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ABSTRACT

Link Prediction is an important task for evolutionary analysis of
dynamic networks where the goal is to predict links over time based
on historical evolution of the network. Given a sequence of previous
snapshots we propose a temporal link function, SiameseLSTM, to
predict the probability of link formation for any pair of nodes in the
near future. We assume that nodes lie in a temporal latent space,
gradually move as the network evolves over time and co-evolve with
their neighbors in the near future. The proposed model uses LSTM
to project the temporal latent space embeddings ([7, 41]) of nodes
to a hidden state latent space optimized for the downstream link
prediction task. We use a Siamese adaptation of LSTM for the hidden
state embeddings to follow Structural Homophily: two nodes which
are close to each other in the latent space interact with one another
more frequently than two faraway nodes.

We empirically show that our model outperforms state of the
art algorithms for link prediction when evaluated on real world
dynamic networks. We also show how varying the number of pre-
vious snapshots used to exploit historical information affects the
performance of the model to predict future links.
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1 INTRODUCTION

Dynamic networks arise in many real life applications such as
web social networks, citation networks, communication networks,
cyber-physical systems, biological networks etc [3]. Link Prediction
is an important task for evolutionary analysis of such dynamic
networks, where we infer potential links in future based on series
of observed network snapshots in the past [1, 7, 9, 13, 27, 39, 41].
In this work we focus on temporal link prediction problem: Given
a sequence of graph snapshots Gy, ...,G; from time 1 to ¢, how
do we predict links in future time ¢ + 1? For this, one needs to
construct model for link probabilities between pair of nodes. Recent
research in link prediction has focused on latent space modeling of
networks. That is, given the observed interactions between nodes
the goal is to infer the position of each node in some latent space so
that the probability of a link between two nodes depends on their
positions in that space. Various approaches, including Bayesian
inference [15, 37], Multidimensional scaling (MDS) [29], matrix
factorization [11, 13, 24, 26, 36, 40] have been proposed to infer the
static latent space representations of the observed network. Most
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of these approaches have focused on static graphs, where the latent
positions of the nodes are fixed.

To extend the static latent space models for dynamic networks,
several approaches propose to learn a temporal latent space such
that for each snapshot, nodes that are more likely to have a link are
closer in the temporal latent space. Some methods have exploited
topological structural information, which implies that two nodes
close to each other are more likely to form a link in the near future [7,
9,10, 13, 20, 21, 34, 38, 39, 41]. However, since real-life networks are
often very sparse with limited observed links, methods considering
structural information alone may have poor performance. Recently,
many studies have also exploited temporal information, which
reveals the relationships between the current state of a network
and its recent history [7, 9, 27, 29, 38, 39]. They assume the principle
of temporal smoothness, which states that the current state of a
network should not change drastically from its most recent history
[8].

A very recent study LIST [39] has exploited structural and tem-
poral information and characterized network evolution using a time
function. Another recent study STEP [7] has also exploited both
structural and temporal information, but characterized network
evolution using a global transition matrix to reflect different types
of evolutionary patterns which was difficult using time function
used in LIST [39] as the time function should be general enough to
reflect the evolutionary patterns. STEP also preserves the deep net-
work structure by considering the higher-order proximity among
nodes.

All temporal latent space models formulate link prediction prob-
lem in dynamic networks as an indirect regularized optimization
problem where the main cost is to infer proximity (or high order
proximity) among node pairs along with structural and temporal
evolution constraints costs. These methods use a link function (tem-
poral in nature) to predict the probability of link formation between
nodes in future. However, as the network dynamics is non-linear
in nature having temporal dependencies, we need a parametric
temporal link function with the parameter being optimized directly
on the downstream link prediction task.

Given temporal latent spaces Zi, ..., Z; for graph snapshot se-
quence Gy, ..., Gy, we propose a temporal link function F(Z1, ..., Z;)
— Hi,...,H; where H; for r € {1,..,t} represent hidden latent
space such that the probability of link formation between two
nodes depends on their position in the hidden state space.

We propose a recurrent neural network architecture to model the
temporal function F. Recurrent neural networks (RNN), especially
the Long Short-Term Memory (LSTM) Network [14] have been
particularly successful in sequence representation task [25, 31, 32].
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Figure 1: Our model uses LSTM to read in temporal node embedding sequence for pair of nodes and employs hidden states to
predict whether they will have link or not at different time steps.

In this work we show that the Siamese adaptation of LSTM,
SiameseLSTM, can be trained using observed links over sequence
of graph snapshots. Specifically for every node pair u, v in graph
Gy, for each 7 € {1, ..., t}, probability y, (u, v) that they will have
link in graph G4 is given by :

y=F(Z¥, .. ZYU,F(Z?, ... Z2)

where Z¥ represents node u’s latent position at time-point 7.
SiameseLSTM uses temporal latent space embedding of nodes
in a principled manner to learn from historical evolution patterns
from sequence of graph snapshots to better predict the probability
of two nodes forming link in future.
Our major contributions are summarized as follows:

e Given a temporal latent space for sequence of graph snap-
shots we define the proposed temporal link function Siame-
seLSTM. Further we define a regularized optimization prob-
lem to leverage historical information present in past graph
snapshots.

o We briefly define two recent temporal latent space models,
BCGD (Block-Coordinate Gradient Descent) [41] and STEP
(Structural and Temporal Evolution in Link Prediction) [7]
which serve as input to the proposed model. The key idea of
both models is to collectively leverage structural and tem-
poral information to better infer a low-rank temporal latent
space.

e We conduct extensive experiments on several real-life datasets
to validate the performance of the proposed temporal link
function when used with two different temporal latent space
models BCGD and STEP. We also show the effect of different
hyper parameters on the performance of the model.

The rest of the paper is organized as follows. We formulate the
temporal link prediction problem in Section 2. Section 3 defines
the proposed link function along with its optimization formulation.

In section 4 we briefly define the temporal latent space models
BCGD and STEP. Experimental results and effect of parameters
on performance is given in Section 5. Section 6 describes several
related works. We conclude the paper in Section 7.

2 PROBLEM FORMULATION

Let G(V, E) denote a network where V is set of nodesand E C VXV
is the set of links. We denote individual nodes by u and v and time-
stamps by 7. t is the total number of time snapshots.

Dynamic networks evolve over time generating sequence of
snapshots denoted by G1(V, E1), Ga2(V, E3), ..., G¢(V, E;). V can vary
as the network evolves but one can always modify the network
to include all observed nodes from all snapshots. Let Z; be the
low-rank r-dimensional temporal latent space embeddings for set
V.

We aim to learn the temporal latent space exploiting structural
and temporal information based on two key ideas described below.

e Network structural evolution: Two nodes that are close to
each other in the network in terms of network distance, are
also close to each other in temporal latent space [6]. Also
individual node is more likely to co-evolve with its neighbors
in the near future [7].

e Network temporal smoothness: Network evolves smoothly,
i.e., current state of the network shouldn’t change dramati-
cally from its most recent history [8].

We use BCGD and STEP as our temporal latent space models
which are described in Section 4. We define link prediction problem
as predicting the emergence of new links and deletion of existing
links in graph G;4+1 [41]. Here the network can by symmetric or
asymmetric and weighted or unweighted.



3 TEMPORAL LINK FUNCTION:
SIAMESELSTM

Let Z, € R™" denote a temporal latent space, foreach r € {1, ..., t},
where n is total number of nodes and r is the temporal latent space
dimension. If the link function is F then we model F using a Long
Short Term Memory network. Practically LSTM is superior to basic
RNNss for learning long temporal dependencies through its use of
memory cell units that can store/access information across lengthy
input sequences. Like RNNs, LSTM sequentially updates a hidden-
state representation, but these steps also rely on a memory cell con-
taining four components (which are real-valued vectors): a memory
state ¢, an output gate o, that determines how the memory state
affects other units, as well as an input (and forget) gate i, (and f7)
that controls what gets stored in (and omitted from) memory based
on each new input and the current state. For each node u sequence
(Z},...,Z}) serve as the input to the LSTM.

Below are the updates performed at each timestamp 7 € {1, ..., t}
in an LSTM parameterized by weight matrices W;, Wf, We, Wy, Us,
Ur, Ue, Uo and bias-vectors b;, bf, be, bo.

= sigmoid(W; Z¥ + Uihr—1 + b;)

fr = sigmoid(WfZZT‘ +Uphr—1 + by)

¢ = sigmoid(WeZ} + Uchr—1 + be)

cr =ir OCr + fr Ocr—g

o7 = sigmoid(WoZ¥ + Uphr—1 + bo)

h; = o; © tanh(c;) (1)

~.
BN

By following updates given by Equation 1, we get hidden state
embedding for each node u given by h¥ for each 7 € {1, ..., t}.

A simple Siamese adaptation of the LSTM can be used to predict
the probability y;+1(u, v) that a node pair u, v will have new link
at time step 7 + 1, and is given by:

Yr+1(,v) = he(W)Uphe (V)
where Uy, € R4 5 hidden state space interaction matrix and
can incorporate directed and undirected natures of graphs and d
represents hidden state space dimension.

The proposed SiameseLSTM is outlined in Figure 1 and has two
sub-networks LSTM, and LST M}, which each process one node for
a given node pair u, v. We choose the Siamese architecture with
tied weights such that LSTM, = LSTMj,.

Now we define an optimization formulation to optimally learn
LSTM weights and hidden state space interaction matrix Uy, For-
mally (Z¥,...,Z¥) and (Z7, ..., Z?) represent node embedding se-
quences for nodes u and v respectively for each 7 € {1,...,t}.
Y;+1(u, v) is defined as follows.

1 ifu and v have new link from 7 to 7 + 1
Yei1(u,v) = .
0 otherwise
It represents the interaction measure between the node pair from
7 to 7 + 1. Then we define a minimization optimization problem as
follows.

t—1
minj =" > Yer(wo) - REURRLIE + BIUAIE  (2)

7=1(u,v)eVXV

Optimization formulation given by Equation 2 uses observed
links across snapshots to learn evolutionary pattern.

Hidden state embedding h¥ for any node u is calculated using
node embedding sequence Z_ . ., ..., Z¢ transformed using LSTM
where w is the window-size and represents how many previous
snapshots to consider to calculate hidden state latent space. Opti-
mizing Equation 2 is computationally expensive due to the large
number of possible node pairs (O(V X V)) at each graph snapshot.

We define a sampling approach to reduce the number of node
pairs at each 7 € 1,...,¢ — 1. We find all node pairs which have link
in future given current time-stamp 7 and call them set Ps. Now we
randomly sample same number of node pairs which did not have
link in future and call them set Ns [41]. The modified optimization
problem now can be written as follows.

t-1
minj=)" > Yeri(w,0) - UL + BULIE (3)

7=1(u,v)ePs+Ns

The sampled node pairs Ps and Ns at each time step 7 € {1, ..., ¢}
are training pairs for the SiameseLSTM architecture. We allow
|Ps| = |Ns| to be < 10000 [41].

4 TEMPORAL LATENT SPACE MODELS:
BCGD AND STEP

In this section we briefly present two latent space models BCGD
[41] and STEP [7] which we use as input for our temporal link
function.

4.1 STEP

STEP aims to jointly optimize for higher order proximity matrices
factorization at all time steps in addition with structural evolution
and temporal smoothness constraints optimization. The overall
optimization formulation is given as follows.

t t
. 2 _ 2
minJ = 3" | f(Ar) = ZUZ{ g + @ ), 1Ze = D' f(Ar) Ze Iy
=1 =1

t
+(1=a) Y 1 Ze = PZea % + BIUE
=2

s.t. ZTTZT =1,Z; >0, for 7=12,..,t
P1=1,P>0 (4)
where f(A;) is a higher order proximity matrix for graph G; and
given by:

A+ A%+ ..+ AK

f(4) = log =
where A is the row-normalized adjacency matrix A, i.e., each row
of A sums up to one. k is an integer number representing the order

of proximity, which usually controls the trade-off between compu-
tational speed and accuracy. D; € R™ " is the diagonal matrix for



Dataset #Nodes  #Edges
CollegeMsg 1899 59835
Hep-Ph 28093 4,596,803
Digg 30398 87,627
Table 1: Statistics of Dynamic networks

f(Ar). 1is the n-dimensional column vector of all ones. ||.||f is the
the Frobenius norm, Z; € R™" is low rank embedding for nodes, n
is number of nodes and r is the matrix rank (embedding dimension).
U € R"™" is attribute interaction matrix and has different meaning
for directed and undirected networks. It models link transitivity
between nodes. P € R™™" is a stochastic transition matrix to ap-
proximate the change of low rank representation matrices from
timer — 1totimer. Z; = PZ,;_1 + €.

To solve the optimization problem in Equation 4, STEP proposes
an efficient block coordinate gradient descent approach, where
each group of variables naturally forms a ’block’. To be specific,
the objective function is alternately minimized with respect to one
group of variables while fixing the rest.

Low-rank embeddings Z; are updated as described in the follow-
ing. Gradient of J(Z;) (w.r.t Z;) when optimization formulation,
Equation 4, only includes terms related to Z; can be written as
follows.

VJ(Ze) = = 2(f(A)Z: Ur + f(Ar) Z:U) + 2Z:U + 2aWi Z,
+2(1 = a)(PZr = PZr—1 — PT Zr41)
where
Wr = (I- D7' f(A:) (I - D7 f(Ar))
U=vUT+UTU and P=1+PTP (5)

As the gradient VJ(Z;) is Lipschitz continuous with Lipschitz
constant given by:

L=4llfADIZNUNE + 21UlI% + 2llaW: +2(1 - )P}

STEP employ Nesterov’s [5] descent to solve for Z; which is scal-
able for large datasets. STEP gets optimal Z; by constructing two
sequences Zi“ and YTk and alternately updates them in each iteration
round. At k-th iteration we have

zF = p (Y - 1/LV(Y* )

L+ J4yf  +1
2
_1—1
vk =zl Bt S — -z ©)

Yk =

where the projection (p+(A))i; = max(0, A;j). Also, V(Y51 can
be calculated using Equation 5 and yy. is the acceleration coefficient
for updating Yk Initialization is done as follows: Y* = Z; and
Yo = 1. We can continuously generate two sequences Zf and Yf by
updating according to Equation 6. As the sequences converge, the
optimal solution for optimization formulation can be determined
by the final value of ZX.

The attribute interaction matrix U is updated as described in the
following. Only the following terms in the objective function in
Equation 4 have U in them.

t
min J(U) = 21 If(Ar) - Z:UZT |5 + BIUIZ

By setting the derivative of the above objective function VJ(U) =
0, we can obtain the optimal solution as follows.

L ZL Az,
t+p

The global transition matrix P is updated as follows. The global
transition matrix can be solved by minimizing J(P), defined as
follows.

U=

t
i P)= Zr = PZr |2
pymin_ J(P) ;u v = PZeall}

This equation can be further decomposed into several indepen-
dent sub-problems w.r.t. each row of P as follows.

t
i P(i,?)) = Z:(i,2) = P(i, ) Zr—1 |2
po BTG ,Zzz" 2 (i,2) = P(i, ) Ze1 1%

Because this objective function J(P(i, :)) is convex and continu-
ously differentiable over a compact convex set, STEP applies simple
but efficient Frank-Wolfe [17] method to solve it.

4.2 BCGD

The Temporal Latent space model, Block Coordinate Gradient De-
scent (BCGD), optimizes for structural and temporal information
by formulating a optimization problem given by

t
min J(Zy, . Z0) = ) Y, (Gr(wo) = Ze(Ze (0)")?

7=1(u,v)€E,
t
DN Zewzew) )
7=1(u,v)¢E;,
t
23 (1= ZeWZea )
=1 U

subject to Vu,7,Z; > 0 and Z, Wz, =1 (7)

Equation 7 incorporates temporal information by constraining
latent position of nodes to move gradually without any drastic
jump.

We use Incremental BCGD Algorithm [41] to solve this optimiza-
tion problem to infer temporal latent space.

5 EXPERIMENTS

In this section, we present the experimental evaluation of proposed
temporal link function SiameseLSTM with input from BCGD and
STEP temporal latent space models and compare them with recent
state of the art methods.
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CollegeMsg | Hep-Ph | Digg width. In the experiments if A; is adjacency matrix for snapshot ¢
AA 0.5057 0.5607 | 0.5003 then element a;; represents the link weight between vertices i and
BCGD 0.5432 0.5567 | 0.6177 j at time-stamp 7 for each 7 € {1, ..., t}. In this work we set ¢t = 8.
STEP 0.7205 0.8211 0.6852
STEP+SiameseLSTM 0.7278 0.8841 0.6879 X . .
BCGD+SiameseLSTM | 0.8246 0.8870 | 0.7769 5.2 Evaluation metric and baseline methods

Table 2: New links prediction accuracy: Area under
Precision-Recall curve comparison

5.1 Datasets
We briefly describe the datasets in the following.

e Hep-Ph (undirected) : Hep-Ph dataset is a collaboration net-
work from the arXiv’s High Energy Physics-Phenomenology
section. Nodes are authors and an edge between two authors
denotes a common publication. Timestamps denote the date
of publication.

o Digg (directed) : The dataset contains the reply networks of
the social news website Digg. Each node in the network is a
user of the website, and each directed edge denotes that a
user replied to another user.

e CollegeMsg (directed) : This dataset is comprised of private
messages sent on an online social network at the Univer-
sity of California, Irvine. Users could search the network
for others and then initiate conversation based on profile
information. Every edge (u,v) has a time-stamp denoting the
time when a user u sent a private message to user v.

The statistics of the three datasets are shown in Table 1. The
number of edges in each network is the total number of edges
over all the snapshots. We create t number of snapshots for each
network by dividing the whole time-stamp interval from first edge
time-stamp to the last edge time-stamp into equal time interval

For dynamic networks, it is generally more meaningful to assess
an approach in terms of its predictive power for future network
behavior. Towards this goal, for each dataset we use Ay, ..., A;_1
as training data and A; as test data. To systematically evaluate the
performance of different methods we use precision-recall curve as
Receiver Operating Characteristic (ROC) curve can be deceptive
and precision-recall curve yields better precision in evaluating the
performance of link prediction [35]. We report the area under the
precision-recall curve (AUPR) to qualify the performance of an
approach.

We compare our method’s performance with the following base-
line methods.

e Adamic-Adar (AA): AA assumes that two nodes are more
likely to be linked together if they share many common
neighbors. AA assigns each common neighbor a weight
to reflect its contribution. Although AA approach is com-
monly used for static networks, it can also be applied to
time-varying networks by aggregating all edges from differ-
ent timestamps to one network.

e BCGD: BCGD is scalable temporal latent space model ap-
proach for link prediction, which assumes two nodes are
more likely to form a link if they are close to each other in the
latent low-rank space. The incremental inference algorithm
is chosen and all other parameters (e.g., latent dimension
r = 20,4 = 0.0001) are set to values same as the ones in [41].
The model learns temporal latent space (Zi, ..., Z;—1) and



defines a link function for prediction of A; given by

Ar~ZiZ]

STEP: STEP uses temporal latent space embeddings learned
by optimization formulation to predict future graphs. It im-
plements a simple weighted decaying model to uncover time-
varying process among massive set of time series data. The
model specifies that A; depends on its previous series of data
Zt—w+1s ---, Zt—1 and defines a temporal link function which
can then be written as

t-1
A ~ Z D(‘[)Pt_T+IZTU(Pt_T+lZT)T

T=t-w+l1

where w is the window size of historical data, and D(7) is
decay factor and can be selected as an exponential decay
function with parameter 6 > 0 such as D(zr) = e~ 00-7) we
set the model parameters « = 0.5, f = 0.1, 6 = 0.8, w = 3.
We set k = 3 while constructing the high order proximity
matrix f(A;) same as the ones suggested in [7].

For each dataset, we use {A1, Ay, ..., A7} as the training set and
try to predict the potential links for Ag. Specifically we select all
node pairs (u, v) such that Ag(u,v) # 0 but A7(u,v) = 0 and call
them test links. We randomly generate an equal size of non-links
i.e. node pairs (4, v) such that A7(u, v) = Ag(u, v) = 0 and call them
test non-links. The equal number of test links and test non-links are
then served as the test set in the evaluation process. We carry out
prediction on five different randomly generated test set for each
model and report average AUPR values.

The original BCGD method is only for undirected graphs, we
transfer the adjacency matrix of directed graph to undirected one
by using (A + AT)/2 when implementing BCGD on directed graphs.

Optimization of SiameseLSTM paramers is done using Adam
optimizer. We employ early stopping based on a validation set
containing 25% of training node pairs.

5.3 Experimental Results

In this section we present results for the proposed SiameseLSTM
model with different temporal latent spaces as inputs, i.e., BCGD
(BCGD+SiameseLSTM) and STEP (STEP+SiameseLSTM) and other
baseline methods.

For comparison with baselines we empirically set parameters for
SiameseLSTM link function and present effect of varying the param-
eters in the next subsection. We set hidden state space dimension
d = 64. For BCGD+SiameseLSTM we set latent space dimension
recgp = 20. For STEP+SiameseLSTM we set latent space dimen-
sion r¢Tpp = 128. Window size w = 3 is used for all datasets with
regularization parameter f = 0.5. We randomly generate five differ-
ent sets for previously observed links to be used as training pairs
for SiameseLSTM and report average AUPR for each of the five
randomly generated test sets. Table 2 shows comparison of different
methods for new link prediction task. There are several interesting
observations. First, SiameseLSTM with BCGD temporal latent space
outperforms all other methods. Although STEP is better than BCGD
but when using with SiameseLSTM, BCGD+SiameseLSTM outper-
forms STEP+SiameseLSTM. Note that performance of both latent

space models, BCGD and STEP, increases when SiameseLSTM is
used as the temporal function.

5.4 Parameter Studies

Now we study the impact of varying different parameters of Siame-
seLSTM like window-size (w), hidden state space dimension (d) and
regularization parameter (f).

We plot window size vs AUPR for both BCGD+Siamese- LSTM
(Red) and STEP+SiameseLSTM (Blue) for all the datasets in Figure 2
keeping other parameters constant (f = 0.5, rgcgp = 20, rSTEP =
128, d = 64). We vary window size from 1 to 7 (as total number of
training snapshots = 7 for total of t = 8 snapshots).

We also show impact of f on performance of SiameseLSTM with
both the latent spaces in Figure 4 keeping other parameters constant
(w=3,rgcGgDp = 20, rsTpp = 128, d = 64). f is varied as {0, 0.2,
0.4, ..., 1}. B characterizes the hidden state interaction matrix. As
we can see SiameseLSTM is very robust for all datasets with respect
to parameter S.

We also vary hidden state space dimension d as {8, 16, 32, 64,
128, 256} and its effect on AUPR is plotted in Figure 3. Parameters
other than d are kept constant (f = 0.5, rscgp = 20, rsTpp = 128,
w = 3). For both BCGD+SiameseLSTM and STEP+SiameseLSTM,
AUPR increases up to a certain value of d then drops a little bit and
then saturates.

6 RELATED WORK

In this section we give a brief overview of previous works related
to link prediction in static as well as dynamic networks.

Link prediction problem specifically in static networks has been
extensively studied. We refer readers to recent survey papers [4, 23]
for an exhaustive introduction to this field. Many approaches have
used graph-based heuristics to model link probability between two
nodes. Graph-based heuristics [2, 18, 19, 21, 33] model the link
probability between two nodes as a function of their topological
similarity. Common Neighbors [2], triad closures [33] are examples
of local proximity heuristics whereas weighted shortest paths [19]
is a global proximity metric.

The problem is quite different for dynamic networks because of
their evolutionary nature [3]. Many approaches have used network
topological information, which model link probabilities based on
how close the nodes are in the network [7, 9, 10, 13, 20, 21, 34, 38,
39, 41]. For example, an auto regressive integrated moving aver-
age model was built to predict links in the next period based on
previous time series data [16]. A local structural similarity based
non-parametric model [28] was presented to predict link proba-
bilities of node-pairs. Another method proposed stochastic block
transition models that combined an extended Kalman filter with a
local search algorithm to track dynamic networks [34].

Many approaches have relied on latent space modeling [1, 7, 9,
10, 12, 15, 30, 38, 39, 41], where the main idea is to learn a latent
low-dimensional vector representation for each node such that
nodes close to each other in the low-rank space will have link
in future with higher probability that the ones that are far away.
For example [12] extended the mixed membership block model to
allow a linear Gaussian trend in the model parameters (DMMSB).
[30] embedded longitudinal network data as trajectories in a latent
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Euclidean space. [9] did latent space modeling of road networks
for analysis of traffic patterns and their evolution over time. In
addition to network structures, [7-9, 22, 27, 29, 38, 39, 41] have also
exploited temporal information as real-life networks are often very
sparse and methods considering structural information alone may
give poor performance.

Temporal information is extremely valuable to reveal the relation-
ships between the current state of the network and its recent history.
They assume the principle of temporal smoothness, which states
that the current state of a network should not change drastically
from its most recent history. For example [27] developed a dynamic
mix-membership model to analyze the role transitions of nodes
from a sequences of earlier time-stamps. Yet another approach em-
bedded networks into a latent space in which the positions of nodes
at consecutive time-stamps were constrained such that dramatic
changes were unlikely to occur [29]. Similarly, a temporal latent
space model was proposed to allow nodes in networks to move
gradually as the network structures evolved over time[41].

Two very recent studies [7, 39] have also modeled temporal
latent space utilizing both structural and temporal information.
[39] has characterized network evolution directly as a function
of time whereas [7] has characterized network evolution using a
global transition matrix to reflect different types of evolutionary
patterns which was difficult using time function used in [39] as the
time function should be general enough to reflect the patterns [7].
STEP also preserves the deep network structure by considering the
higher-order proximity among nodes.

All temporal latent space models uses a link function which
maps node pairs to probability of link formation between them
in future. Generally the link function used is a non parametric
similarity measure between nodes and does not address temporal
non-linear dependencies present in the evolution of networks. To
the best of our knowledge, this is the first work which proposes
a trainable temporal link function, which aims to learn temporal
dependencies over sequence of previous graph snapshots for future
link prediction.

7 CONCLUSION

In this paper, we propose a temporal link function, SiameseLSTM,
for temporal link prediction in dynamic networks. The proposed
link function learns from historical graph snapshots to better in-
fer the probability that any two nodes will have link in future. To
exploit Structural and Temporal evolution we use pre-trained la-
tent space models and learn non-linear temporal dependencies for

link prediction using SiameseLSTM to increase the performance of
latent space models. We evaluate our method on three real-world
datasets and show that SiameseLSTM link function when used in
conjunction with latent space model gives better performance on
link prediction task. We conclude that SiameseLSTM can be used
with different latent space models with different optimization for-
mulations to improve the predictive power for future link prediction
task.
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