Figure 4 (a) illustrates the re-
ward comparison of DRIM models with fixed budget (i.e., k = 10)
while varying competitors’ budget. Moreover, Figure 4 (b) present
the reward comparisons of fixed competitor’s budget with varying
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Figure 4: Evaluation on varying budget setting on Facebook

agent’s budget. It can be seen from Figure 4 that DRIM-Opt, DRIM-
com, and DRIM-Q achieve better performance than the baseline
models on Facebook network in all aforementioned budget con-
straint settings. In addition, DRIM-seq performs poorly in most
settings. This is due to the over-investment in a single community.
In DRIM-seq, the agent chooses to select each seed according to
the current state after a previous selection. When the budget is
small, it is likely that the current selection does not change the
state much. Therefore, DRIM-seq will select the same action in the
same community repeatedly which results in inefficient budget al-
location. Finally, we observe that DRIM-Q performs closely or even
outperforms DRIM-Opt in almost all budget settings. This suggests
that budget allocation according to Q-value is a better estimation
than pure quota-based estimation.

6.2.2 Evaluation on networks with different structures. Next, we
illustrate the performance of the proposed framework on networks
with different structures. We conduct the experiments on ca-GrQc,
SBM-10 and SBM-1, which contain 9, 10, and 1 communities, re-
spectively. In this experiment, we use the models with the budget
settings of 5 and 20 for both parties. From Figure 5, the result shows
that DRIM-Opt, DRIM-com, and DRIM-Q outperforms DRIM-seq
and other baseline methods no matter in either network with more
or few communities in the social networks.

6.2.3 Evaluation on edge-weight setting. Third, we examine the ef-
fect of edge-weight setting in the range of [0.1, 0.4] and [0.4, 0.7] on
the SBN-10 network. The influence will diffuse further in a higher
value of edge weight; that is, the seeds would affect more nodes.
Here again, we use the models with the budget setting of 5 and
20 for both parties. Figure 6 illustrate the performance compari-
son in various budget setting. It also shows that either DRIM-Opt,
DRIM-com, and DRIM-Q outperforms others. In general, DRIM-
Opt performs best while DRIM-com and DRIM-Q perform similarly.
Besides, the performance gap of these methods to other baselines
remains on the same scale. This suggested that the performance
improvement brought by DRIM is robust to the changes in edge
weights, or the diffusion speed.

6.2.4 Performance comparison with STORM against known strate-
gies. Finally, we conduct the experiments on SBM-10 network to
measure the performance of DRIM and STORM algorithms against
the four aforementioned baseline strategies. Here, we assume that
the AI (DRIM-Opt and STORM) and the opponent have the 1 and
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Figure 5: Evaluation on networks with different structures
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Figure 6: Evaluation on networks with different weight setting

20 budget, respectively. It can be observed from Figure 7 that DRIM-
Opt algorithm achieves better results than the STORM model com-
peting against the opponent’s every strategy in all budget settings.

7 CONCLUSIONS
In this work, we propose a novel deep reinforcement learning-
based framework (DRIM) to tackle the multi-round competitive
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Figure 7: DRIM-Opt and STORM algorithms results against known
strategies on SBM-10 with 1 and 20 budget, respectively
influence maximization (MRCIM) problem considering network
community structure. To our knowledge, this is the first DRL-based
model for MRCIM problem that incorporates community structure
for seed-selection strategies. DRIM framework incorporates the
quota-based ϵ-greedy policy to determine the budget allocation
and seed-selection strategies for each community of the network.
Besides, we propose three different models of DRIM framework to
tackle the budget allocation and seed selection for each community
in MRCIM problem. The experimental results show that the DRIM
models outperform state-of-the-art learning-based algorithms to
tackle the MRCIM problem.
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