
Unsupervised Construction of
Knowledge Graphs From Text and Code

Kun Cao
Georgia Tech Research Institute

Atlanta, GA, USA
Kun.Cao@gtri.gatech.edu

James Fairbanks
Georgia Tech Research Institute

Atlanta, GA, USA
James.Fairbanks@gtri.gatech.edu

ABSTRACT
The scientific literature is a rich source of information for data
mining with conceptual knowledge graphs; the open science
movement has enriched this literature with complementary
source code that implements scientific models. To exploit this
new resource, we construct a knowledge graph using unsu-
pervised learning methods to identify conceptual entities. We
associate source code entities to these natural language con-
cepts using word embedding and clustering techniques.

Practical naming conventions for methods and functions
tend to reflect the concept they implement. We take advan-
tage of this specificity by presenting a novel process for joint
clustering text concepts that combines word-embeddings, non-
linear dimensionality reduction, and clustering techniques to
assist in understanding, organizing, and comparing software
in the open science ecosystem.With our pipeline, we aim to as-
sist scientists in building on existing models in their discipline
whenmaking novel models for new phenomena. By combining
source code and conceptual information, our knowledge graph
enhances corpus-wide understanding of scientific literature.

ACM Reference format:
Kun Cao and James Fairbanks. 2019. Unsupervised Construction of
Knowledge Graphs From Text and Code. In Proceedings of Knowledge
Discovery in Databases, Workshop on Machine Learning in Graphs,
Anchorage, Alaska, USA, August 4 – 8, 2019 (KDD’19 MLG), 6 pages.
https://doi.org/

1 INTRODUCTION
The corpus of scientific literature is growing exponentially,
leaving individual researchers struggling to keep up. Natural
language processing (NLP) techniques can help us understand
this literature. However, as science becomes more dependent
on large scale software, modeling and simulation, and data
analysis scripts, the knowledge contained in publications shifts
from the text of the papers to the software artifacts used to
produce them with them. With the advent of open science and
the drive to share open source code that implements scientific

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
KDD’19 MLG, August 4 – 8, 2019, Anchorage, Alaska, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.
ACM ISBN . . . $15.00
https://doi.org/

models, we are able to conduct analysis on scientific source
code for the first time.

Source code definitions are typically semantic abbreviations
of the scientific concepts they implement. We demonstrate
that this constrained vocabulary is sufficient enough to cre-
ate mappings to concepts extracted from natural language by
using vectorized distances of word-embeddings [13]. Subse-
quently, we build knowledge representations that connect the
conceptual relationships from scientific texts, with the pro-
cedural information embodied in open source scientific code.
This paper proposes a knowledge graph framework for that
knowledge representation and a methodology for constructing
said graph using both rule-based and unsupervised-learning
techniques. Our methodology demonstrates an automated pro-
cess of concept extraction using an open source textbook on
epidemiological modeling and provides semantic meaning to
code. These knowledge graphs can be used in future research
to understand, organize, and augment scientific models.

Motivation. The core motivation of this project is to support
SemanticModels.jl [4], which is a system that allows scien-
tists with limited scientific computing backgrounds to mod-
ify existing implementations that are similar to their model.
The knowledge graph of reference text and code provides a
method of searching for other software models that are seman-
tically similar. Knowledge graphs are generated for eachmodel
and stored within a code base where similarity is determined
through comparison of conceptual nodes. This information
along with other data provided by dynamic and static analysis
gives SemanticModels.jl the capability to detect similar models
and perform model transformations.

Related Work. Related work includes the generation of cod-
ing comments with Deep Learning, which makes the assump-
tion that the transition process between source code and com-
ments is similar to the translation process between different
natural languages [9]. The Abstract Syntax Tree (AST) is used
to model extracted concepts from source code to enable trans-
lation to natural language through traversal. NSEEN: Neural
Semantic Embedding for Entity Normalization tackles a similar
problem of constructing a knowledge graph from extracted
text from various domains. They introduce a process called
entity normalization which consists of mapping entity men-
tions from reference text to another set of established entities
from reference sets through the use of Siamese recurrent neural
networks [5].

Text can also be converted to knowledge graph entities
through the use of Long Short-Term Memory networks [7,
10, 14]. Supervised learning through the use of Random Walk

https://doi.org/
https://doi.org/

and a LSTM recurrent network is used to create skipgram
entities that are included in a knowledge base. Input text is
then assigned to these entities based on semantic similarity.
This requires paired samples of text and knowledge graph en-
tities to train the models. Leveraging unsupervised techniques,
our model offers a solution that defines entities without a
handcrafted ontology.

Developing domain specific software is a costly process;
with a large code base it is hard to understand how the pieces
fit together and how those pieces of software relate to concepts
in the application domain of interest. We take scientific soft-
ware typically used in modeling applications as an interesting
case because both the code and text are relatively sophisticated
and contributing to the field requires deep knowledge of both
software and science concepts. A Survey of Machine Learning
for Big Code and Naturalness [1] demonstrates application of
bringing semantic meaning to code by utilizing the natural-
ness hypothesis, which argues, software is a form of human
communication; software corpora have similar statistical prop-
erties to natural language corpora; and these properties can
be exploited to build better software engineering tools.

Our approach leverages code naming conventions formatch-
ing software and domain application conceptual entities into
a unified knowledge graph without paired training examples.
Like the semantic web, our model serves to create concept sim-
ilarity relationships that involve the content of the resources
rather than the bibliometric structure of the documents. Fur-
thermore, our model offers a solution to the multidimension-
ality of the ontologies within scientific domains and tackles
the inherent complexity of Big Code [16] [3] [1].

2 METHODOLOGY
Textual Explanations of Modeling Concepts. Online or in-

teractive textbooks are a novel creation of the open science
movement. These textbooks are created when an author de-
cides to combine text, data, figures, and code into an interactive
textbook. Such books are published under a copy-left license
on collaborative platforms such as github.com. This medium
allows for simple text extraction as compared to their PDF and
HTML counterparts. Variables, equations, and bibliographic
references can be extracted from markdown documents with
regular expressions that make text cleaning relatively easy. For
our model, we leverage the expository text and scientific or
mathematical variables that are referenced in the markdown
files of a textbook as shown in Figure 1. We decompose sen-
tences from the reference text into <subject, verb, object>
triples to form an RDF1 knowledge graph. Edges flow from
subjects to objects along edges labeled with verbs. A sample
of the resulting knowledge graph is shown in Figure 2.

Code Implementations of Models. When online textbooks are
written to explain a scientific, engineering, or mathematical
domain, examples are given in the form of source code. These
source code files are designed for pedagogical purposes and as
such are well structured. These source code examples provide

1resource description framework

(a)

(b)

Figure 1: Modern online textbooks contain markdown files with expos-
itory text and Jupyter notebooks with code and figures. These input
formats are designed for interactive instruction. Our work constructs
scientific knowledge graphs for augmenting scientific reasoning from
these data sources. 1a) Example of online Epirecipes Cookbook [6] text-
book markdown file with 1b) corresponding source code file.

2

github.com

a high-quality, high-fidelity corpus for building knowledge
graphs of the underlying domain. This allows for unambigu-
ous association between concepts in the reference text and
variable and function names extracted from code signatures.
For example, a function named sir_ode() can be associated
to an SIR concept referenced in the text. Furthermore, the code
files associated with scientific models, being pedagogical, do
not contain complex software constructions such as mutu-
ally recursive functions or low level functions manipulating
complex data structures.

Figure 2: A small portion of the resulting knowledge graph. This por-
tion of the knowledge graph shows the relationships between concepts
in SIR modeling. The red vertices are concept nodes with the big red
vertex representing a cluster center for concepts related to "These Mod-
els", and the blue nodes are source code variable nodes. In the bottom
left of the figure, you can see that the infected_individuals is related
to the infection concept which is related to the An exposed infectious
class concept. Additionally, the Beta variable is related to the Beta rate
concept which is related to the susceptible concept.

Pre-Processing. Epirecipes Cookbook [6] is our primary source
of data to build the knowledge graph since it provides us
with a set of epidemiological models implemented in Julia and
contains descriptive text about the models. Equations, refer-
ences, and non-alphanumeric characters, with the exception
of punctuation, are stripped from the text; remaining variables
are then capitalized. Subsequently, subject, verb, and objects
within sentences form source nodes, edges, and target nodes
respectively for our knowledge graph through the use of the
spaCy’s small natural language processing model [8].

Functions and variables are then extracted from the Julia
implementation corresponding to the models. Greek letter
representations are translated to their respective Greek names.
In future work, NLP models will be trained on large corpora
of scientific texts. 2

3 EXPERIMENTATION
Our knowledge graph construction is based on creating clus-
ters using word-embedding representations of the subject and
object words from the cleaned text and then associate these
variables and functions to representative elements from the
2https://www.ncbi.nlm.nih.gov/pubmed/30217670

(a)

(b)

Figure 3: A comparison of clusters with and without dimensional-
ity reduction. 3a Cluster Assignments for high dimensional word-
embeddings. The high dimensional space separates vectors well and
each cluster contains only superficial variations on the same phrase.
3b UMAP transformation embeddings resulting in semantically signifi-
cant clusters. This is because the nonlinear embedding of the vectors
provided by UMAP pulls phrases together in the lower dimensional
space. These clusters are at a resolution too fine for the application of
knowledge graph construction.

object clusters. Rather than defining entities manually, we
extract the entities from existing literature and source code.
Therefore, we use the density-based spatial clustering of ap-
plications with noise (DBSCAN) to determine the number of
clusters/entities for our model [2].

Applying DBSCAN directly to the word-embeddings yields
clusters that are too restrictive. The clusters contain text with
only superficial variations in spelling and capitalization. For
example in Figure 3a, phrases like “The Model”, “The Model
of”, and “The model in a closed population” should share a
semantic relationship but are not connected by the clustering
algorithm. Tuning the DBSCAN epsilon parameter resulted in
a reduction of the number of phrases that are clustered as noise,
but did not resolve the problem of combining semantically
similar phrases.

To tackle this problem, we apply a UMAP transformation
to the word-embedding to reduce the dimensionality of the
input space for clustering [12]. As a result with a DBSCAN

3

https://www.ncbi.nlm.nih.gov/pubmed/30217670

epsilon value of 0.30, the clusters in the UMAP embedded
space compose phrases that are diverse in lexical level, but
similar as concepts. In Figure 3b, various types of models are
assigned to cluster 6, whereas types of rates are assigned to
cluster 5.

However, because the function and variable names are spe-
cific, it is difficult to associate our extracted code signatures
with these high-level concepts. Therefore, we use DBSCAN
with UMAP transformation only on the subject nodes and
exclude the noise to create our hierarchical entities. Then,
we use DBSCAN without a UMAP transformation on the ob-
jects to combine syntactically similar nodes. This captures an
intuitive sense that there are more objects than subjects in
the corpus. Finally, we connect objects (with noise) to subject
entities based on their original <subject, verb, object>
association. Subsequently, extracted variables and functions
are compared to the object nodes and are connected when the
similarity exceeds a fixed threshold discussed in Section 4.

The resulting knowledge graph created from the Epirecipes
Cookbook yielded 115 object nodes and 93 subject nodes. De-
pending on the threshold, the number of edges ranged from
4,000 to 13,000. In order to remove extraneous concepts, sub-
ject components with a node size of 5 or lower were removed
from the knowledge graph.

4 RESULTS AND DISCUSSION
The construction of the knowledge graph is dependent on
factors such as the threshold value and the input resource. In
this section, we introduce methodologies of determining the
threshold value through precision versus recall and measures
of conductance when including an additional scientific corpus.

Internal performancemeasures, such as Silhouette index [15]
and other intra-cluster similarity assessments would not pro-
vide accurate evaluation for our model given examples like
Figure 3a, where the Silhouette index would be high. Other
evaluation metrics, such as measuring the purity of the clus-
ter, would also not apply since we aim to compare and group
shared functionalitywithin a single scientific class-epidemiology.

In order to assess the threshold value for our variable as-
signment, we crafted a set of ground truth labels that were
hand-labeled by a group of peers. These labels were created
from a list of object nodes that reflect the variable/function
nodes that they should be connected with. Evaluation was
conducted with respect to these labeled sets in terms of preci-
sion versus recall at various thresholds (see Figure 4) where
Precision = tp/(tp + f p), and Recall = tp/(tp + f n).

In this application, true positives are <variable/function,
object> edges that exist in the knowledge graph and in the la-
beled set. False positives are <variable/function, object>
edges that were added to the knowledge graph, but not in
the labeled set. False negatives are <variable/function,
object> edges that do not exist in the knowledge graph, but
are in the labeled set.

As the similarity threshold increased, the number of edges
between variable and object concepts are decreased. In order
to determine the threshold value to use, we first discovered the

Figure 4: Precision vs Recall trade-off in this context. Knowledge graph
construction often prefers high recall, low precision thresholds because
false positives can be filtered out in the downstream learning or reason-
ing steps.

threshold value where recall was equivalent to precision. For
our model, we chose a threshold higher than the intersection
point because extraneous edges can be filtered out later in a
downstream processing task. We selected a threshold value
of 0.7 to give a good balance between precision and recall for
our knowledge graph applications.

Figure 2 shows a snippet of the constructed knowledge
graph; subject concept nodes are connected to other object
concept nodes extracted from our <subject, verb, object>
triplet from the reference text. Variable names as a result
were connected to these object nodes through satisfaction
of our similarity threshold parameter. The amount of variable
matches we obtained in our graph was greatly dependent on
the quality of the language triplets extracted from the refer-
ence text. For example, the variable infected_individuals
would not have been built into our knowledge graph had the
triplet <susceptible, contains, infection> not existed.
Our pipeline mimics human learning in the sense that the
more concept associations that are present, the more likely
it is able to draw connections and make semantic sense from
source code.

Furthermore, Figure 5 demonstrates a knowledge graph
that introduces a new corpus from the textbook, Statistics with
Julia: Fundamentals for Data Science, Machine Learning and
Artificial Intelligence [11]. The new introduction produces an
independent set demonstrating that the two textbooks were
relatively disjointed in terms of similarity. The construction
of our graph allowed for quantitative assessments to be per-
formed to evaluate similarity of these two resources. Given
G = (V ,E) to represent our knowledge graph where Va ⊂ V
represents the set of vertices produced by a corpus a and
Vb ⊂ V represents the set of vertices introduced by a new
corpus, b. The sets Va ,Vb form a partition of the vertex set
V . Let Na and Nb denote the size of Va and Vb respectively.
The fraction of the knowledge graph extracted from corpus a
is calculated as Na/(Na + Nb). The conductance of any ver-
tex partition measures the separation between these vertices
in terms of path connectivity. When combining document

4

Figure 5: A portion of the knowledge graph extracted from two online
textbooks: Epirecipes Cookbook [6] and Statistics with Julia: Fundamen-
tals for Data Science, Machine Learning and Artificial Intelligence [11].
Note that the subgraphs corresponding to each textbook (Epirecipes in
red and Statistics in green) are mostly separated, but there are some
inter-textbook connections namely <Simplistic Weather Model Model,
These Models>. These textbooks both talk about modeling physical phe-
nomena with mathematics and so we should expect overlap.

corpora into a single knowledge graph, the conductance re-
flects how many connections between the domains of each
corpus were introduced by the knowledge graph constructions
algorithm. The conductance of a cut S,V \ S in graph G is

ϕ(S) =

∑
i ∈S, j ∈S̄ ai j

a(S)

where ai j are the entries of the adjacency matrix for G such
that:

a(S) =
∑
i ∈S

∑
j ∈V

ai j

and S̄ = V \ S .
When combining two corpora, for example two textbooks

on the same or different topics, one can define S as the set of
concepts and variables extracted from one corpus and compute
the conductance ϕ(S). Table 1 shows the conductance ϕ(S)
between the epidemiology concepts and the statistics concepts
in a knowledge graph built by extracting from two textbooks.
The results show that an increase in the similarity threshold
decreases the number of variable-object relationships across
disciplines. The decline of the number of edges lowers the
conductance ϕ(S).

5 CONCLUSION AND FUTUREWORK
Semantic modeling aims to extract scientific knowledge that
reside in scientific code. With the abundance of open source
code and reference texts, our model provides knowledge to
reduce the complexity of large code bases to assist scientists
and developers in gaining an overview understanding of the
source code. Our framework based on unsupervised learning
and word-embeddings does not require a large volume of
ontological examples and enables the extension of models
with new parameters and components.

Threshold Conductance

0.20 0.0285
0.25 0.0152
0.30 0.0114
0.35 0.0090
0.40 0.0089
0.45 0.0087
0.50 0.0086
0.55 0.0085
0.60 0.0085
0.65 0.0085
0.70 0.0084
0.75 0.0084
0.80 0.0084

Table 1: The transition point between the threshold value 0.30 and 0.35
(indicated in bold) corresponds to a large gap in conductance (0.0114
to 0.0090) and illustrates a method for choosing a threshold. A lower
threshold reflects a higher conductance, that is, more interdisciplinary
edges in the network. While these edges are useful for discovering re-
lationships between disparate scientific disciplines, too many of them
indicates an imprecise understanding of the concepts within a single
discipline.

Future Work. The performance of our model relies on the
quality of function and variable names. Storage and place-
holder variables extracted from source code diminish the ac-
curacy of our model due to terse initialization names. For our
future work, we aim to handle these semantically insignifi-
cant variables through methods of classification. Furthermore,
because the word-embeddings are trained on the English lan-
guage corpus rather than coding syntax, we run the risk of lex-
ical entities extracted from reference text skewing our results.
But because of the high-quality of naming schemes presented
in the Epirecipes Cookbook, the association between concept
and code is less ambiguous.

Applications. Software engineering and scientific software
development are high turnover fields where people rotate onto
projects and must come up to speed quickly. When new en-
gineers join a project or new scientists add a new software
method to their repertoire, they must first gain understanding
of what is already implemented. An application of our model
can greatly assist in this transitional period by providing in-
sight into existing code-bases. Knowledge graphs constructed
from software and documents constructed using our methods
can support semantic software engineering applications.

Additionally, artificial intelligence systems designed to aug-
ment the performance of scientists will need a deep under-
standing of the domain science of interest. This understanding
can be constructed from knowledge graphs built by reading
textbooks and code in the scientific domain. By supporting
the construction of domain specific knowledge graphs, these
methods can contribute to the next generation of methods for
applying machine learning to aid in scientific discovery.

5

6 ACKNOWLEDGMENTS
The authors thank the authors of Epirecipes Cookbook and
Statistics with Julia: Fundamentals for Data Science, Machine
Learning and Artificial Intelligence; without these sources, this
work would not exist. We also thank Christine Herlihy, Kevin
Kelly, and Clayton Morrison for their advice on this manu-
script. This material is based upon work supported by the
Defense Advanced Research Projects Agency (DARPA) under
Agreement No. HR00111990008.

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton.

A survey ofmachine learning for big code and naturalness.ACMComputing
Surveys (CSUR), 51(4):81, 2018.

[2] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with
noise. In Kdd, volume 96, pages 226–231, 1996.

[3] Dominique Estival, Chris Nowak, and Andrew Zschorn. Towards ontology-
based natural language processing. In Proceeedings of the Workshop on NLP
and XML (NLPXML-2004): RDF/RDFS and OWL in Language Technology,
pages 59–66. Association for Computational Linguistics, 2004.

[4] James Fairbanks and other contributors. Semanticmodels.jl, 2018.
[5] Shobeir Fakhraei and Jose Luis Ambite. Nseen: Neural semantic embedding

for entity normalization. arXiv preprint arXiv:1811.07514, 2018.
[6] Simon Frost, Allyson Walsh, and Jade Thompson. Epirecipes text book.
[7] SeppHochreiter and Jürgen Schmidhuber. Long short-termmemory.Neural

computation, 9(8):1735–1780, 1997.
[8] Matthew Honnibal and Ines Montani. spacy 2: Natural language under-

standing with bloom embeddings. Convolutional Neural Networks and
Incremental Parsing, 2017.

[9] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment
generation. In Proceedings of the 26th Conference on ProgramComprehension,
pages 200–210. ACM, 2018.

[10] Dimitri Kartsaklis, Mohammad Taher Pilehvar, and Nigel Collier. Mapping
text to knowledge graph entities using multi-sense lstms. arXiv preprint
arXiv:1808.07724, 2018.

[11] Hayden Klok and Yoni Nazarathy. Statistics with julia: Fundamentals for
data science, machine learning and artificial intelligence., May 2019.

[12] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold
approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426, 2018.

[13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. arXiv preprint arXiv:1301.3781,
2013.

[14] Dat Quoc Nguyen. An overview of embedding models of entities and rela-
tionships for knowledge base completion. arXiv preprint arXiv:1703.08098,
2017.

[15] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied mathe-
matics, 20:53–65, 1987.

[16] Antonio Toral, Monica Monachini, et al. Simpleowl: a generative lexi-
con ontology for nlp and the semantic web. InWorkshop on Cooperative
Construction of Linguistic Knowledge Bases (AIIA 2007), 2007.

6

	Abstract
	1 Introduction
	2 Methodology
	3 Experimentation
	4 Results and Discussion
	5 Conclusion and Future Work
	6 Acknowledgments

