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ABSTRACT
The connectivity structure of graphs is typically related to the at-

tributes of the nodes. In social networks for example, the probability

of a friendship between any pair of people depends on a range of

attributes, such as their age, residence location, workplace, and

hobbies. The high-level structure of a graph can thus possibly be

described well by means of patterns of the form ‘the subgroup of all

individuals with a certain properties X are often (or rarely) friends

with individuals in another subgroup defined by properties Y’, in

comparison to what is expected. Such rules present potentially

actionable and generalizable insight into the graph.

We present a method that finds node subgroup pairs between

which the edge density is interestingly high or low, using an informa-

tion-theoretic definition of interestingness. Additionally, the inter-

estingness is quantified subjectively, to contrast with prior infor-

mation an analyst may have about the connectivity. This view im-

mediatly enables iterative mining of such patterns. This is the first

method aimed at graph connectivity relations between different

subgroups. Our method generalizes prior work on dense subgraphs

induced by a subgroup description. Although this setting has been

studied already, we demonstrate for this special case considerable

practical advantages of our subjective interestingness measure with

respect to a wide range of (objective) interestingness measures.

KEYWORDS
Subgroup discovery, Graphmining, Subjective interestingness, Com-

munity detection
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1 INTRODUCTION
Real-life graphs (also known as networks) often contain attributes

for the nodes. In social networks for example, where nodes corre-

spond to individuals, node attributes can include the individuals’
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interests, education, residency, and more. The connectivity of the

network is usually highly related to those attributes. For example,

the attributes of individuals affect the likelihood of them meeting

in the first place, and, if they meet, of becoming friends. Hence, it

must be possible to understand the connectivity of a graph in terms

of those attributes, at least to a certain extent.

An obvious approach to identify the relations between the con-

nectivity and the attributes is to train a link prediction classifier,

with as input the attribute values for a pair of nodes, and predicting

the edge as present or absent. Such global models often fail to pro-

vide insight though, much like a global classifier can fail to provide

insight in other classification problems. The local pattern mining

community has therefore introduced the concept of subgroup dis-
covery, where the aim is to identify subgroups of data points for

which a target attribute has homogeneous and/or outstanding val-

ues. Such subgroup rules are local patterns, in that they provide

information about a certain part of the input space only.

Research on local pattern mining in attributed graphs has so

far focused on identifying dense node-induced subgraphs, dubbed

communities, that are coherent also in terms of attributes. There

are two complementary approaches. The first explores the space

of communities that meet certain criteria in terms of density, in

search for those that are homogeneous. The second explores the

space of rules over the attributes, in search for those that define

subgroups of nodes that form a dense community. This is effectively

a subgroup discovery approach to dense subgraph mining.

Limitations of the state-of-the-art. Both of these approaches

make use of attribute homophily in the network: the tendency of

links to exist between nodes sharing similar attributes. While the

assumption of homophily is often reasonable, it also limits the scope

of application of prior work to finding dense communities with

homogeneous attributes. A first limitation of the state-of-the-art is

thus its inability to find e.g. sparse subgraphs.

A second limitation is the fact that the interestingness of such pat-
terns has invariably been quantified using objective measures—i.e.

measures that do not depend on the data analyst’s prior knowl-

edge. Yet, the most ‘interesting’ patterns found are often obvious

and implied by such prior knowledge (e.g. communities involving

high-degree nodes, or in a student friendship network, commu-

nities involving individuals practicing the same sport). Not only

may uninteresting patterns appear interesting if prior knowledge

is ignored, also interesting patterns may appear uninteresting and

are hence not found. E.g., a pattern in a student friendship network

that indicates tennis lovers are rarely connected may be due to the

lack of suitable facilities or a tennis club.

A third limitation of prior work is that the patterns describe only

the connectivity within communities and not between groups. As

1
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an obvious example, this excludes patterns that describe friendships

between a particular subgroup of female and a subgroup of male

individuals in a social network, but as we will show in the experi-

ments real-life networks contain many less obvious examples.

Contributions.We depart from the existing literature in formal-

izing a subjective interestingness measure, rather than an objective

one, and this for sparse as well as for dense subgraph patterns. In

this way, we overcome the first and second limitations of prior work

discussed above. More specifically, we build on the ideas from the

exploratory data mining framework FORSIED [5, 7]. This frame-

work stipulates in abstract terms how to formalize the subjective

interestingness of patterns. Basically, a background distribution is

constructed to model prior beliefs the analyst holds about the data.

Given that, one can identify patterns which strongly contrast to

this background knowledge and are highly surprising to the ana-

lyst. Moreover, this interestingness measure is naturally applicable

for patterns describing a pair of subgroups, to which we will refer

as bi-subgroup patterns. Hence, our method overcomes the third

limitation of prior work. Our specific contributions are:

– Novel definitions of single-subgroup patterns and bi-subgroup

patterns. [Sect. 2]

– A quantification of their Subjective Interestingness (SI), based

on what prior beliefs an analyst holds, or what information

an analyst gains when observing a pattern. [Sect. 3]

– We propose an algorithm tomine bi-subgroup patterns based

on the classical beam search. [Sect. 4]

– We empirically evaluate our method on three real-world

data, to investigate its ability to encode the analyst’s prior

beliefs and identify subjective interesting patterns. [Sect. 5]

2 SUBGROUP PATTERN SYNTAXES FOR
GRAPHS

In this section we introduce both single subgroup and bi-subgroup

patterns for graphs. Here, we first introduce some notation.

An attributed graph is denoted as a tripletG = (V ,E,A)whereV

is a set of n = |V | vertices, and E ⊆
(V
2

)
is a set ofm = |E | edges, and

A is a set of attributes a ∈ A defined as functions a : V → Doma ,

where Doma is the set of values the attribute can take over V . For

each attribute a ∈ A with nominal Doma and for each y ∈ Doma ,

we introduce a Boolean function sa,y : V → {true, false}, defined

as true for v ∈ V iff a(v) = y. Analogously, for each a ∈ A with

real-valued Doma and for each l < u and l ,u ∈ Doma , we define

sa,[l,u] : V → {true, false}, with sa,[l,u](v) ≜ true iff a(v) ∈ [l ,u].
We call these functions selectors, and denote the set of all selectors

as S . A description or ruleW is a conjunction of a subset of selectors:

W = s1 ∧ s2 . . .∧ s |W | . The extension ε(W ) of a ruleW is defined as

the subset of vertices that satisfy it: ε(W ) ≜ {v ∈ V |W (v) = true}.

We informally also refer to the extension as the subgroup. Now a

description-induced subgraph can be formally defined as:

Definition 1. (Description-induced-subgraph) Given an attrib-
uted graphG = (V ,E,A), and a descriptionW , we say that a subgraph
G[W ] = (VW ,EW ,A) where VW ⊆ V ,EW ⊆ E, is induced byW if
the following two properties hold,

(i) VW = ε(W ), i.e., the set of vertices from V that are in the
extension of the descriptionW ;

(ii) EW = (VW ×VW ) ∩ E, i.e., the set of edges from E that have
both endpoints in VW .

2.1 Single-subgroup pattern
A first pattern syntax we consider informs the analyst about the

density of a description-induced subgraph G[W ]. We assume the

analyst is satisfied by knowing whether the density is unusually

small, or unusually large, and given this does not expect to know

the precise density. It thus suffices for the pattern syntax to indicate

whether the density is either smaller than, or larger than, a specified

value. We thus formally define the single-subgroup pattern syntax as
a triplet (W , I ,kW ), whereW is a description and I ∈ {0, 1} indicates

whether the number of edges EW in subgraph G[W ] induced by

W is greater (or less) than kW . Thus, I = 1 indicates the induced

subgraph is sparse, whereas I = 0 characterizes a dense subgraph.

The maximum number of edges in G[W ] is denoted by nW , equal

to
1

2
|ε(W )|(|ε(W )| − 1) for undirected graphs without self-edges.

2.2 Bi-subgroup pattern
We also define a pattern syntax informing the analyst about the edge

density between two different subgroups. More formally, we define

a bi-subgroup pattern as a quadruplet (W1,W2, I ,kW ), whereW1

andW2 are two descriptions, and I ∈ {0, 1} indicates whether the

number connections between ε(W1) and ε(W2) is upper bounded (1)

or lower bounded (0) by the threshold kW . The maximum number

of connections between the extensions ε(W1) and ε(W2) is denoted

by nW ≜ ε(W1) ∗ ε(W2) − ε(W1 ∧W2) for undirected graphs without

self-edges. Note that single-subgroup patterns are a special case of

bi-subgroup patterns whenW1 ≡W2.

Remark 1. While single-subgroup patterns and bi-subgroup pat-
terns have been defined for undirected graphs without self-edges, all
our results are easily extended to directed graphs and graphs with
self-edges by adapting the definitions of kW and nW accordingly.

3 FORMALIZING THE SUBJECTIVE
INTERESTINGNESS

Previous work on mining patterns in attributed graphs tended

to identify dense communities, of which the interestingness was

quantified in an objective way (see Sect. 6). However, for a data

analyst with prior information about the data (a situation we argue

is common), the resulting patterns may be trivial, containing limited

information that is novel to them. Tackling this necessitates the

use of subjective measures of interestingness.

3.1 The FORSIED framework
Here, we follow the so-called FORSIED

1
framework [6] to quan-

tify the subjective interestingness of a pattern, which enables to

account for prior beliefs the data analyst holds about the data.

In this framework, the analyst’s belief state is modeled by a so-

called background distribution over the data space. This background
distribution represents any prior beliefs the analyst may have by

assigning a probability (density) to each possible value for the data

according to how plausible the analyst thinks this value is. As such,

the background distribution also makes it possible to evaluate the

1
An acronym for ‘Formalizing subjective interestingness in exploratory data mining’.
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probability for any given pattern to be present in the data, and

thus to assess the surprise in the analyst when informed about

its presence. It was argued that a good choice for the background

distribution is the maximum entropy distribution subject to some

particular constraints that represent the analyst’s prior beliefs about

the data. As the analyst is informed about a pattern, the knowledge

about the data will increase, and the background distribution will

change. For details see Sect. 3.2.

Given a background distribution, the Subjective Interestingness

(SI) of a pattern can be quantified as the ratio of the Information

Content (IC) and the Description Length (DL) of a pattern. The IC is

defined as the amount of information gained when informed about

the pattern’s presence, which can be computed as the negative log

probability of the pattern w.r.t. the background distribution P . The
DL is quantified as the code length needed to communicate the

pattern to the analyst. For details see Sect. 3.3.

3.2 The background distribution
3.2.1 The initial background distribution. To derive the initial back-
ground distribution, we need to assume what prior beliefs the data

analyst may have. Here we discuss three types of prior beliefs: (1)

on individual vertex degrees; (2) on the overall graph density; (3)

on densities between bins.

(1–2) Prior beliefs on individual vertex degrees and on the overall
graph density. Given the analyst’s prior beliefs about the de-

gree of each vertex, [6] showed that the maximum entropy

distribution is a product of independent Bernoulli distribu-

tion, one for each of the random variable bu,v :

P(E) =
∏
u,v

exp((λru + λ
c
v ) · bu,v )

1 + exp(λru + λ
c
v )
,

where bu,v equals to 1 if (u,v) ∈ E and 0 otherwise. The

parameters λru and λcv can be computed efficiently. For a

prior belief on the overall density, every edge probability

simply equals the assumed density.

(3) Additional prior beliefs on densities between bins. We can par-

tition nodes in an attributed graph into bins according to

their value for a particular attribute. For example, nodes

representing people in a university social network can be

partitioned by class year. Then expressing prior beliefs re-

garding the edge density between two bins is possible. This

would allow the data analyst to express, for example, an

expectation about the probability that people in class year y1
is connected to those in class year y2. If the analyst believes
that people in different class years are less likely to connect

with each other, the discovered pattern would end up being

more informative and useful as it contrasts more with this

kind of belief. As shown in [1], the resulting background

distribution is also a product of Bernoulli distributions, one

for each of the random variable bu,v ∈ {0, 1}):

P(E) =
∏
u,v

exp((λru + λ
c
v + γk ) · bu,v )

1 + exp(λru + λ
c
v + γk )

,

where λru ,λcv and γk are parameters and can be computed

efficiently. Note our model are not limited to incorporate

this type of belief related to a single attribute. Nodes can

be partitioned differently by another attribute. Our model

can consider multiple attributes so that analysts could ex-

press prior beliefs regarding the edge densities between bins

resulting from multiple partitions.

3.2.2 Updating the background distribution. Upon being repre-

sented with a pattern, the background distribution should be up-

dated to reflect the data analyst’s newly acquired knowledge. The

beliefs attached to any value for the data that does not contain

the pattern should become zero. In the present context, once we

present a pattern (W1,W2, I ,k) to the analyst, the updated back-

ground distribution P ′ should be such that ϕW (E) ≥ kW (if I = 0)

or ϕW (E) ≤ kW (if I = 1) holds with probability one, where ϕW (E)
denotes a function counting the number of edges between ε(W1)

and ε(W2). Again in [5], it was argued to choose P
′
as the I-projection

of the previous background distribution onto the set of distributions

consistent with the presented pattern. Then [20] showed that the

resulting P ′ is again a product of Bernoulli distribution:

P ′(E) =
∏
u,v

p′u,v
bu,v · (1 − p′u,v )

1−bu,v

where p′u,v =

{
pu,v if ¬

(
u ∈ ε(W1),v ∈ ε(W2)

)
,

pu,v ·exp(λW )

1−pu,v+pu,v ·exp(λW )
otherwise.

How to compute the parameter λW is also given in [20].

3.3 The subjective interestingness measure
3.3.1 The information content. Given a pattern (W1,W2, I ,kW ), and

a background distribution defined by P , the probability of the pres-

ence of the pattern is the probability of getting more than kW (for

I = 0) or nW − kW (for I = 1) successes in nW trials with pos-

sibly various success probability pu,v (for I = 0) or 1 − pu,v (for

I = 1). More specifically, we consider a success for the case I = 0

to be the presence of an edge between some pair of vertices (u,v)
for u ∈ ε(W1), v ∈ ε(W2), and pu,v is the corresponding success

probability. In contrast, the absence of an edge between some ver-

tices (u,v) is deemed to be a success for the case I = 1, with the

probability as 1 − pu,v . [20] proposed to tightly upper bound the

probability of a sort of dense subgraph pattern by applying the

general Chernoff/Hoeffding bound [4, 11]. Here, we can use the

same methodology, which gives:

Pr[(W1,W2, I = 0,kW )] ≤ exp

(
− nW KL

(
kW
nW

∥ pW

))
,

Pr[(W1,W2, I = 1,kW )] ≤ exp

(
− nW KL

(
1 −

kW
nW

∥ 1 − pW

))
.

Here, pW = 1

nW
∑
u ∈ε (W1),v ∈ε (W2)

pu,v , KL
(
kW
nW ∥ pW

)
is the

Kullback-Leibler divergence between two Bernoulli distribution

with success probabilities
kW
nW and pW respectively. Note that:

KL
(kW
nW

∥ pW
)
= KL

(
1 −

kW
nW

∥ 1 − pW
)
,

=
kW
nW

log

(kW /nW
pW

)
+
(
1 −

kW
nW

)
log

( 1 − kW /nW
1 − pW

)
.

3
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We can thus write:

Pr[(W1,W2, I ,kW )] ≤ exp

(
− nW KL

(
kW
nW

∥ pW

))
.

The information content is the negative log probability of the pat-

tern being present under the background distribution. That is,

IC[(W1,W2, I ,kW )] = − log(Pr[(W1,W2, I ,kW )]),

≥ nW KL
(
kW
nW

∥ pW

)
. (1)

3.3.2 The description length. The DL should capture the length of

the description needed to communicate the pattern (W1,W2, I ,kW ).

Intuitively, the cost for the data analyst to assimilate a description

W depends on the number of selectors inW , i.e., |W |. Let us assume

communicating each selector in a descriptionW costs constantly

as α and the cost for I and kW is fixed. The total description length

of a pattern (W1,W2, I ,kW ) can be written as

DL[(W1,W2, I ,kW )] = α(|W1 | + |W2 |) + β . (2)

3.3.3 The subjective interestingness. In summary, we get:

SI[(W1,W2, I ,kW )] =
IC[(W1,W2, I ,kW )]

DL[(W1,W2, I ,kW )]
,

=

nW KL
(
kW
nW ∥ pW

)
α(|W1 | + |W2 |) + β

. (3)

4 ALGORITHM
This section describes the algorithm for obtaining a set of inter-

esting patterns. Since the proposed SI interestingness measure is

more complex than most objective measures, we consider applying

some heuristic search strategies to help maintain the tractability.

For searching single-subgroup patterns, we used beam search (see

Sect. 4.1). To search for the bi-subgroup patterns, however, a tradi-

tional beam over bothW1 andW2 simultaneously turned out to be

more difficult to apply effectively. We thus propose a nested beam

search strategy to handle this case. More details about this strategy

are covered by Sect. 4.2, followed by a brief introduction to the

implementation in Sect. 4.3.

4.1 The beam search
In the case of mining single-subgroup patterns, we applied a clas-

sical heuristic search strategy over the space of descriptions—the

beam search. The general idea is to only store a certain number

(called the beam width) of best partial description candidates of a

certain length (number of selectors) according to the SI measure,

and to expand those next with a new selector. This is then iterated.

4.2 The nested beam search
The basic idea is to nest one beam search into the other one where

the outer search branches based on a ‘beam’ of promising selectors

for the descriptionW1 , and the inner search expands those forW2.

Let us denote the width of the outer and inner beam by x1 and x2
respectively. The total number of interesting patterns identified by

our algorithm is x1 · x2. To maintain a sufficient diversity among

the discovered patterns, we deliberately constrain the outer beam

to contain at least x1 differentW1 descriptions. Due to the space

Table 1: Dataset statistics summary

Dataset |V | |E | #Attributes |S |

Caltech36 762 16651 7 602

Reed98 962 18812 7 748

Lastfm 1892 12717 11946 23892

limitation, the pseudo code for this search and related notations

are put in online supplement
2
(see Algorithm 1 and Table S1).

4.3 Implementation
Pysubgroup [12], a Python package for subgroup discovery imple-

mentation written by Florian Lemmerich, was used as a base to be

built upon. We integrated our nested beam search algorithm and SI

measure into this original interface. A Python implementation of the

algorithms and the experiments is available at https://www.dropbox.

com/sh/z782s8ohuo3jfee/AAC9bxrfN_wqCLGU4DR49RDDa?dl=0.

All experiments were conducted on a PC with Ubuntu OS, Intel(R)

Core(TM) i7-7700K 4.20GHz CPUs, and 32 GB of RAM.

5 EXPERIMENTS
We evaluate our methods on three real-world networks. In the

following, we first describe the datasets (Sect 5.1). Then we discuss

the properties of the discovered patterns (single-subgroup patterns

in Sect. 5.2 and bi-subgroup patterns in Sect. 5.3), with a purpose to

evaluate various aspects of our proposed SI measure. In addition,

scalability evaluation for both cases is given.

5.1 Data
Of the three datasets used in the experiments, two are obtained

from the Facebook100 dataset [18], and the other is from the online

music platform Lastfm
3
. Data size statistics are given Table 1.

Facebook100 contains a set of 100 Facebook networks of different

American college and universities from a single-day snapshot in

September 2005. Each network consists of the complete set of users

(nodes) from Facebook at one particular university and all the

friendship links (edges) between those users. Each node is annotated

with additional information including the user’s student/faculty

status flag, gender, major, minor, dorm/house, graduation year, and

high school. We select the networks at Caltech (i.e., Caltech36) and

Reed university (i.e. Reed98) to experiment on.

Lastfm is a publicly available dataset from the HetRec 2011 work-

shop [3]. The social network is generated from friend relations

between users in Lastfm. A list of most-listened musical artists and

tag assignments for each user is given in a tuple form as [user, tag,

artist]. We took all the tags that a user ever assigned to any artist

and assigned those to the user. Then we transformed those tags

for each user into a binary vector to serve as the attributes. Those

attributes express a user’s music interests to some extent.

2
https://www.dropbox.com/s/pc0w4uwniwy5u3m/supplementaryMLG.pdf?dl=0

3
http://www.lastfm.com

4

https://www.dropbox.com/sh/z782s8ohuo3jfee/AAC9bxrfN_wqCLGU4DR49RDDa?dl=0
https://www.dropbox.com/sh/z782s8ohuo3jfee/AAC9bxrfN_wqCLGU4DR49RDDa?dl=0
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5.2 Results on single-subgroup patterns
First, we analyzed single-subgroup patterns on the Lastfm dataset

using beam search with beam width 20 and search depth 2.

5.2.1 Evaluation of the identified subgroups. When using the SI

measure to perform the pattern discovery, the prior belief is on the

individual vertex degrees. As a result, single-subgroup patterns’

density will not be explainable merely from the individual degrees

of the constituent vertices. For Lastfm, given its sparsity, incorpo-

rating this prior leads to a background distribution with a small

average connection probability. In this case, our algorithm tends to

identify dense clusters (i.e. I = 0), as these are more informative.

There exist numerous measures objectively quantifying the inter-

estingness of a dense subgraph community. We make a comparison

between our SI measure and some of these objective ones, including

the edge density, the average degree, Pool’s community score [17],

the edge surplus [19], the segregation index [8], the modularity of

a single community [15, 16], the inverse average-ODF (out-degree

fraction) [21] and the inverse conductance. For space limitations,

the tables presenting the most interesting patterns w.r.t these mea-

sures are put in the online supplement
4
, Table S2 for SI, Table S4 -

S8 for other measures. Also, Table S3 gives a description for each of

those objective measures. The main findings are summarized here.

Each of those objective measures exhibits a particular bias that

arguably makes the attained patterns less useful in practice. The

edge density is easily maximized to a value of 1 simply by consid-

ering very small subgraph. That’s why the patterns identified by

using this measure are all those composed of only 2 vertices with

1 connecting edge. In contrast, using the average degree tends to

find very large communities, because in a large community there

are many other vertices for each vertex to be possibly connected to.

Although Pool argued that their measure may be larger for larger

communities than for smaller ones, in their own experiments on

the Lastfm network as well as in our own results, it yields relatively

small communities. As they explained, the reason was Lastfm’s

attribute data is extremely sparse with a density of merely 0.15%.

Note that patterns with the top 10 edge surplus values are the same

as those for the Pool’s measure. Although these two measures are

defined in different ways, Pool’s measure can be further simpli-

fied to a form essentially the same as the edge surplus (shown in

Table S3). Pursuing a larger segregation index essentially targets

communities which have much less cross-community links than

expected. This measure emphasizes more strongly the number of

cross-community links, and yields extremely small or large com-

munities with few inter-edges on Lastfm. Using the modularity of

a single community tends to find rather large communities repre-

senting audiences of mainstream music. The results for the inverse

average-ODF and the inverse conductance are not displayed in

the supplement, because the largest values for these two measures

can be easily achieved by a community with no edges leaving this

community, for which a trivial example is the whole network.

We argue that the attained patterns by applying our SI measure

are most insightful, striking the right balance between coverage

(sufficiently large) and specificity (not conveying too generic or

4
https://www.dropbox.com/s/pc0w4uwniwy5u3m/supplementaryMLG.pdf?dl=0
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Figure 1: Running time on Lastfm data for various |S |

trivial information). The top one characterises a group of 78 idm (i.e.,

intelligent dance music) fans. Audiences in this group are connected

more frequently than expected, and they altogether only have 496

connections to those people not into idm, a small number compared

to the number of people outside the group (i.e., 1892 − 78 = 1814).

5.2.2 The scalability evaluation. Fig. 1 illustrates how the algorithm

scales w.r.t the number of selectors in the search space (i.e., |S |).
Both axes are assigned with logarithmic scales with base 2. It is clear

that the running time experiences a linear growth as we double the

|S | except a tiny disagreement from the second implementation.

5.3 Results on bi-subgroup patterns
To identify bi-subgroup patterns, we applied the nested beam search

with x1 = 8,x2 = 6, and search depth 2. Moreover, we constrain

the target descriptionsW1 andW2 to include at least one common

attribute but with various values, so that the corresponding pair of

subgroups ε(W1) and ε(W2) do not overlap with each other. Under

this setting, the attained patterns are more explainable, and the

results are easier to evaluate.

5.3.1 Evaluation on the SI measure. We steered tasks of evaluating

the SI measure to answer the following questions:

Q1 Is our SI measure truly subjective, in the sense of being able

to consider data analyst’s prior beliefs? (Task 1)

Q2 Does our SI measure embody the effects of different descrip-

tion lengths? (Task 2)

Q3 How can optimizing SI help avoid redundancy in the result-

ing patterns from an iterative mining? (Task 3)

Task 1: The effects of different prior beliefs, and a subjective
evaluation.

We consider different prior beliefs, in search for bi-subgroup

patterns according to our SI measure on Caltech36 and Reed98

dataset. The 4 most interesting patterns under each prior belief

are presented in the following (Table 2 for Caltech36, Table 3 for

Reed98). For each pattern, we also display its value of pW ∗ nW ,

the expected number of edges between ε(W1) and ε(W2) w.r.t the

background distribution. Comparing pW ∗ nW to kW gives a direct

sense how much the analyst’s expectation differs from the truth.

Prior beliefs on the individual vertex degrees.The first prior
belief is on the individual vertex degree (i.e. Prior 1). In general,
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Table 2: Varying prior beliefs in Caltech36 network

Rank W1 W2 |ε(W1)| |ε(W2)| I kW pW ∗ nW

Prior 1

1 year = 2006 year = 2008 153 173 1 1346 2379.095

2 student status = student ∧year = 2008 student status= alumni 167 159 1 842 1783.259

3 student status = student ∧year = 2008 year= 2006 167 153 1 1330 2367.963

4 student status = student ∧year = 2006 year= 2008 152 173 1 1346 2377.526

Prior 1+Prior 2

1 dorm/house = 169 dorm/house = 171 99 67 1 194 569.558

2 dorm/house = 169 dorm/house = 166 99 70 1 237 620.424

3 dorm/house = 169 dorm/house = 172 99 91 1 319 706.645

4 dorm/house = 169 dorm/house = 170 99 87 1 300 646.044

Prior 1 1 student status = student ∧year =2004 year = 2008 3 173 0 108 25.232

2 student status = student ∧year =2004 year= 2008∧minor = 0 3 114 0 71 15.671

+ Prior 2 3 student status = student ∧year =2004 year = 2008∧gender = male 3 116 0 71 16.967

+ Prior 3 4

student status = student

∧ dorm/house = 166

student status = alumni

∧ high school = 19445

53 1 0 51 17.523

patterns found based on Prior 1 belong to knowledge commonly

held by people, and are not useful. The top 4 patterns on the Cal-

tech36 data all suggest inactive connections particularly between

people graduating from different years (rows for Prior 1 in Table 2).

The most interesting pattern states that ones graduating in year

2008 rarely know those graduating in year 2006. Either the third

or the fourth pattern can be regarded as a more strict version of

the top one, compared to which an additional feature is satisfied.

Although the second description of the second pattern (i.e., student
status = alumni) does not contain the attribute graduation year, it

implicitly represents people who had already graduated previously.

For the Reed98 network, the discovered patterns under the Prior 1

also express the negative influence of different graduation years on

connections (rows for Prior 1 in Table 3).

Prior beliefs on particular attribute knowledge.We further

incorporate this commonly believed knowledge by encoding it as as

prior beliefs on densities between bins for different graduation years

(i.e., Prior 2). The yielded top 4 patterns on Caltech 36 all indicate

sparse connections between people living in different dormitories.

Again, knowing this is not surprising. By incorporating prior beliefs

on the dependency of the connecting probability on the difference

in dormitories (i.e., Prior 3), plus Prior 1 and Prior 2, truly interesting

patterns describing some dense connections are discovered. For

instance, the top pattern states three people graduating in 2004 are

friends with many graduating in 2008. Notice these three people’s

status is student rather than alumni in year 2005. A probable reason

for their graduation delay can be, for example, a failure in the

exam. Also, the starting year for those 2008 cohort is exactly when

these three people should had graduated. Therefore, these two

groups had opportunities to become friends with each other. The

forth pattern indicates an alumni who had studied in a high school

connected with almost all the students living in a certain dormitory.

Knowing this can simulate analyst’s curiosity to discern the reason,

which for instance, could be that the alumni may work in this

dormitory. As for Reed98 network, incorporating Prior 1 and Prior

2 is sufficient to gain some useful information. The top pattern in

this case indicates people living in dormitory 88 are often friends

with those in dormitory 89. What people commonly believe, by

contrast, is that people living in different dormitory are less likely

to know each other. For an analyst who has such preconceived

notion, this top pattern indeed conveys useful information. The

fourth and the seventh patterns are also very interesting. Either

of them describes a certain person who knows much more people

graduating in year 2009 than being expected.

Summary. As we can see, incorporating different prior beliefs

leads to the attain of different patterns that contrast with these

beliefs. Our measure can indeed quantify the interestingness sub-

jectively.

Task 2: The effect of the description length.
By comparing the fourth pattern to the top one in rows for Prior

1 in Table 2, we can notice the effect of the DL. The information

contents of these two patterns must be very similar, because they

have exactly the same bound about the connection counting (i.e.,

kW ), and nearly the same expected value for that (i.e., pW ∗ nW ).

We can deduce what drags the fourth pattern to a lower rank is its

longer DL, as one more selector is contained inW1. This shows our

SI measure can take DL into account.

Task 3: Evaluation on the iterative pattern mining.
Our method is naturally suited for iterative pattern mining, in a

way to incorporate the newly obtained pattern into the background

distribution for subsequent iterations. Table 4 displays the top 3 pat-

terns found in each of the five iterations on the Lastfm dataset. The

description search space is built based on only 100 most frequently

used tags, that means, |S | = 100 ∗ 2.

Iteration 1. Initially, we incorporate Prior 1. In this case, the

most interesting pattern reflects a conflict between aggressive heavy

metal fans and mainstream pop lovers who do not listen to heavy

metal at all.

Iteration 2. After incorporating the top pattern identified in

iteration 1, what comes top is the one expressing again a conflict

between mainstream and non-mainstream music preference, but

another kind (i.e., pop with no indie, and experimental with no

pop). Also, we can notice only the second pattern for the iteration 1

is remained in the iteration 2 top list but with a lower rank as third.
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Table 3: Varying prior beliefs in Reed98 network

Rank W1 W2 |ε(W1)| |ε(W2)| I kW pW ∗ nW

Prior 1

1 year = 2008 year = 2005 209 117 1 495 1401.969

2 year = 2007 year = 2009 165 158 1 112 661.411

3 student status = student ∧year =2008 year = 2005 209 117 1 495 1401.969

4 year = 2008 year = 2006 209 131 1 765 1643.375

Prior 1+Prior2

1 dorm/house= 89 dorm/house= 88 23 37 0 188 68.803

2 dorm/house= 89∧ student status = student dorm/house= 88 22 37 0 188 68.454

3 dorm/house= 88∧ student status = student dorm/house= 89 36 23 0 183 65.465

4 dorm/house = 111∧ year = 0 year = 2009 1 158 0 24 0.661

7 dorm/house = 96∧ year = 2005 year = 2009 1 158 0 12 0.067

The interestingness of any sparse pattern associated with the newly

incorporated one under the updated background distribution is

expected to decrease, as the data analyst’s would not feel surprised

about such pattern.

Iteration 3. In iteration 3, our method tends to identify some

interesting dense patterns, mainly related to synth pop and new

wave genres. The top one states synth pop fans frequently connect

with many people listening to new wave but not synth pop. This

pattern appears fallacious at the first glance. Nevertheless, synth

pop is a subgenre of new wave music. Also, the latter group may

listen to synth pop but they use a different tag ’synthpop’ instead

of ’synth pop’, as there are even 102 audience only tag synth pop as

’synthpop’ (see the third patten). Hence, this pattern makes sense as

it describes dense connections between two groups which resemble

each other.

Iteration 4.The top 3 patterns in iteration 4 all express negative

associations between newwave and some sort of catchymainstream

music (eg. pop, rnb, or hip-hop, among several others).

Iteration 5.Once we incorporate the most interesting one, pat-

terns characterizing some positively associated genres stand out.

For example, the top one in iteration 5 indicates instrumental audi-

ence are friends with many ambient audience who doesn’t listen to

instrumental music. These two genres are not opposite concepts

and share many in common (e.g., recordings for both do not include

lyrics). Actually, ambient music can be regarded as a slow form of

instrumental music.

Summary.By incorporating the newly attained patterns into the
background distribution for subsequent iterations, our method can

identify another patterns which strongly contrast to this knowledge,

resulting a set of patterns that are not redundant and are highly

surprising to the data analyst. Note this does not means we restrict

patterns in different iterations not to be associated with each other.

In fact, overlapping could happen when this is informative.

5.3.2 Evaluation on the running time. The running time of the

nested beam search on each dataset, as well as the |S | and |V |

statistics are listed in Table 5. The influence of the |S | and |V | to

the running time is evident.

6 RELATEDWORK
Real-life graphs often have attributes on the vertices. Patternmining

taking into account both structural aspect and attribute information

promises more meaningful results, and has received increasing

research attention.

The problem of mining cohesive patterns is introduced by Moser

et al.[13]. They define a cohesive pattern as a connected subgraph

whose edge density exceeds a given threshold, and vertices exhibit

sufficient homogeneity in the attribute space. Gunnemann et al.

[10] propose to combine subspace clustering and dense subgraph

mining. The former technique is to determine set of nodes that are

highly similar according to their attribute values, and the latter is to

pursue the cohesiveness of the attained subgraph. In [14], Mougel et

al. compute all maximal homogeneous clique sets that satisfy some

user-defined constraints. All these work emphasizes on the graph

structure and consider attributes as complementary information.

Rather than assuming attributes to be complementary, descrip-

tive community mining, introduced by Pool et al. [17] aims to

identify cohesive communities that have a concise description in

the vertices’ attribute space. They propose cohesiveness measure,

which is based on counting erroneous links (i.e., user connections

that are either missing or obsolete with respect to the ‘ideal’ com-

munity given the induced subgraph). Their method can be driven

by user’s domain-specific background knowledge, but very limit-

edly. Specifically, the background knowledge is only allowed to be

either a preliminary description or a set of nodes that are expected

to be part of a community. Then the search is triggered by those

seed candidates. Compared to that, our SI measure is more versa-

tile in a sense that allows incorporating more general background

knowledge. Galbrun et al.’s work [9] shares similar target to Pool et

al.’s, but relies on a different density measure, which is essentially

the average degree. A comparison from our SI measure to Pool’s

measure and the average degree are included in our experimen-

tal evaluation. Atzmueller et al. [2] introduce description-oriented

community detection. They apply a subgroup discovery approach

to mine patterns in the description space so it comes naturally that

the identified communities have a succinct description.

All previous work quantify the interestingness in an objective

manner, in the sense that they can not consider a data analyst’s

beliefs or expectations and thus operate regardless of context. The

novelty of our algorithm is in modelling and using the analyst’s be-

liefs, and inserting the subjective informativeness into the targeted

patterns. Also, previous work focus on a set of single communities

or dense subgraphs, overlooking other meaningful structures, e.g.,
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Table 4: Top 4 discovered bi-subgroup patterns of each iteration in Lastfm network

Rank W1 W2 |ε(W1)| |ε(W2)| I kW pW ∗ nW

Iteration 1
1 heavy mental = 1 heavy mental = 0∧ pop = 1 165 529 1 349 769.175

2 pop = 1∧experimental = 0 rnb = 0∧experimental = 1 497 230 1 360 812.781

3 pop = 1∧experimental = 0 experimental = 1 497 247 1 495 943.964

Iteration 2
1 pop = 1∧ indie = 0 pop = 0∧ experimental = 1 366 159 1 103 369.443

2 pop = 1∧alternative = 0 pop = 0∧experimental = 1 325 159 1 84 334.766

3 pop = 1∧experimental = 0 rnb = 0∧ experimental = 1 497 230 1 360 750.771

Iteration 3
1 synth pop = 1 synth pop = 0∧ new wave = 1 54 150 0 163 43.009

2 synth pop = 1∧ british = 1 new wave = 1∧british = 0 26 113 0 116 20.710

3 synth pop = 1 synth pop = 0∧ synthpop = 1 54 102 0 125 29.643

Iteration 4
1 new wave = 1∧ hip-hop = 0 new wave = 0∧ pop = 1 160 475 1 343 670.739

2 new wave = 1∧ rnb = 0 new wave = 0∧pop = 1 170 475 1 379 705.432

3 new wave = 1∧soul = 0 new wave = 0∧ pop = 1 150 475 1 323 624.411

Iteration 5
1 instrumental = 1 instrumental = 0∧ ambient = 1 195 144 0 273 114.619

2 electronic = 1 electronic = 0∧ambient = 1 167 160 0 268 113.664

3 progressive metal = 1 progressive metal = 0∧ heavy metal = 1 99 111 0 128 34.807

Table 5: Running time of bi-subgroup pattern mining

Dataset |S | |V | Running time (s)

Caltech36 602 762 6855.522

Reed98 748 962 10692.833

Lastfm 200 1892 5954.501

a sparse subgraph and a pair of different subgroups, which our

method can handle.

7 CONCLUSION
We presented a method to identify patterns in the form of (pairs of)

subgroups of nodes in a graph, such that the density of (the graph

between) those node subgroups is interesting. Here, ‘interesting’ is

quantified in a subjective manner, with respect to a flexible type of

prior knowledge about the graph the analyst may have, including

insights gained from previous patterns.

Our approach improves upon the interestingness measures used

in prior work on subgroup discovery for dense subgraph mining in

attributed subgraphs, and generalizes it in two ways: in identifying

not only dense but also sparse subgraphs, and in describing the

density between subgroups that may be different from each other.

The empirical results show that the method succeeds in taking

into account prior knowledge in a meaningful way, and is able to

identify patterns that provide genuine insight into the high-level

network’s structure.
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