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ABSTRACT
Discovering the interdependent structure among variables plays a
key role in knowledge discovery in many real-world applications.
Given a sequence of p real-valued variables, the task is to estimate
the entire graph structure with p2 pairwise relationships. This prob-
lem is computationally challenging since the number of unknown
relationships to estimate grows quadratically with respect to the
number of variables. In order to solve this problem, many methods
have been proposed to cast the structure discovery as an inverse
covariance estimation problem by modeling the high dimensional
data using a Gaussian graphical model. They focus on how to ef-
ficiently estimate the entire precision matrix by developing more
advanced optimization algorithms in a sequential manner. A number
of methods are also developed to select neighborhood or perform
structure learning on categorical data, which are out of this study. A
tuning-insensitive approach was proposed to estimate the precision
matrix of Gaussian Graphical model in a distributed manner. But it
over-parametrized the problem to achieve the tuning-insensitivity. In
this study, we proposed a novel framework to discover the underly-
ing graph structure in a distributed manner with a straightforward
parametrization. The idea is to decompose the structure discovery
task into multiple sub-tasks, such that a column of the precision
matrix is estimated in a sub-task. We also proved the distributability
and the convexity of the global task. Additionally, we empirically
demonstrated the effectiveness and efficiency of our proposed frame-
work by conducting extensive experiments with comparison to a
number of state-of-the-art methods on synthetic datasets. Our case
study on a real-world application is also demonstrated to be reliable.
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1 INTRODUCTION
In numerous important real-world problems, for example, forecast-
ing stock price on financial markets [31], predicting user intents
on social networks [20], ranking querying results in information
retrieval [4], co-expression study of various genes on bioinformatics
[28], and functional understanding of different brain regions [17],
data lie in a high dimensional space due to the co-existence of many
interdependent variables. Rather than recognizing individual behav-
ior of a variable, people are often more interested in how variables
affect each other. All of these applications therefore raise a prob-
lem of discovering the structure of the underlying weighted graph,
where variables are regarded as nodes, and the weight on the edge
is the strength of the connection between two variables. As a result,
downstream applications benefit tremendously from the discovery
of the inter-relationships among variables. In practice, the evolution
of stock price can be better understood and predicted by inferring
the dependencies among different stocks [10, 31], and the recom-
mendation of querying results is more reliable by considering the
inner structure among them [23].

To recover the underlying dependent structure among variables,
the joint distribution of all variables is typically modeled as a Multi-
variate Normal Distribution with zero mean and inverse covariance
matrix Λ, also known as precision matrix. So the structure discovery
problem is converted into the precision estimation problem. How-
ever, the precision estimation is challenging since the number of
unknown pairwise dependencies is quadratic with respect to the
number of variables.

Gaussian Graphical Model (also known as Gaussian Markov Ran-
dom Fields) [21, 25] has hence been proposed to solve the precision
estimation problem by modelling the joint distribution of variables
as a Multivariate Normal distribution. Graphical Lasso (also known
as Sparse Inverse Covariance Estimation) [1, 6, 30], as a more ef-
ficient solver for precision estimation, is able to estimate a sparse
precision matrix by adding a Lasso penalty to the Gaussian Graph-
ical Model. Many studies afterwards contributed to the efficiency
of Graphical Lasso by developing various faster optimization al-
gorithms [5, 10, 13, 14, 16, 26, 27]. However, given the fact that
the entire precision matrix is always involved in the calculation of
sub-gradients, all of the aforementioned methods have to be estimate
all entries from the precision matrix in a sequential manner.

A computationally efficiently method was proposed to discover
the graph structure by using Lasso to identify relevant neighbor-
hoods for each variable. This method however focuses on the se-
lection of neighboring variables and cannot estimate the precision
matrix [19]. A tuning-insensitive approach is proposed to estimate
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the Gaussian Graphical Model column-by-column [18]. To guaran-
tee tuning-insensitivity, this method is computationally costly due to
required over-parameterization of estimation.

In our study, a new framework is proposed to discover the struc-
ture in a distributed manner. Unlike traditional methods for inverse
covariance estimation, our method proposes to model joint product
of the conditional probabilities of each variable given neighboring
variables. In this way, one can decompose the entire estimation task
into many sub-tasks, and estimate a single column of the precision
matrix in each sub-task. Also, different from previously proposed
computationally efficient methods, our method developed a more
straightforward formulation of the estimation problem with fewer
computations. Although it requires the tuning of hyperparameter,
it is still practical for real-world applications as there is only one
hyperparameter. We also prove distributability and convexity of our
proposed method. Furthermore, we provide empirical evidence for
the effectiveness and efficiency by comparing with several state-of-
the-art methods for precision estimation on synthetic datasets across
extensive experimental settings. The results provide evidence that
our proposed model is more effective regardless of size of training
data. Our method has a considerable speed advantage over alterna-
tive approaches even without parallelization. It is several orders of
magnitudes faster than alternative methods when all sub-tasks are
ideally distributed. We applied the proposed method for discovering
the underlying relationships of daily stock price between different
companies. The discovery has turned out to be very consistent with
the real-world facts.

In summary, following are the main contributions of this study:

• We proposed a distributed framework to estimated the preci-
sion matrix from high dimensional data with a straightforward
parameterization.

• We proved that the proposed framework is characterized by
distributability and convexity.

• We conducted extensive experiments on synthetic datasets
to show the efficiency and effectiveness of our framework.
Discoveries from our method are also validated to be reliable
on real-world case studies.

2 RELATED WORK
In this section, we present the development of methods for precision
estimation, and introduce relevant works on the general dependency
network.

Gaussian Graphical Model [21, 25] is proposed to identify the
inter-relationships among multiple continuous random variables.
However, as the number of pairwise relationship grows quadratically
with the increment of the number of the variables, Gaussian Graphi-
cal Model is not feasible for precision estimation in many real-world
problems. To efficiently address the precision estimation problem,
Graphical Lasso was developed to learn a sparse precision matrix. A
number of papers have investigated in solving sparse precision esti-
mation in a more efficient way. Initially, a block coordinate descent
method was developed to solve the dual form of Graphical Lasso [1].
Inspired of this work, a coordinate descent method was proposed
to solve the row-subproblem in the dual form as well [6]. Later,
an augmented Lagrangian method was applied to solve the smooth
log-likelihood and non-smooth regularization part in an alternative

way [26]. The same group also proposed to solve the primal form
of Graphical Lasso via a greedy coordinate descent algorithm [27].
A projected Quasi-Newton method was also proposed to solve the
primal form [5]. In contrast to these first order methods, QUIC, a
second order Newton coordinate descent method, was developed to
solve Graphical Lasso based on the quadratic approximation of its
objection [14, 15]. As the state-of-the-art for sparse precision estima-
tion, QUIC was optimized in further studies by either being applied
to solve sub-problems via divide and conquer [13], or paralleling the
block coordinate descent algorithm [16]. Recently, a new study also
develop a message-passing algorithm using Alternating Direction
Method of Multipliers (ADMM) [2] to efficiently solve time-varying
graphical Lasso [10]. Although these methods are successfully ap-
plied, their capability is bounded by the fact that the entire precision
matrix has to be estimated simultaneously.

In contrast to any of described approaches, our proposed method
can completely discover the structure from distributable sub-tasks
by modelling the local dependencies of each variable. From this
point of view, the general dependency network is relevant to our
research [12]. It models the inter-dependencies among variables via
a cyclic Bayesian network, such that the joint probability of vari-
ables can be approximated by the product of conditional probability
of each variable given the others. This is previously studied with
a more general assumption of distribution (e.g., exponential fam-
ily [29]), in which Gibbs Sampling is used for density estimation.
This idea is also adapted for multiple output prediction problems
including multi-label classification [8, 9], and structured regression
[11], where the inter-connections among output variables are learned
while performing prediction. Previous work however concentrates
on the predictive modelling in which each output variable is assumed
to depend on its feature vector and all other output variables.

A neighborhood selection method was proposed to discovery the
graph structure by applying lasso to select relevant variables for
each variable [19]. Although this approach can select variables, it is
unable to exactly estimate the precision matrix. Basically, neighbor-
hood selection is a sub-task of the precision estimation. A similar
idea is also applied for the structure learning of the Ising model
[24], in which the conditional probability of an individual binary
variable given other variables is modelled to discover the structure
rather than modelling the joint probability of all variables. Our work
is different as we specifically focus on the precision estimation of
the Gaussian Graphical model where all variables are real-valued.
A tuning-free method is introduced to decompose the estimation of
the precision matrix into estimations of columns [18]. However, this
method cannot directly estimate the columns of the precision matrix
as it estimates intermediate variables with more computations to
achieve tuning-insensitivity. Our work provides a more straightfor-
ward formulation of the estimation problem such that the columns of
the precision matrix are estimated directly and in parallel. We demon-
strate computational advantages of this framework theoretically and
empirically.

3 PROBLEM STATEMENT
Given a problem with m data examples of p continuous variables,
let x ji ∈ R denotes variable i at the jth data example, x̄ i j denotes all
except variable i at the jth data example. Similarly, x i ∈ Rm denotes
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the collection of variable i on all data examples, and X̄i ∈ Rm×(p−1)

denotes the collection of all variables except variable i at all data
examples. All variables in the jth data example is represented as
x j ∈ Rp .

The task of structure discovery is to discover the interdependen-
cies among all p variables given the data X ∈ Rm×p . In other words,
we would like to identify whether two variables are conditional
independent or not given other variables. This structure discovery
problem is typically tackled by Gaussian Graphical Model.

4 GAUSSIAN GRAPHICAL MODEL
In Gaussian Graphical Model, the collection of variables x ∈ Rp

is assumed to follow a Multivariate Normal Distribution with zero
mean.

x ∼ N(0,Λ−1)

where Λ is the precision matrix.
Withm i.i.d. data examples x1,x2, · · · ,xm , the structure discov-

ery problem is formulated as estimating the precision matrix such
that the log-likelihood of data is maximized.

Λ∗ = argmax
Λ⪰0

1
m

m∑
j=1

log P(x j ;Λ)

Sparse inverse covariance estimation is another classical extension
to Gaussian Graphical model. It is proposed to accelerate the discov-
ery of structure by assuming the precision matrix is off-diagonally
sparse. It is formulated as

Λ∗ = argmax
Λ⪰0

1
m

m∑
j=1

log P(x j ;Λ) + α ∥Λ∥∗

, where ∥·∥∗ is a ℓ1 norm penalty on off-diagonal entries.

5 PROPOSED METHOD
As we can see from the precision estimation problem, the problem
size (p2) easily becomes huge since it grows quadratically with re-
spect to the size of variables (p), which makes it computational costly
to solve in practice. All introduced works for precision estimation are
limited by the fact that all entries of the precision matrix have to be
estimated simultaneously. In our study, instead of trying to discover
all pieces of the entire structure in one job, we propose a distributed
structure discovery (DSD) framework which can completely recover
the underlying structure distributedly.

5.1 Illustration
The idea is very straightforward.Rather than considering the compli-
cated interconnections between all variables together, we factorize
the problem into multiple sub-problems, while only exploring the
sub-dependencies related to one variable in each sub-problem. The
comparison of two frameworks with a concrete example, which
involves four variables {x1,x2,x3,x4}, is illustrated in Figure 1.

In Figure 1(a), the structure discovery task is addressed by fitting
the data into a Gaussian Graphical Model such that the joint distri-
bution is a multivariate Normal x ∼ N(0,Λ−1). In this example, all
undirected pairwise dependencies are marked using solid edges. For
example, Λ12 and Λ21 from the precision matrix Λ are associated
with the pairwise connection between x1 and x2.
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Figure 1: Comparison of structure discovery and distributed
structure discovery. (a) The standard precision estimation
framework with joint distribution P(x1,x2,x3,x4). (b) DSD
framework from the local view of x1: P(x1 |x2,x3,x4))

However, under the framework of distributed structure discovery,
the sub-task i only explores the dependencies towards xi by maximiz-
ing the conditional probability P(xi |x̄ i ), where x̄ i = [x1, · · · ,xi−1,
xi+1, · · · ,xp ] is a collection of all variables except xi . The sub-
problem for x1, P(x1 |x̄1) = P(x1 |x2,x3,x4), is presented in Fig-
ure 1(b), where the all local dependencies (i.e., Λ21, Λ31 and Λ41)
towards x1 are marked using solid directed edges and other de-
pendencies are marked using dashed directed edges. To reveal the
entire structure on this specific example, DSD aims to maximize the
product of all conditional likelihood in all sub-problems:

max P(x1 |x̄1)P(x2 |x̄2)P(x3 |x̄3)P(x4 |x̄4)

5.2 Distributed Structure Discovery
Without the loss of generality, the negative pseudo log-likelihood of
the proposed method can be written as

L =

p∑
i=1

Li =

p∑
i=1

−
1
m

m∑
j=1

log P(x ji |x̄ i
j ;Λi ) (1)

, where Λi = [Λii , · · · ,Λpi ] is the ith column of the precision matrix
Λ. The structure discovery problem using DSD is hence formulated
as

Λ∗ = [Λ∗
1, · · · ,Λ

∗
p ] = argmin

[Λ1, · · · ,Λp ]
L

subject to Λ11 > 0, · · · ,Λpp > 0
(2)

So far we have not discussed why this model works and how it
works. To clearly answer these questions, in the following sections,
we introduce two characteristics of our method: distributability and
convexity.

5.3 Distributability
In this section, we prove why the original precision estimation prob-
lem can be solved distributedly without information loss, and intro-
duce the benefits brought by this nice property.

THEOREM 1. Given the assumption that x = [xi ; x̄ i ] follows a
multivariate normal distribution

x ∼ N(0,
[
Λii ΛTx̄ ixi

Λx̄ ixi Λx̄ i x̄ i

]−1
) (3)
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the conditional distribution of x given x̄ is a univariate Gaussian
distribution

xi |x̄ i ∼ N(−Λ−1
ii Λ

T
x̄ ixi x̄ i ,Λ

−1
ii ) (4)

where Λii is the inverse covariance of xi , Λx̄ ixi is Λi without Λii ,
and Λx̄ i x̄ i is the partial precision matrix among x̄ i in Λ

PROOF. It can be proved by simply expanding the exponent part
of (3) and omitting independent terms of xi first, and then matching
the remained terms with the exponent part of a univariate Gaussian.
■ □

According to Theorem 1, we have: (1) The conditional probability
P(xi |x̄ i ;Λi ) is a univariate Gaussian, which has analytic expression
for its probability density function; (2) The ith column of Λ, Λi ,
can be recovered from the ith sub-task. So the structure discovery
task can be completely accomplished from p sub-tasks. (3) Although
Λi j and Λji are estimated in two different sub-tasks (sub-task i and
sub-task j), their estimation are still guaranteed to be very similar
(not exactly the same due to the noise from data). In the applications
where symmetric inverse covariance matters, it can be approximated
by

Λ =
1
2
(Λ̂ + Λ̂T ) (5)

It was proved that Λ is a good estimator if Λ̂ is a good estimator [3].

Table 1: Time complexity comparison of different frameworks.
p is the number of nodes. f (·) is the time complexity of optimiza-
tion methods used in existing works. д(·) is the time complexity
of optimization method used for each sub-task in DSD

Framework Time Complexity
existing works O(f (p2))

DSD O(p ∗ д(p))
Ideal DSD O(д(p))

Moreover, the distributability also suggests the superiority of
DSD in terms of efficiency compared with existing frameworks. The
comparison of time complexity of different frameworks is summa-
rized in Table 1. Let f (·) denote the time complexity function for the
optimization algorithm in existing works. Then the time complexity
for existing precision estimation frameworks is given by O(f (p2)),
where p is the number of variables, and p2 is the number of unknown
pairwise dependencies to estimate. Let д(·) denotes the time com-
plexity function for the optimization algorithm used in each sub-task
of DSD, then the time complexity for solving all sub-tasks in se-
quential is O(p ∗ д(p)) since there are only p unknown dependencies
in each sub-task. The time complexity of solving all sub-tasks in
parallel (Ideal DSD) is hence O(д(p)). Given that д(n) ∈ Θ(f (n)),
we can draw a conclusion that

O(д(p)) << O(p ∗ д(p)) < O(f (p2)) (6)

. More empirical evidence about efficiency is provided in Section 6.3.

5.4 Convexity
Thanks to the distributability, all partial structure are guaranteed to
be completely recovered from all sub-tasks in DSD. In this section,
we show why the partial structure can be precisely recovered. By
re-denoting Λii using λi , and Λx̄ ixi using θ i , and adapting (4) from
Theorem 1 to the ith sub-problem properly, we have

xi |x̄ i ∼ N(−λ−1
i θTi x̄ i , λ

−1
i ) (7)

The negative log-likelihood Li is hence written as:

Li = −
1
m

m∑
j=1

log P(x ji |x̄ i
j ; λi ,θ i )

≜
1
m

m∑
j=1

(x
j
i + λ

−1
i θTi x̄ i

j )2λi − log λi

=
1
m
∥x i + λ

−1
i X̄iθ i ∥

2
2λi − log λi

(8)

Then the convexity of DSD is proven in Theorem 1.

THEOREM 2. The distributed structure discovery framework de-
scribed in (2) is global convex.

PROOF. The idea is to show that the optimization problem in
each sub-task is convex. Then the entire problem can be proved to
be convex since the parameters in sub-tasks are distinct to each other.
In order to prove that each sub-task is convex, we need to show that
the Hessian matrix H is PSD, where the Hessian matrix for the ith
sub-task is given by:

Hi =

[
Ai Bi
BTi Ci

]
=


∂2Li
∂θ i

2
∂2Li

∂θ i ∂λi
∂2Li

∂θ i ∂λi

T ∂2Li
∂λi 2


As we can easily prove that Ci ⪰ 0 and Ai − BiC

−1
i BTi ⪰ 0, the

Hessian matrix Hi is therefore proved to be PSD based on Schur
complement [7]. ■ □

Now, we formally demonstrate that partial structure from sub-
tasks can be precisely recovered since the convexity ensures the
estimation to be global optimal. Combining distributability and con-
vexity, the proposed method is justified to be effective, because the
entire underlying structure can be completely and precisely revealed
from sub-tasks. More empirical evidence are provided in Section 6.4.

Regularization In order to avoid overfitting, we added a regu-
larizor to penalize the learning of off-diagonal entries of a partial
precision matrix in each sub-task. The optimization of sub-task i is
rewritten as:

argmin
λi>0,θ i

1
m
∥x i + λ

−1
i X̄iθ i ∥

2
2λi − log λi + αϕ(θi ) (9)

where α is the hyperparamter which controls the penalty on off-
diagonal entries and ϕ(·) is the regularization function. In this study,
we specifically use ℓ2 norm as the realization of ϕ(·) for the ease
of prototyping. This can be easily extended to use ℓ1 norm or any
other (convex) regularizors by adapting various solvers like proximal
algorithm [22]. Although ℓ2 norm doesn’t lead to sparse solutions,
real-world cases can be studied by retrieving the most (or least)
significant connections from our estimation (see more details in
Section 7). The parameter study of α is presented at Section 6.5.
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Algorithm 1 DSD: Distributed Structure Discovery

Input: X and α .
1: Initialization: λ, θ .
2: for i from 1 to p do ▷ Distributing here
3: Prepare x i and X̄i from X
4: Solve θ∗i , λ

∗
i = argminλi>0,θ i Li (x i , X̄i ; λ,θ ,α)

5: Assign Λ∗
ii = λ∗i and Λ∗

ī i = θ
∗
i

6: Return Λ∗.

The overall learning algorithm for DSD is summarized in Al-
gorithm 1, where Λī i denotes the ith column of Λ without the ith
entry. We apply Quasi-Newton to solve each convex sub-task in our
implementation.

6 EXPERIMENTS
Previously we explained why our proposed method is efficient and
effective (accurate) given its nature of distributability and convexity.
In order to find quantitative evidence for efficiency and effectiveness,
we conducted experiments on the synthetic dataset where the ground
truth is available.

6.1 Comparison Methods
To characterize the capability of our proposed method, we compare
it against two state-of-the-art methods for structure discovery. For all
of experiments related to DSD in this section, we directly evaluate
on the precision matrix learned from DSD without conducting any
post-processing (e.g., nearest symmetric estimation).

• QUIC: It is the state-of-the-art algorithm for sparse inverse
covariance estimation using the Newton coordinate descent
method [14, 15]. In our experiment, we used its Python im-
plementation 1 for comparison. We do not compare with
Big&Quic [16] since it is an extension of QUIC with more
efficient optimization method, while the comparison aims to
show the difference between our proposed distributed frame-
work and the existing framework.

• TVGL: Time-varying Graphical Lasso is the most recent
work that solves structure discovery on time-varying networks
by developing a novel ADMM algorithm with closed-form
solutions on sub-problems [10]. We compare with it using its
original implementation in Python 2. We apply it on stationary
networks by setting the penalty of temporal difference as 0
and assume there is only one time window. We use TVGL
with ℓ1 penalty in our experiments as choosing other penalties
for TVGL leads to worse and much slower performance in
practice.

6.2 Synthetic Data Generation
Before stepping into experiments, we explain the process of gener-
ating synthetic datasets. The overall idea is to sample data from a
multivariate normal distribution with a predefined precision matrix.
Given a graph with p nodes and p2 variables, we initialize the pre-
cision matrix Λ ∈ Rp×p by randomly sampling each entry from a

1https://github.com/skggm/skggm
2https://github.com/davidhallac/TVGL
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Figure 2: Efficiency evaluation on different problem scales.
DSD presents the actual running time of our model, and Ideal
DSD presents the estimated running time when all sub-tasks are
fully distributed.

uniform distribution. Then, we make it symmetrical by averaging its
lower-triangular entries to its upper-triangular entries, and gradually
increase the values of diagonal entries until it becomes diagonally
dominant and hence Positive Semidefinite (PSD). After that, we sam-
ple the data from a multivariate normal distribution N(0,Λ−1) with
zero mean and precision matrix as Λ. In order to comprehensively
evaluate the performances (effectiveness & efficiency) of compari-
son methods at different problem scales in terms of the number of
unknown dependencies (#dep), we generate several datasets with
different number of nodes (p) varying in [100, 200, 300, 400, 500] in
our experiments. For each dataset, we generate 3000 data examples.

6.3 Evidence for the Efficiency
In this experiment, we demonstrate the superior efficiency of our
method brought by its nature of distributability.

We conduct experiments on five datasets with different problem
scales (#dep ranges from 10000 to 250000). At each scale, all compar-
ison methods are trained on 3 different 1000 random data examples
for each choice of regularization parameter α . The hyperparameter
α is selected from [0, 1e − 4, 1e − 3, 1e − 2, 1e − 1, 1]. We use the hy-
perparameter which obtains the lowest prediction error in predicting
ground truth precision matrix. Then we report the corresponding
efficiency of the selected hyperparameters. The results are presented
using the mean and standard deviation of running time of 3 trials.
All of the experiments from this section are conducted in sequential
on the same machine.

The results are presented in Figure 2. Here, DSD stands for the ac-
tual running time our proposed method where sub-tasks are executed
sequentially. Ideal DSD stands for the estimated running time of
the ideal case when all sub-tasks are fully distributed. The running
time of Ideal DSD is approximated by the running time of DSD
divided by p, (i.e., the number of sub-tasks). From the result, we can
see that TVGL is around 5 to 10 times faster than QUIC given the
advantage of their proposed ADMM solver [10]. DSD is however
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up to 2 times faster than TVGL. DSD brings a clear benefit because
of its lightweight computational framework mentioned in Table 1. If
we compare Ideal DSD with other approaches, it is at least 2 orders
of magnitude (100 times) faster than any of them. For example, it
can solve problems which other competing approaches take hours to
solve within 1 second. Although the performance of Ideal DSD is
the theoretical lower bound of DSD, the gap between the efficiency
of Ideal DSD and DSD still indicates the potential space for DSD to
be improved. The acceleration of DSD is decided by the number of
distributable computing resources and the protocol for distribution.

6.4 Evidence for the Effectiveness
In this experiment, we exhibit the effectiveness of our proposed
method. Given the availability of ground truth in synthetic data,
the performance is evaluated in terms prediction error (MSE) in
predicting the ground truth precision matrix.

6.4.1 On the Generalization Performance. First, we investi-
gate the generalization performance of all approaches by showing
how prediction error changes when the size of training data examples
varies. We demonstrate that our proposed DSD is capable of general-
izing well with less training data examples. Specifically, we conduct
experiments on four datasets with different problem scales (number
of unknown dependnecies) from [10000, 40000, 90000, 160000]. For
each problem scale, we conduct experiments with different train
sizes:m ∈ [200, 400, 600, 800, 1000]. For each train size, the experi-
ment is repeated on three differentm examples for hyperparameter
tuning. The hyperparameter is also selected from [0, 1e − 4, 1e −

3, 1e − 2, 1e − 1, 1].
The results are presented in Figure 3. Concerning MSE, our

proposed method outperforms the other two baselines across most
of the experimental configurations except cases when the train size
is very limited (m = 200). It is consistent with our assumption that
DSD has smaller model complexity (proportional to the number of
parameters) given its nature of distributability and hence generalize
better. From the results, we also note that DSD generalizes worse
on datasets with fewer variables, and better on datasets with more
variables. For example, on both Figure 3a and Figure 3b, the gaps
between the best MSE and the worse MSE of DSD are larger than
0.2, but less than 0.1 in both Figure 3c and Figure 3d. On the other
side, the biases of DSD are smaller on datasets with fewer variables
and higher on datasets with more variables. For example, the gap
between the performance of DSD and the second best approach
TVGL is larger when the problem scale is smaller. Therefore, those
two counterparts (generalization ability and bias) together guarantee
the effectiveness of DSD under various problem scales and train
sizes.

6.4.2 On the Effectiveness with Sufficient Data. The exper-
imental setting here is identical to the experimental setting for ef-
ficiency study in section 6.3. The results are shown in Figure 4.
According to the results, we can see that our proposed method
constantly performs the best compared to baselines. The overall
performance is better with smaller graph size and gets worse with
more challenging problem scales. This results again demonstrated
our conclusion on the effectiveness of DSD that it predicts well but

generalizes fine with fewer variables, and behaves oppositely with
more variables.

6.5 Sensitivity Study
α is the only, albeit essential, hyperparameter of our proposed
method. It is used to control the penalties on the estimated pre-
cision matrix. In order to study the impact of this hyperparame-
ter, we conduct experiments on datasets with different problem
scales. At each scale, we investigate how the choice of hyperpa-
rameter affects the prediction error (MSE) by varying α among
[0, 1e − 4, 1e − 3, 1e − 2, 1e − 1, 1]. We obtain the results using 1000
data examples for training. The results are presented in Figure 5. As
we can see from the results, when α is large, the prediction error is
always large across all problem scales. When α is small, the predic-
tion becomes worse as the problem scale grows due to the overfitting.
The best performance is achieved when α is neither too large nor too
small. α = 0.01 is a relatively stable choice across various problem
scales.

7 REAL-WORLD STUDY
Data The advantage of DSD on synthetic datasets with quantitative
results was demonstrated in Section 6. In this section, we present
an application of DSD on a real-world problem. We explore the
inter-relationship between the variation of daily stock price among
different companies. The idea is to discover significant connections
from the underlying graph where companies are nodes. In particular,
we conduct our study on the stock prices of S&P 500 companies
from the beginning of 2004 to the end of 2007. We do not use the
data afterward to avoid the bias caused by the 2008 global financial
crisis3. Instead of identifying the dependencies on the stock price, we
focus on the analysis of price variation, i.e., the difference between
closing price and opening price, since this metric is more informative
for the growth of a company.

Precision Estimation To discover the structure from stock vari-
ations, we first normalize the data into zero means and then apply
DSD on the normalized data to estimate the precision matrix. How-
ever, due to the distributability of DSD, the learned precision matrix
is very close to but not exactly symmetric as we introduced in Sec-
tion 5.3. So, we conduct nearest positive semidefinite estimation on
the learned precision matrix for post-processing. We first symmetrize
the estimated precision matrix by averaging its upper triangular ma-
trix and its lower triangular matrix, and then gradually increase its
diagonal entries by a tiny number until it becomes PSD. Usually the
matrix is PSD right after finding its nearest symmetric estimation.

Partial Correlation The precision matrix itself can tell the condi-
tional independence between nodes well, but is not very informative
for finding the most significant connections. We alternatively use
partial correlation as the metric. Partial correlation is used to mea-
sures the degree of association between multiple interdependent
variables. The partial correlation Qi j between variable i and variable
j is defined as:

Qi j = Λi j/
√
Λii · Λj j

Then we assume two companies are strongly positively dependent
to each other if their partial correlation is significant.

3https://en.wikipedia.org/wiki/Financial_crisis_of_2007-2008
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Figure 3: Generalization performance for different problem scales and train sizes
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Figure 4: Effectiveness evaluation on different problem scales.
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Figure 5: Sensitivity study of α on different problem scales.m =
1000

Setting In our experiment, we apply DSD to three different
ranges of the dataset: (a). from 2004.01.01 to 2005.12.31; (b). from
2006.01.01 to 2007.12.31; and (c). from 2004.01.01 to 2007.12.31.
The discovery with top 20 significant links (high partial correlation)
of all date ranges is presented in Figure 6. In order to validate our
discovery, we also compare our results with pre-defined primary

sectors of companies. The discovery is positive if most of the es-
timated links are intra-sector links, and negative if most links are
inter-sector links. The intra-sector links and inter-sector links are
presented via solid edges and dashed edges respectively in the figure.
The width of the edge is positively related to the partial correlation.
The 8 pre-defined sectors are marked with various colors.

Inter-Sector links & Intra-Sector links From the results, we
can observe that most of our revealed connections are intra-sector
links across all data ranges. We also note that the most significant
connections detected by DSD are within the energy sector, which
is marked with red color. It reflects the inflation of oil price caused
by the 2000s energy crisis 4. The oil price roughly became about 5
times more expensive from 2002 to 2008 in the US. We also note
that the strongest dependency found between 2004 and 2005 is a
inter-sector link between Yahoo and Amazon. It is, however, a false
negative since the retail business of Amazon is driven by information
technology. 2004-2005 is one of the most prosperous periods for the
market for information technology. The market capacities of both
Amazon and Yahoo have increased to the peak before 2008. There
are also another three visible inter-sector links across all time ranges:
Sony and Canon, Home depot and Walmart, and Toyota and Canon.
Although these companies own different types of business, they are
still related to each other given the proximity of non-business fac-
tors. For example, Home Depot can provide downstream service to
Walmart customers once they purchase furniture. Sony, Canon, and
Toyota are all from Japan, so their performance are affected by the
global economy of Japan. All of these fact-consistent discoveries
validate the capability of our proposed method again. The alternative
approaches also have nice discovery with many intra-sector links.
However, as it is difficult to compare the importance of two differ-
ent intra-sector links, we cannot qualitatively compare with other
methods in this study.

8 CONCLUSION AND FUTURE WORK
In this paper, we propose a framework to discover structure from high
dimensional data in a distributed manner. Our method is proven to
be able to recover the entire precision matrix from multiple sub-tasks
given its nature of distributatbility and convexity. The effectiveness
and efficiency of the proposed method are demonstrated via exten-
sive experiments on synthetic datasets. The ability to discover the
underlying structure is also validated in real-world cases. In our
future work, the proposed framework potentially has great space to

4https://en.wikipedia.org/wiki/2000s_energy_crisis
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Figure 6: Graph visualization of top 20 links with the largest partial correlation of variation of stock price. (a). from 2004 to 2005 (b).
from 2006 to 2007 (c). from 2004 to 2007

be extended for different purposes by adopting various advanced
optimization algorithms or protocols for distribution.
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