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ABSTRACT

Recent interest in graph embedding methods has focused on learn-

ing a single representation for each node in the graph. But can nodes

really be best described by a single vector representation? In this

work, we propose a method for learning multiple representations of

the nodes in a graph (e.g., the users of a social network). Based on a

principled decomposition of the ego-network, each representation

encodes the role of the node in a different local community in which

the nodes participate. These representations allow for improved

reconstruction of the nuanced relationships that occur in the graph

– a phenomenon that we illustrate through state-of-the-art results

on link prediction tasks on a variety of graphs, reducing the error

by up to 90%. In addition, we show that these embeddings allow for

effective visual analysis of the learned community structure.
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1 INTRODUCTION

Learning embedded representations of graphs is a recent and very

active area [2, 13, 22, 31, 32, 38]. In a nutshell, an embedding algo-

rithm learns a latent vector representation that maps each vertex v
in the graphG to a single d dimensional vector. This area has found

strong applications, as the embedding representation of nodes leads

to improved results in data mining and machine learning tasks,

such as node classification [31], user profiling [33], ranking [23],
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and link prediction [2, 22]. In virtually all cases, the crucial assump-

tion of the embedding methods developed so far is that a single
embedding vector has to be learned for each node in the graph.

Thus, the embedding method can be said to seek to identify the

single role or position of each node in the geometry of the graph.

This observation allows us to draw a historical parallel between

the very recent research area of graph embedding and the more es-

tablished field of community detection or graph clustering [19, 21].

Detecting clusters
1
in real world networks is a central topic in com-

puter science, which has an extensive literature. At the beginning of

its development, graph clustering has focused mostly on the study

of non-overlapping clustering methods [21, 37]. In such methods,

each node is assigned to a single cluster or community. While the

problem of non-overlapping clustering is better understood and has

found strong applications and theoretical results, recently, much

attention has been devoted to developing overlapping clustering

methods [15, 18, 34], where each node is allowed to participate in

multiple communities. This interest in overlapping comunities is

motivated by a number of recent observations of real world net-

works [1, 15, 17, 26, 27] that show a lack of clear (non-overlapping)

community structure.

These findings motivate the following research question: can

embedding methods benefit from the awareness of the overlapping

clustering structure of real graphs? In particular, can we develop

methods where nodes are embedded in multiple vectors, represent-

ing their participation in different communities?

In this paper, we provide positive results for these two questions.

We develop Splitter, an unsupervised embedding method that

allows nodes in a graph to have multiple embeddings to better

encode their participation in multiple overlapping communities.

Our method is based on recent developments in ego-net analy-

sis, in particular, in overlapping clustering algorithms based on

ego-network partitioning [18]. More precisely, we exploit the obser-

vation in [15, 17, 18, 34] that cluster structure is easier to identify at

the local level. Intuitively, this happens because each node interacts

with a given neighbor in usually a single context (even if it is part

of many different commmunities in total).

Splitter extends this idea to the case of node embeddings. In

particular, we exploit the persona graph concept defined by Epasto

et al. [18]. This method, given a graph G, creates a new graph

GP (called the persona graph of G), where each node u in G is

represented by a series of replicas. These replica nodes, (called the

persona(s) of u) in GP , represents an instantiation of the node u in

the local community to which it belongs. The method was originally

introduced to obtain overlapping clusters. In this paper, we instead

show that ego-net based techniques can lead to improvements in

1
Note that in the paper, we use the terms “cluster” and “community” interchangeably.

https://doi.org/10.1145/3308558.3313660
https://doi.org/10.1145/3308558.3313660
https://doi.org/10.1145/3308558.3313660


WWW ’19, May 13–17, 2019, San Francisco, CA, USA Epasto and Perozzi

embedding methods as well. In particular, we demonstrate that a

natural embeddingmethod based on the persona graph outperforms

many embedding baselines in the task of link prediction.

To summarize, the contributions of this paper are as follows:

(1) We introduce Splitter, a novel graph embedding method

that embeds each node in the graph into multiple embedding

vectors, which is based on the analysis of the overlapping

structure of communities in real networks.

(2) Our method adds a novel graph regularization constraint to

the optimization that enforces consistency of the multiple

learned representations for each node.

(3) The method automatically determines the number of embed-

dings used for each node depending on a principled analysis

of the local neighborhood of the node. This does not require

the user to specify the number of embeddings as a parameter.

(4) We show experimentally strong improvements over several

embedding baselines for the important task of link predic-

tion.

(5) We show how our method enables visual discovery of com-

munity membership for nodes that are part of multiple social

groups.

2 METHOD

In this section we describe Splitter, our proposed method for

learning multiple community-aware representations for a node.

First, we start with a review of the preliminaries necessary to un-

derstand the work in Section 2.1. Next, in Section 2.2 we discuss

our extension for learning multiple node representations. Then we

introduce Splitter in Section 2.3, and close with discussing some

details of the optimization in Section 2.4.

2.1 Preliminaries

Our method builds upon recent work related to node decomposition

[18], and learning node representations with neural networks [29,

31, 32]. Here we describe the basics of both methods.

2.1.1 Notation. We begin with some notation. Let G = (V , E)
be an undirected graph

2
consisting of a set V of nodes and a set

E ⊂ V × V of edges. Let G[U ] = (U , E ∩ U × U ) be the induced
graph of a subset of G’s nodes, U ⊂ V . Given a node u ∈ V ,
we denote its neighborhood as the set of nodes connected to it

Nu = {v ; (u,v) ∈ E}, and its ego-network (or ego-net) as the graph

induced on the neighborhood G[Nu ]. We note that the ego-net of

u does not include the node u itself in this definition. Finally, let

A be a non-overlapping clustering algorithm that given G as an

input, returns a partitionA(G) = (V1, . . . ,Vt ) of the verticesV into

t disjoint sets (let npA (G) = t denote the number of partitions in

output.).

2.1.2 Persona Decomposition. The topic of community detection

and graph clustering has been of great interest to the community

over the last several decades. While much work has focused on

finding large clusters, it has been noted that while the community

detection problem is hard at scale (the macroscopic level), it is rela-
tively trivial when viewed locally (the microscopic level) [16, 17].

2
The method can be also defined for directed graphs in the obvious way; however, we

describe it for undirected graphs for simplicity

Using this intuition, a recent proposal from Epasto et al. [18] uses

the clusters found in the ego-network of a node (its neighbors and

their induced subgraph) as the basis to define a new graph, the

persona graph, GP . The nodes in this new graph, which are called

personas, divide the interactions of each original node in G into

several semantic subgroups, which capture different components

(or senses) of its network behavior.

More formally, let us assume that we are given a graph G and a

clustering algorithm A. The persona decomposition (as proposed

in [18]) employs the following algorithm PersonaGraph(G,A) to
transform G to its persona graph GP :

(1) For each node u ∈ V , we use the clustering algorithm A to

partition the ego-net of u. Let A(G[Nu ]) = {N
1

u ,N
2

u , . . . ,N
tu
u },

where tu = npA (G[Nu ]).
(2) Create a set V ′ of personas. Each node vo in V will correspond

to tvo personas (the number of splits of the ego-net of vo ) in
VP , denoted by vi for i = 1, . . . , tvo .

(3) Add edges between personas. If (u,v) ∈ E, v ∈ N i
u and u ∈ N

j
v ,

then add an edge (ui ,vj ) to EP .

After using this procedure, one obtains the persona graph GP
which has some interesting properties. First, every node inGP is

a node from the original graph, split into one or more personas.

However, there is no additional connectivity information – the

number of edges in GP is equal to the number of edges in the

persona graph. This means that the space required to store GP
is (almost) the same as the original graph. Second, each node in

the original graph can be mapped to its corresponding persona(s).

However, the community structure of GP can be wildly different

from the original graph. Standard clustering methods, when run on

GP instead genereate overlapping clusterings ofG . This phenomena

of exposing differing clustering information is visualized further in

Section 4.

2.1.3 Graph Embedding. Before introducing our method for learn-

ing multiple embeddings for each node, we first review the standard

setting of network representation learning, in which a single embed-

ding is learned for each node. The purpose of network embedding

is to learn a mapping Φ : v ∈ V 7→ R |V |×d , which encodes the

latent structural role of a node in the graph. This, in practice, can be

achieved by representing the mapping Φ as a |V | × d matrix of free

parameters that are learned by solving an optimization problem.

Perozzi et al. [31] first introduced a modeling of the vertex repre-

sentation that encodes the node as a function of its co-occurrences

with other nodes in short truncated random walks.

More precisely, the method consists of performing multiple ran-

dom walks over the social graph from each node. The sequences of

these walks are then used to extract the co-occurrences of nodes in

short sub-windows. These co-occurrences capture the diffusion in

the neighborhood around each vertex in the graph, and explore the

local community structure around a node. More concretely, the goal

of the embedding method is to learn a representation that enables

an estimate of the likelihood of a vertex vi co-occurring with other

nodes in the sub-window of a short random walk:

Pr

(
vi |

(
Φ(v1),Φ(v2), · · · ,Φ(vi−1)

) )
(1)



Learning Node Representations that Capture Multiple Social Context WWW ’19, May 13–17, 2019, San Francisco, CA, USA

Notice that the exact computation of this conditional probability

is computationally expensive for increasing lengths of the random

walks, so DeepWalk uses two techniques to address this challenge.

First, the order of the neighboring vertices is ignored. Second, the

method reverses the learning task; instead of predicting a miss-

ing vertex using the context, it addresses the opposite problem of

predicting its local structure using the vertex itself.

These modifications result in the following optimization problem

for computing the vertex representations of each node in DeepWalk:

minimize

Φ
− log Pr

(
{vi−w , · · · ,vi+w } \vi | Φ(vi )

)
(2)

In theDeepWalk [31]model, the probability of a nodevi co-occurring
with vj is estimated by using a softmax to map the pairwise simi-

larity to a probability space,

Pr (vi |vj ) =
exp(Φ(vi ) · Φ

′(vj ))∑
j ∈V exp(Φ(vi ) · Φ′(vj )

(3)

Where Φ′(vi ) and Φ
′(vj ) represent the "input" and "output" embed-

dings for node vi and vj respectively [28].

2.2 Learning Multiple Node Representations

As discussed so far, network representation learning seeks to learn

a function that maps each node to its own representation. Here, we

discuss our modifications that were made in light of the fact that

we wish to learn one or more representation for each node.

Using the persona decomposition discussed in Section 2.1.2, we

can convert the input graph G into the persona graph GP . From

here, it seems like a straightforward application of existing methods

to learn one representation for each node v ∈ |VP |, and as such,

learn one or more representation for each original node u ∈ |V |.
Unfortunately, this is not the case. The strength of the persona

decomposition is also a weakness - it can create a graph that is

quite different from that of the original input. In fact, the persona

graph can be so different that it may consist of many disconnected

components, even if the original graph was connected! Thus, these

disconnected components can cause difficulties for representation

learning methods. To address these challenges, we propose two

improvements to the learning algorithm.

First, we propose adding a constraint, that the persona represen-

tations be able to predict their original node in addition to predicting

the personas around it inGP . Specifically, given a persona vi , we
propose to require its representation include a dependency on the

node vo in the original graph G:

Pr

(
vo | ΦGP (vi )

)
. (4)

To control the strength of our graph regularization, we introduce

the parameter λ, which combines with Eq. (2) to yield the following

optimization problem:

minimize

ΦGP
− log Pr

(
{vi−w , · · · ,vi+w } \vi | ΦGP (vi )

)
−λ log Pr

(
vo | ΦGP (vi )

)
.

(5)

Put another way, this change to the optimization enforces that

there are invisible edges to each persona’s parent, informing the

learning process and regularizing the degree to which the persona

representations can deviate. This effectively lets the model reason

about the different connected components that may exist after the

persona transformation. We note that in practice, we achieved good

results on all graphs we considered by simply setting λ = 0.1.

Secondly, we propose to also make the representation ΦGP (v)
of a node v’s personas depend on its original representation ΦG (v)
as a prior via initialization. Initializing all personas to the same

position in Rd , combined with the regularization term from Eq.

(5), constrains the persona embeddings to behave like cohesive

parts of a single entity. We note that this does not mean that all

of a node’s personas end up in the same position at the end of the

optimization! Instead, we find that personas with similar roles stay

close together, while personas with different roles separate. This is

discussed further in Section 4.2, where we examine a visualization

of Splitter embeddings. Finally, there is an additional benefit of

using the representation of the original graphΦG as an initialization

– it can help avoid potentially bad random initializations, which

can lower task performance [13].

Inference with Multiple Representations. Notice that our method

outputs multiple embeddings for each node. To do inference of node

features or to predict edges between nodes, one can use standard

ML methods to learn a function of the multiple embeddings of

each node (or pair of nodes). However, basic aggregations can work

too. In our experiments with link prediction, we simply use the

maximum dot product over all pairs of embeddings of u and v to

predict the likelihood of the pair of nodes being connected.

2.3 Splitter

Using the ideas discussed so far, we present the details of our ap-

proach.

2.3.1 Parameters. In addition to an undirected graph G(V , E), the
clustering algorithm A used to obtain the persona graph, as well

as the dimensionality of the representations d , our algorithm uses a

number of parameters that control the embedding learning process.

The first group of parameters deal with sampling G, an essential

part of any graph embedding process. Without loss of generality,

we describe the parameters to control the sampling process in the

notation of Perozzi et. al [31]. Briefly, they arew , the window size

to slide over the random walk, t , the length of the random walk

to sample from each vertex, and γ the number of walks per vertex.

We emphasize that our approach is not limited to simple uniform

random walk sampling - any of the more recently proposed graph

sampling strategies [22, 29, 32] can be applied in the Splitter

model.

The next group of parameters control the optimization. The

parameter α controls the learning rate for stochastic gradient de-

scent, and λ effects how strongly the original graph representation

regularizes the persona learning.

Finally, an embedding function EmbedFn is used to learn a rep-

resentation ΦG of the nodes in the original graph. In order to use

the learning algorithm that we specify, this embedding method

simply needs to produce representations where the dot-product

between vectors encodes the similarity between nodes. The most

popular graph embedding methods meet this criteria, including

DeepWalk [31], LINE [38], and node2vec [22].
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Algorithm 1 Splitter. Our method for learning multiple repre-

sentations of nodes in a graph

Input:

G(V , E), a graph
w , window size

d , embedding size

γ , walks per vertex
t , walk length

α , learning rate
λ, graph regularization coefficient

A, clustering algorithm for the ego-nets

EmbedFn, a graph embedding method which uses the dot-product

similarity (e.g. DeepWalk, node2vec)

Output:

ΦGP a matrix with one or more representations for each node

P2N , a mapping of the rows of ΦGP to V (the original nodes)

1: function Splitter(G , EmbedFn)

2: GP ← PersonaGraph(G , A) ▷ Create the persona graph GP of

G using clustering algorithm A and method in [18].

3: P2N ← ∅
4: ΦG ← EmbedFn(G ,w , d , γ , t ) ▷ Embed original graph

5: for each vo ∈ V do

6: for each vj ∈ personas of vo do

7: ΦGP (vj ) ← ΦG (vo ) ▷ Initialize j-th persona of vo
8: P2N (vj ) ← vo
9: for i = 0 to γ do

10: O = Shuffle(VGP )

11: for each vi ∈ O do

12: Wvi = RandomWalk (GP , vi ,t)
13: for each vj ∈ Wvi do

14: for each uk ∈ Wvi [j −w : j +w ] do
15: JGP (ΦGP )= − log Pr(uk | Φ(vj ))
16: JG (ΦGP )= − log Pr(P2N (vj ) | Φ(vj ))

17: ΦGP = ΦGP − α ∗
(
∂ JGP
∂ΦGP

+ λ ∂ JG
∂ΦGP

)
18: return ΦGP , P2N

2.3.2 Algorithm. Here, we describe our full algorithm, shown in

Algorithm 1 in detail. Lines 2-4 initialize the data structures, cre-

ate the persona graph, and learn the embedding of the underlying

graph. We note that not all of the nodes will necessarily be split;

this will depend on each ego-net’s structure, as described in Sec-

tion 2.1.2. Lines 5-8 use the persona graph to initialize the persona

representations ΦGP . The remainder of the algorithm (lines 9-17)

details how the persona representations are learned. Line 12 gener-

ates the random walks to sample the context of each vertex. WLOG

can be graph samples generated in any meaningful way - including

uniform random walks [31], skipped random walks [32], or random

walks with backtrack [22]. Line 15 calculates the loss due to nodes

in the persona graph (how well the persona representation of Φvj is
able to predict the observed nodeuk ). Line 16 computes the loss due

to the graph regularization (how well the persona representation

Φvj is able to predict its corresponding original node). Finally, line

18 returns the induced representations ΦGP and their mapping back

to the original nodes P2N .

Complexity. The complexity of the algorithm is dominated by

two major steps: creating the persona graph and the Skip-gram

model learning. Both parts have been analyzed in previousworks [13,

18], so we report briefly on the complexity of our algorithm here.

Suppose the clustering algorithm A used on the ego-nets has a

complexity of T (m′) for analyzing an ego-net of m′ edges. Fur-
ther, suppose the original graph has T triangles. As such, the

persona creation method has a total running time O(T + m +
√
mT (m)). Moreover, as a worst case, T = O(m3/2) the complex-

ity is O(m3/2 +
√
mT (m)). Suppose, for instance, that a linear time

clustering algorithm is used; then, the total cost of this phase as a

worst case is O(m3/2). However, as observed before [18], the algo-

rithm scales much better in practice than this pessimistic bound

because the number of triangles is usually much smaller than

m3/2
. The embedding method for a graph of n′ total nodes in

the persona graph has instead a complexity O(n′γ twd log(n′))),
as shown in [13], where d is the number of dimensions, t is the
walk length size,w is the window size and γ is the number of ran-

dom walks used. Notice, that n′ ∈ O(m), as each node u can have

at most O(deд(u)) persona nodes, so the worst case complexity is:

O(m3/2 +
√
mT (m) +mγ tw(d + d log(m))).

2.4 Optimization

As detailed in [31], using representations to predict the probability

of nodes (Line 15-16, Algorithm 1) is computationally expensive.

To deal with this, we use the hierarchical softmax [28] to calculate

these probabilities more efficiently. For completeness’s sake, we

remark that an alternative optimization strategy exists (using noise

contrastive estimation [28]).

Thus, our model parameter set includes both ΦGP and T , the
parameters used internally by the tree in the hierarchical softmax.

Further, we use the back-propagation algorithm to estimate the

derivatives in lines 15-16, and a stochastic gradient descent (SGD)

to optimize the model’s parameters. The initial learning rate α
for SGD is set to 0.025 at the beginning of the training and then

decreased linearly with the number of nodes we have seen so far.

Additionally, the parameter λ regularizes the persona embeddings

by how much they deviate from the node’s original representation.

3 TASK: LINK PREDICTION

In this section, we study how the Splitter model proposed so far

can be used for the task of link prediction – judging the strength of

a potential relationship between the two nodes. We focus on this

fundamental application task for the following reasons.

First, we are interested in developing new models that can cap-

ture the variation of social behaviors that are expressed in real-

world social networks (such as membership in multiple communi-

ties). Several recent works suggest that link prediction (or network
reconstruction) [2, 42] is the best way to analyze an unsupervised

network embedding’s performance, as it is a primary task (unlike

node classification - a secondary task that involves a labeling pro-

cess that may be uncorrelated with the graph itself). Second, there

are several important industrial applications of link prediction on

real networks (e.g. friend suggestion on a social network, product

recommendation on an e-commerce site, et cera).

Finally, this task highlights a particular strength of our method.

Splitter’s ability to model the differing components of a node’s

social profile (its personas) make it especially suitable for the task
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of link prediction. This addresses a fundamental weakness of most

node embedding methods, which effectively treat a node’s represen-

tation as an average of its multiple senses – a representation that

may not make sense in continuous space. Unlike previous work

utilizing community information in embeddings [11, 41, 43], we aim

to expose the nuanced relationships in a network by sub-dividing

the nodes (not the macro-scale community relationships found by

joining nodes together).

3.1 Experimental Design

3.1.1 Datasets. We test our Splitter method as well as other

baselines on a dataset of five directed and undirected graphs. Our

datasets are all publicly available: PPI is introduced [22, 36], while

the other datasets are from Stanford SNAP library [25]. For each

dataset, in accordance with the standard methodology used in the

literature [2, 22], we use the largest weakly connected component

of the original graph. We now provide statistics for our dataset.

We used following directed graphs: The social network soc-

epinions (|V | = 75, 877 and |E | = 508, 836); the voting network

wiki-vote (|V | = 7, 066 and |E | = 103, 663); and the following

undirected graphs: Co-authorship networks ca-HepTh (|V | =
9, 877 and |E | = 25, 998); ca-AstroPh (|V | = 17, 903 and |E | =
197, 031); as well as the protein-protein network PPI (|V | = 3, 852

and |E | = 20, 881).

3.2 Task

The Link Prediction task follows the methodology introduced in

[2, 22], which we briefly detail here. First, the input graph is split

into two edge sets, Etrain and Etest, of equal size. The test edges are
removed uniformly at random, with the restriction that they do

not disconnect the graph. Etest is then used as positive examples

for a classification task. A corresponding equal sized set of non-

existent (random) edges are generated to use as negative examples

for testing. The baseline methods are providing the training edges

as input, which they use to learn a similarity model (embedded

or otherwise). The performance of each method is then measured

by ranking the removed edges. Specifically, for each method, we

report the ROC-AUC.

3.3 Methods

Here we describe the numerous baseline methods we tested against,

including both traditional non-embedding baselines (such as com-

mon neighbors) and several embedding baselines. We also detail

the application of Splitter’s multiple representations of this task.

Non-embedding Baselines: Here, we report standard methods

for link prediction that are solely based on the analysis of the

adjacency matrix of the graph and in particular, on the immediate

neighborhood of the nodes in the graph. These methods take into

input Etrain during inference. Thus, we denoteN (u) as the neighbors
of u observed in Etrain. For directed graphs, N (u) only refers to the

outgoing edges. In the non-embedding baseline considered, we

score an edge (u,v) as a д(u,v), which is a function of N (u) and
N (v) only. We consider the following baselines.

Jaccard Coefficient (J.C.): д(u,v) = |N (u)∩N (v) |
|N (u)∪N (v) | ; Common

Neighbors (C.N.): д(u,v) = |N (u) ∩ N (v)|; Adamic Adar (A.A.):

д(u,v) =
∑
x ∈N (u)∩N (v)

1

log( |N (x ) |) .

We apply these methods to both the original graph and the per-

sona graph. For the persona graph, we follow a technique similar

to our Splitter method to extract a single score from the pairwise

similarity (say Jaccard Coefficient) of the multiple persona nodes of

a pair of nodes u,v . We also define the Jaccard Coefficient of u,v in

the persona graph as the maximum Jaccard Coefficient of a persona

node of u and a persona node of v in the persona graph. Similarly,

we define the baselines Common Neighbors and Adamic Adar in

the persona graph. We report results for using the maximum as ag-

gregation function consistently with our Splitter method, but we

experimented as well with many other functions, such as the min-

imum and the mean and we observed the maximum to perform best.

Embedding Baselines: We also consider the following embedding

baselines. These methods take as input Etrain to learn embedding

ΦG (u) for every graph node u. During inference, then only the

learned embedding are used but not the original graph. We compare

against these state-of-the-art embedding methods.

(1) Laplacian EigenMaps [6] determines the lowest eigenvec-

tors of the graph Laplacian matrix.

(2) node2vec [22] learns the embedding by performing random

walks on the training edges Etrain and learning a minimizing

skipgram objective (Equation 3).

(3) DNGR [10] performs a non-linear (i.e. deep) node embed-

dings passing a “smoothed” adjancency matrix through a

deep auto-encoder. The “smoothing” (called Random Surf-

ing) an alternative to random walks, which effectively has a

different context weight from node2vec.

(4) Asymmetric [2] is a recent method that learns embeddings

by explicitly modeling the edges that appear in the graph.

We compare against the most similar model proposed in the

work, the shallow asymmetric model.

(5) M-NMF [41] uses a modularity based community detection

model to jointly optimize the embedding and community

assignment of each node. Unlike Splitter, this method as-

signs each node to one community, and is based on joining

nodes together (not splitting them apart).

We run each of these methods with their suggested default pa-

rameters.
3

During inference with the baselines, we use the embedding of a

pair of node u and v to rank the likelihood of the link u,v formed

by employing a scoring function that takes in the input the em-

beddings of the two nodes. To do so, for consistency with previous

work, we used the same methodology of [2], which we summarize

here. Let Yu and Yv be, respectively, the embeddings of u and v .
The edge scoring function is defined as follows: for EigenMaps,

it is −||Yu − Yv | |; for node2vec, we use the off-shelve binary clas-

sification LogisticRegression algorithm of sklearn to lean a model

over the Hadamard product of the embeddings of the two nodes;

3
In order to advance the field, and ensure the reproducibility of our method, we

are releasing an implementation of Splitter at https://github.com/google-research/

google-research/tree/master/graph_embedding/persona.

https://github.com/google-research/google-research/tree/master/graph_embedding/persona
https://github.com/google-research/google-research/tree/master/graph_embedding/persona
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Dataset Non-Embedding Adjacency Methods Embedding Methods

Original graph Persona graph Embedding Baselines Ours

J.C. C.N. A.A. J.C. C.N. A.A.
d

Eigen

Maps
node2vec DNGR Asymmetric M-NMF Splitter

d
i
r
e
c
t
e
d



soc-epinions 0.649 0.649 0.647 0.797 0.797 0.797

8 † 0.725 † 0.695 † 0.972

16 † 0.726 † 0.699 † 0.974

32 † 0.714 † 0.700 † 0.973

64 † 0.699 † 0.698 † 0.970

128 † 0.691 † 0.718 † 0.967

wiki-vote 0.579 0.580 0.562 0.860 0.865 0.866

8 0.613 0.643 0.630 0.608 0.886 0.950

16 0.607 0.642 0.622 0.643 0.912 0.952

32 0.600 0.641 0.619 0.683 0.926 0.953

64 0.613 0.642 0.598 0.702 0.932 0.952

128 0.622 0.643 0.554 0.730 0.934 0.939

u
n
d
i
r
e
c
t
e
d



ca-HepTh 0.765 0.765 0.765 0.553 0.553 0.553

8 0.786 0.731 0.706 0.605 0.852 0.877

16 0.790 0.787 0.780 0.885 0.884 0.897

32 0.795 0.858 0.829 0.884 0.903 0.909

64 0.802 0.886 0.868 0.870 0.912 0.917

128 0.812 0.901 0.897 0.820 0.908 0.920

ca-AstroPh 0.942 0.942 0.944 0.874 0.874 0.874

8 0.825 0.811 0.852 0.592 0.903 0.959

16 0.825 0.833 0.877 0.657 0.935 0.972

32 0.825 0.899 0.917 0.942 0.954 0.978

64 0.824 0.934 0.939 0.936 0.966 0.982

128 0.829 0.955 0.968 0.939 0.974 0.985

PPI 0.766 0.776 0.779 0.698 0.701 0.702

8 0.710 0.733 0.583 0.550 0.739 0.865

16 0.711 0.707 0.687 0.786 0.776 0.869

32 0.709 0.691 0.741 0.794 0.793 0.869

64 0.707 0.671 0.767 0.813 0.817 0.866

128 0.737 0.698 0.769 0.799 0.840 0.863

Table 1: We report the ROC-AUC for a link prediction task performed using an ablation test. The columns J.C., C.N. and A.A.

stand for the baselines jaccard coefficient, common neighbors and adamic-adar, respectively.

The rows represents the datasets (directed and undirected) while the columns represent the methods compared. We compare

our Splitter method with three non-embeddings methods (applied to both the original and persona graph) as well four em-

beddings baselines. For the embeddingmethods we report results using dimensionality {8, 16, 32, 64, 128}. We report in bold the

highest AUC-ROC for each dimension and dataset. Notice that for Splitter the dimension refers to the size of the embedding

of each persona node (i.e. the total embedding size of each node is larger). The next table reports results at parity of space.

Results with † indicate lack of completion. We used a machine with 32 GB ram.

for DNGR, we use the bottleneck layer values as the embeddings

and the dot product as similarity; for Asymmetric, we use the dot

product; and for M-NMF, similarly to node2vec, we train a model

on the Hadamard product of the embeddings.

Our Method (Splitter): In order to use Splitter for link pre-

diction, we need a method to calculate a single similarity score

between two nodes (u,v) in the original graph G, each of which

may have multiple persona representations. Specifically, as the

Splitter embedding model uses the dot-product to encode the sim-

ilarity between the two node’s representations, we need a method

to extract a single score from the pairwise similarity of the (poten-

tially) multiple persona nodes. Similar to applying non-embedding

baselines to the persona graph, we experimented with a number of

aggregation functions (including min, max, mean, etc). The highest
performing aggregation function was the maximum, so we define

the similarity between the two nodes in G to be the maximum

dot-product between any of their constituent personas in GP .

For learning embeddings with Splitter, we set the random walk

length t = 40, number of walks per nodeγ = 10, and the window size

w = 5, the initial learning rateα = 0.025, and the graph regularization

coefficient λ = 0.1. For EmbedFn, we used node2vec with random

walk parameters (p = q = 1) which is equivalent to DeepWalk.

3.4 Experimental Results

In the following table, we report the experimental comparison of

Splitter with several embedding and non-embedding baselines.

For each experiment, we report the AUC-ROC in a link predic-

tion task performed using an ablation test described in Section 3.2.

For consistency of comparison, we use the experimental settings

(datasets and training/testing splits) of [2] for the baselines. Hence,

the baselines’ numbers are the same of [2] and are reported for

completeness.

We first report in Table 1 the results of Splitter with several

dimensionality settings. All results involving Splitter or the adja-

cency matrix on persona graph baseline uses the connected com-

ponent method for ego-net clustering. We chose the connected

component algorithm for easy replication of the results because it

performs very well, as well as due to its previous use in ego-net

clustering [18, 34]. In particular [18], showed theoretical results in

a graph model for the connected component method at ego-net

level.

We first take a look at the adjacency matrix baselines. Here, we

consider both the vanilla version of the well-known baselines in

the original graph, as well as the application of such baselines on

the persona pre-processed graph (with a methodology similar to

Splitter, as described above). We observe that simply applying

the persona preprocessing to the standard baselines does not con-

sistently improve the results over using them in the original graph.

In particular, we only observe improvements in two of the five

graphs we analyzed, while sometimes, we see even strong losses

in applying this simple pre-processing, especially for our sparsest
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Dataset dmax = 16p̄ Best EigenMaps Best Node2Vec Best DNGR Best Asymmetric Best M-NMF Splitter d = 16

soc-epinions 48.5 † 0.726 † 0.700 † 0.974

wiki-vote 64.0 0.613 0.643 0.630 0.702 0.932 0.952

ca-HepTh 38.2 0.802 0.886 0.868 0.885 0.912 0.897

ca-AstroPh 40.5 0.824 0.934 0.939 0.942 0.966 0.972

ppi 79.5 0.737 0.733 0.769 0.813 0.840 0.869

Table 2: AUC-ROC of Splitterwith d = 16 compared with best baseline allowed larger total embedding space (at approximate

space parity).

graphs, such as ca-HepTh. This confirms that the gains observed in

our Splitter do not come merely from the pre-possessing.

Now, we consider the embedding methods. In this table, to gain

an understanding of Splitter embeddings, we compare different

sizes of Splitter embeddings (per persona node) with same size

embeddings of other methods (per node). Before delving into the

results, a note is important; since each node can have multiple

persona embeddings, the total embedding size of Splitter (for

the same dimension) can be larger than that of another standard

embedding method. For this reason, we will later compare the

results at same total embedding size. First, we observe in Table 1 that

at the same level of dimensionality, Splitter always outperforms all

other baselines. The improvement is particularly significant in the

largest graph epinions where our method using size 8 embeddings

improves AUC-ROC by a factor of 40% (reduction in error of 90%)

even when compared with the best baseline with 128 dimensions.

Similarly, our method achieves close to optimal performances in

two of the other largest graphs, wiki-vote and ca-AstroPh.

As we have mentioned before, our method embeds each node

intomultiple embeddings (one for each persona node), so for a given

dimensiond of the embedding, the average embedding size per node

is given by dp̄, where p̄ is the average number of personas per nodes

(i.e. the average number of ego-net clusters per node) in the graph.

We observe the following average number of personas per nodes

per graph: soc-epinions: 3.03; wiki-vote: 4.00; ca-HepTh: 2.39; ca-

AstroPh: 2.53; ppi: 4.97. Aswe notice, the average number of persona

nodes is between 2 and 5 in our datasets (using the connected

component ego-network splitting algorithm). We report in Table 2

a different look at the previous results. This time, we compare

Splitter’s AUC-ROC to other embeddings, allowing for the same

(or higher) total embedding space. In our example in Table 2, we

fix d = 16 for the Splitter method and then we compute the

effective average embedding size for each dataset (p̄16). Thereafter,

we compare our results with the best result for each baseline that

uses approximately 16p̄ dimensions (for fairness of comparison, we

actually round 16p̄ to the next power of 2 and always allow more

space for the other methods vs our method). Thus, it is possible to

observe that the AUC-ROC of Splitter in is higher than that of

every other baseline using about 16p̄ dimensions for all datasets,

except once (in ca-HepTh, M-NMF is better, and we observe this is

the sparsest graph). This confirms that the method improves over

the baselines even after accounting for the increased space due to

the presence of multiple embeddings for nodes. We observe the

same results for other d besides d = 16.

4 TASK: VISUALIZATION

4.1 Synthetic graphs

To gain insight on how our embedding method framework oper-

ates, we first provide a visualization of a small synthetic graph.

The methodology we use is similar to that of [18], which we re-

port for completeness. We created a random graph with planted

overlapping communities using the Lanchinetti et al [24] model.

We chose this model for consistency with previous ego-net based

works [15, 18] and because the model replicates several properties

of real-world graphs, such as power law distribution of degrees,

varying community sizes and the membership of nodes in vary-

ing community numbers. The graph contains 100 nodes and has 9

highly overlapping ground-truth communities.

We show the results of the visualization in Figure 1. First in Figure

1a and Figure 1c we show a force-directed layout of the original

graph and the corresponding persona graph (using Gephi [5] with

the same visualization settings). The node coloring corresponds to

the discovered communities using a non-overlapping community

detection that optimizes modularity [7]. As observed by Epasto

et al. [18] on this dataset, the persona graph has a much clearer

community structure, finding 8 of the 9 overlapping communities

(only 5 communties around found in the original graph).

We now turn our attention to the embeddings output by our

method. In Figure 1b, we show a 2D embedding obtained using

M-NMF [41] with default settings on the original graph, while in

Figure 1d, we show a 2D embedding obtained by our method. As

such, it is possible to appreciate how the Splitter embeddingsmore

clearly identify the community structure, as the eight communities

found are better separated. In contrast, the M-NMF embeddings

do not show a clear separation for this graph, which has highly

overlapping communities.

4.2 DBLP Co-Authorship Graph

We then turn our attention to a real-world co-authorship graph

using DBLP data. The 4area graph contains co-authorship rela-

tionships extracted from papers in 4 areas of study: Data Mining,

Machine Learning, Databases, and Information Retrieval [30]. It is

possible to see in Figure 2a, a plot of Splitter embeddings. Notice

how in Figure 2a there are 4 areas more or less separated that upon

inspection, corresponds to the 4 different fields. The key observa-

tion in this application scenario is that many authors (in particular

the most prolific ones) can contribute to more than one area of

study or more than one subarea. However, standard embedding

methods force each node to be embedded in only one point in the

space, while the Splitter method allows to represent a node as a

combination of embeddings (in this setting, we obtain 1.58 personas

per node on average).
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(a) Original Graph
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(b) Original Graph Embedding – using M-NMF

(c) Persona Graph
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(d) Persona Graph Embedding – using Splitter

Figure 1: Original graph and Persona graph with corresponding embeddings. Notice how the persona graph community struc-

ture is clearer than the one in the original graph and this corresponds tomore separated embeddings. The colors in the original

and persona graph corresponds to community found by a modularity based algorithm. Left side pictures are used with per-

mission from Epasto et al. [18]. (best viewed in color)

(a) Splitter Embeddings – Highlighted Author

Figure 2: Embedding visualization of Splitter in a DBLP

co-authorship graph containing authors from 4 main areas

of computer science. Notice how the personamethods allow

author-nodes to be represented by multiple embeddings.

Upon inspection, we observe that the author is embedded in a

data mining region by node2vec, surrounded by other prominent

authors in Data Mining, such as Christos Faloutsos. However,
when observing the representations learned through our Splitter

method, we see that this author has a number of persona repre-

sentations. This illustrates how the representations from Splitter

allows the node to span both the Data Mining and Machine Learn-

ing region of the space, better characterizing the contributions of

the node. Similar observations hold for other authors.

5 RELATEDWORK

Ourwork bridges two very active areas of research: ego-net analysis

and graph embeddings. As these are vast and fast growing, we will

restrict ourselves to reviewing only the most closely related papers

in these two areas.

5.1 Graph embedding

These methods learn one embedding per graph node, with an objec-

tive that maximizes (minimizes) the product (distance) of node em-

beddings if they are ‘close’ in the input graph. These aremost related

to our work. In fact, our work builds on the approach introduced

by DeepWalk [31], which learns node embeddings using simulated

random walks. These idea has been extended in multiple directions

by using different random walks [22], graph similarity measures

[39], other loss functions [8], or edge labels [14]. These node em-

beddings have been used as features for various tasks on networks,

such as node classification [31] and link prediction [2, 22, 42]. More

recent work in the area has examined preserving the structural

roles of nodes in a network [35, 40], learning embeddings for a

graph kernel [4], or proposing attention methods to automatically

learn the model’s hyperparameters [3]. For more information on

node embedding, we direct the reader to a recent survey [12].
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Moreover, most node embedding methods focus on only learning

one representation for each node in the graph. Walklets [32] decom-

pose the hierarchy of relationships exposed in a random walk into

a family of related embeddings. However, this is distinctly different

from our work, as each node is represented exactly once at each

level of the hierarchy. In addition, the representations are learned

independently from each other. HARP [13] is a meta-approach for

finding good initializations for embedding algorithms. A number of

other works focus on learning community representations, or using

communities to inform the node embedding process [11, 41, 43].

Unlike these works, which focus on aggregating nodes into less rep-
resentations, we focus on dividing nodes into more representations.

5.2 Ego-net analysis

Our work is most closely related to the line of research in social

network analysis based on ego-net clustering. From their intro-

duction by Freeman [20] in 1982, ego-nets or ego-networks are a

mainstay of social-network analysis [9]. Rees and Gallagher [34]

jump-started a rich stream of works [15, 17, 18] that exploit ego-

network level clusters to extract important structural information

on communities [19], to which a node belongs. They proposed to

partition nodes’ ego-net-minus-ego graphs in their connected com-

ponents to find a global overlapping clustering of the graph. Coscia

et al. [15] improved over their clustering method by proposing to

use a more sophisticated label propagation ego-net partitioning

technique. Mostly related to our work is the recent paper by Epasto

el al. [18], where they introduce the persona graph method for over-

lapping clustering. They present a scalable overlapping clustering

algorithm based on a local ego-net partition.

6 CONCLUSIONS

We introduced Splitter, a novel graph embedding method that

builds on recent advances in ego-network analysis and overlapping

clustering. In particular, we exploited the recently introduced per-

sona graph decomposition to develop an embedding algorithm that

represents nodes in the graph with multiple vectors in a principled

way. Our experimental analysis shows strong improvements for

the tasks of link prediction and visual discovery and exploration of

the community membership of nodes.

Our method draws a connection between the rich and well-

studied field of overlapping community detection and the more

recent one of graph embedding which we believe may result in

further research results. As future work we want to explore more in

this direction, focusing on the following challenges: (1) exploiting

embeddings for overlapping clustering; (2) studying the effect of

this method on web-scale datasets; (3) developing theoretical results

on this method; (4) applying our embeddings for classification and

semi-supervised learning tasks; and (5) developi
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