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ABSTRACT
Early detection of cyberattacks – such as data breaches or ran-
somware – is critical to mitigate their effects. Despite advances
in automated cyberattack sensors, many attacks are still detected
days or months after they occur. We propose a new approach using
statistical relational learning to fuse cyberattack sensor outputs and
generate attack predictions. Leveraging the graphical structures of
both sensor outputs and cyberattack events themselves, we achieve
higher accuracy than individual sensors by reasoning collectively
over both sensors and attacks. In addition to improved accuracy,
our predictions also are more useful to analysts because they are
structured objects containing details of the predicted attacks. We
measure accuracy and scalability in an extensive empirical evalua-
tion of our approach using a database of real cyberattacks against
a large corporation. We show that, relative to a sensors-only base-
line, our approach increases accuracy by up to seven percent and
doubles the lift of high-confidence predictions.
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1 INTRODUCTION
Cyberattacks are a growing concern for cybersecurity analysts and
administrators of networks in governments, commercial compa-
nies, and educational institutions. For example, the average data
breach exposes tens of thousands of records, and costs the victim
organization millions of dollars to mitigate [17]. Early detection, or
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prediction, of attack events can reduce these costs, but the average
breach still takes nearly 200 days to detect [17]. There has been
progress to develop automated sensors for detecting attack events
[3, 14, 23]. To improve the utility of the sensors, sensor fusion has
the goal of linking and combining the outputs, and structured pre-
diction has the goal of producing a set of accurate and detailed event
predictions, combining the strengths of the sensors (Section 2).

We propose a new approach to solve the sensor fusion and struc-
tured prediction problems jointly. Our approach is based on three
insights about real cyberattack events’ timing and details – which
we refer to as roles: (a) roles of events are interdependent, (b) events
occur in clusters, and (c) events evolve over time (Section 3).

Based on these insights about the structure of attacks, we refer
to a timeline of attacks as a cyberattack event network (CEN). We
introduce the event-relational model using statistical dependencies
capturing the three insights, enabling fusion and prediction via
collective reasoning over all sensors and events (Section 4).

We apply the general event-relational model to CENs; we refer
to our implementation using probabilistic soft logic [1] as Cyber
Event Relational Fusion (CERF) (Section 5).We conduct an extensive
empirical evaluation of CERF using a database with nine months of
real cyberattacks against a large corporation in the United States
(US). We show how CERF fuses sensors to increase the level of
detail in predictions. We show that CERF increases accuracy of
predicted events by three percent, as measured by area under the
receiver operator characteristic (AuROC) curve, and more than
doubles maximum lift for high-confidence predictions. We show
that, with as little as 10% partially observed events, we increase
AuROC by an additional four percent (Section 6).

2 BACKGROUND
In this section, we review current cyberattack sensors, the sensor
fusion problem, and techniques for structured prediction.

2.1 Cyberattack Sensors and Sensor Graphs
Cybersecurity analysts and network administrators have long used
a variety of cyberattack sensors to detect, prevent or mitigate at-
tacks. In Table 1, we list example sensor outputs, sources used by
sensor software to produce those outputs, and typical uses by ana-
lysts. There has been recent progress to use a wider variety of input
sources, and produce a wider variety of output types [3, 14, 23]. For
this work, we assume that sensors produce an output collection ev-
ery time step, and provide confidence levels with each output. Many
sensor outputs are indicators that analysts then need to interpret;
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Table 1: Example sensor output types, possible sources, and typical uses by cybersecurity analysts or network administrators.

Category Output Type Source Uses

Network IP address Recent network-based attacks Block network communications with IP address
Network Network port or protocol Recent attacks Monitor network activity using port or protocol
Host Hash code or binary signature Detected malicious files Scan systems for files with hash code or signature
Host Host name Computer targeted in recent attack Monitor host for further attacks
Email Words in email subject Recent malicious emails Monitor emails for similar words
Email External address domain Senders of recent malicious emails Block emails from sender domain
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Figure 1: Sensor fusion combines sensor graphs (SG). Struc-
tured prediction produces a cyberattack event network
(CEN). Our proposed approach (dotted) combines both.
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Figure 2: Examples of (a) a SG for email domain role; and (b)
a CEN with three events, K = 2 roles, and three similarities.

we instead explicitly predict events. Ideally, predictions are both
accurate and differentiated. Accurate predictions reveal true attacks
while minimizing false positives. Differentiated predictions identify
multiple characteristics of an attack.

Example 2.1. Predictions of phishing emails, a common type of
attack, are differentiated if they combine predicted time with details
such as the sender address domain, a word appearing in the subject
line, and the work location of the recipient. Using differentiated
phishing predictions, network administrators can make precise
email filters, and search efficiently for related attacks.

While some sensor outputs are simple scalar time series, we focus
on structured outputs containing details that can be combined into
differentiated predictions. We refer to these dynamically-changing
structures as sensor graphs (SG) (Figure 1a). Even SGs typically
contain only a single type of output, e.g., only IP addresses or only
hash codes, because each sensor uses just one or a few types of input
data. Therefore we assume a SG is a bipartite graph comprising
nodes for each time step and label (e.g., a specific IP address) for
some output type. Edges between time steps and labels represent
sensor outputs, weighted by confidence level (Figure 2a).

2.2 Sensor Fusion
Sensor fusion (Figure 1b) is the task of linking and combining sensor
graphs. A challenge is that SGs from separate sensors may have no

nodes in common with the exception of time steps. Linking shared
dates across SGs is a starting point, but does not reveal how to link
label nodes across SGs to form differentiated predictions. Learning
cross-sensor dependencies is one way to link labels (Section 4.2).

2.3 Structured Prediction
We represent events and their details as structured objects; each is a
K-ary tuple (r1, . . . , rK ). We refer to details of an event as its roles,
as they identify participants and objects involved. The value for
each role is some constant from a predefined set of labels.

Structured prediction is the task of predicting structured objects;
in our case, we predict cyberattack events from the results of sensor
fusion (Figure 1c). Typically, we make sets of predictions covering
some time period. Furthermore, we use the roles of events to form a
network of related events, which we call cyberattack event networks
(CEN) (Figures 1d and 2b). Techniques for structured prediction are
well studied [9, 18, 20], and applied to a number of tasks, which we
review briefly here.

2.3.1 Predict a Single Role. Predicting even a single role of an
event requires sophistication. For example, recent multi-label clas-
sification approaches aim to leverage relationships between labels
when assigning them to a role. Relationships between labels in a
single role include pairwise similarity, organization into categories,
or logical constraints [13]. For cyberattack events, we use similar
relationships between labels (see Sections 5.3.2 and 5.3.3).

2.3.2 Predict Multiple Roles. Other tasks involve multiple roles. For
example, the goal of event sequence label learning is to predict the
composition of labels over a collection of roles. Riedel et al. do this
with statistical relational learning [19]; we use a similar technique
to predict composition of cyberattack roles (see Section 4.2).

2.3.3 Predict Multiple Events. Predicting multiple structured ob-
jects at once – each with multiple roles – can have advantages such
as improved accuracy. For example, collective inference [4, 8, 12]
and hierarchical tensor representations [11] have been used to gen-
erate recommendations with two or more roles. Like Kouki et al.,
we use collective inference to predict clusters of events within time
steps (see Section 4.3) and over time (see Section 4.4).

Although sensor fusion and structured prediction have distinct
goals, wewill solve them jointly (Figure 1e), leveraging the graphical
structures of SGs and CENs. We describe CENs in detail in Section 3.
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3 CYBERATTACK EVENT NETWORKS
In this section, we describe CENs, our motivating problem set-
ting. We will illustrate three key insights about real attacks using
a dataset of attacks events, which will be described fully in Sec-
tion 6.1.1. We refer to this dataset as the ground truth (GT) CEN.

3.1 Roles of Events are Interdependent
We see in real cyberattack events that their roles are interdepen-
dent. For example, in Example 2.1 the email subject may have been
crafted to target victims at that location to appear more legitimate.
To confirm this intuition empirically in the GT CEN, we calculate
the Kullback-Leibler divergence DKL(p | |p

′) where p(r1, r2, . . . , rK )
is the empirical joint distribution of roles in the CEN, and p′ as-
sumes independence: p′(r1, r2, . . . , rK ) = p(r1)p(r2) · · ·p(rK ). This
measure (total correlation [21]) for the GT CEN is 2.1, which is over
70% higher than if role values were shuffled across events in the
training set, averaged over five trials. Although unsurprising, this
confirms the need for dependencies between roles when linking
SGs to form predicted events. In Section 4.2 we define a model with
these dependencies (event-propositional).

3.2 Events Occur in Clusters
We also find that clusters of similar events tend to occur together,
even in the same time step, e.g., on the same day. We confirm
this using a sample of the GT CEN, which has over one thousand
events. To produce the sample, we define an initial set of edges
between events representing similarities such as events having the
same location (see Figure 2b). To focus on individual time steps, we
remove edges relating events across multiple days. We combine all
parallel edges, resulting in edge weights between one and four. A
weight of one means two events occur on the same day; additional
similarity results in higher weights. As shown in Figure 4, most
events on the same day are similar with respect to one or more
measures. In Figure 3, we plot a five-name snowball sample [5, 6] on
500 seed events with a force-directed layout. Removing cross-day
edges causes separate connected components for different days.

We arbitrarily chose one role – location – to color the nodes,
which reveals that locations are distributed non-uniformly over
days. For example, the component labeled (a) in Figure 3 has a high
proportion of attacks in California (green), while on other days (b)
attacks in California are rare. This pattern, known as homophily
[22], is frequently seen in social networks. In Section 4.3, we define
a model with this dependency (time-propositional).

3.3 Events Evolve Over Time
Cybersecurity analysts have observed that attack events tend to
occur in clusters over time, progressing through stages. For example,
according to the Cyber Kill Chain® framework, exploitation attacks
follow delivery attacks, which follow reconnaissance attacks [7].
We consider a related but simpler form of evolution over time:
whether events tend to occur in clusters of consecutive time steps.
We confirm this in the GT CEN by counting events occurring in
fixed intervals; we arbitrarily chose seven days. We compare that to
a Poisson distribution resulting from assuming independent arrival
times, i.e., not clustered. We plot both in Figure 5, which shows
that events tend to cluster in large numbers in some intervals (e.g.,

(a)

(b)

Figure 3: Sample of a real CEN, colored by victim location.
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Figure 4: Edge weight distribution for graph in Section 3.2.
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Figure 5: Distribution of actual events per interval (grey),
and assuming independent arrivals (dashed).

Figure 5a), leaving few in other intervals (b). That is, if we have
high confidence in some attack occurring in a time step, it is likely
that other attacks occur in surrounding time steps. In Section 4.4,
we define a model with this dependency (event-relational).

4 EVENT-RELATIONAL MODEL
In this section, we introduce the event-relational structured pre-
diction model, which will be a framework to encode the insights
from Section 3. For ease of understanding, we lead up to the event-
relational model in four steps; in each step we define a model that
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Figure 6: Examples of four models: Role-propositional (a).
Event-propositional (b and c). Time-propositional rewrites
of previous (d-f). Time-propositional with two events (g).
Event-relational (h) with three time steps (dotted).

extends the previous. The most basic of the four is role-propositional,
which uses a single sensor as input and predicts a single role of a
single event. The remaining three models extend the first, and each
captures one of the three insights:

• Roles of events are interdependent⇒ Event-Propositional
• Events occur in clusters⇒ Time-Propositional
• Events evolve over time⇒ Event-Relational

We define the models in the following four sections.

4.1 Baseline: Role-Propositional
A sensor produces an output vector s ∈ S that corresponds to some
role of an event represented by the random variable (RV) r , where
the value for r is a label from set L. Predicting r is a multiclass clas-
sification problem. We capture the statistical dependency between
the sensor output and r using feature function ϕ : L ×S → R≥0, a
technique commonly used in probabilistic models [9, 18]. Our defini-
tion for ϕ is problem-specific; generally, it measures incompatibility
between a predicted value of r and what we observe in sensor data.
GivenL and s , we pick an optimal value for r as argminr ∈L ϕ (r , s).
We refer to this model as role-propositional, and it represents a base-
line approach. We illustrate the model in Figure 6a, with shading
indicating the observed variable.

Example 4.1. Suppose role r represents the port targeted in a
network-based attack event, and the set of possible labels contains
commonly used ports, e.g., L = {22, 53, 80}. Given a sensor output
reporting a high confidence of .9 for an attack on port 22 at time
step t , feature functions used in our approach would produce a high
incompatibility score for any assignment to r other than 22, which
has zero incompatibility. The optimum prediction is r = 22.

L1 L2 L3

22
53
80

TCP
UDP

DOS
Scan
UAA

Figure 7: Selected role values from sets (L1,L2,L3) in predic-
tions from examples 4.1 (circle), 4.2 (dashed), and 4.3 (solid).

4.2 Extension: Event-Propositional
A limitation of the role-propositional model is it uses a single input
sensor and predicts events with a signal role, which are not well-
differentiated. We will change the model as follows:

• Extend s and S with partitions for additional sensor outputs
• Vector r = (r1, . . . , rK ) replaces the single role r
• K sets (L1, . . . ,LK ) – one for each role – replace L
• Set Φ =

{
ϕ1, . . . ,ϕp

}
of feature functions replaces ϕ

This event-propositional model fuses K sensors and predicts K roles.
In Figure 6b, we illustrate an example with K = 3.

Example 4.2. We extend Example 4.1, adding sensors for network
protocol and attack class producing high-confidence outputs UDP
(User Datagram Protocol) and DOS (denial of service), respectively.
The optimum with respect to ϕ1, ϕ2, and ϕ3 is r = (r1, r2, r3) =
(22, UDP, DOS). In Figure 7, we illustrate the three sets (L1,L2,L3),
and the selected roles from our prediction (dashed line).

Feature functions are flexible in the event-propositional model,
and can capture relationships between roles. For example, in Fig-
ure 6c, we use function ϕ4 : L1 ×L2 ×S → R≥0. This allows us to
predict the most likely composition of an event, which may differ
from the optimal assignment according to individual sensors.

Example 4.3. Although assignment r in Example 4.2 is optimal
with respect to functions ϕ1, ϕ2, and ϕ3, that combination is im-
probable in this domain. Assignment r = (22, TCP, UAA) is more
probable because the Secure Shell (SSH) service running on port
22 uses TCP (Transmission Control Protocol), and – as a remote
access service – unauthorized access attempts (UAA) against SSH
are more likely than DOS attacks. In Figure 7, the solid line marks
our updated prediction with the more compatible assignment.

As shown in the example, the best assignment may require bal-
ancing functions encoding sensor outputs (ϕ1,ϕ2,ϕ3) and functions
encoding compatible event composition (ϕ4,ϕ5,ϕ6). The event-
propositional model optimizes all functions in Φ simultaneously,
forcing assignments to consider all sensors and all types of compat-
ibility collectively. See Section 5.4.2 for an extended example.

The feature functions in Φ may need to be weighted differently,
e.g., to tune the balance between sensors and compatibility. We
train a weight vector w ∈ R

p
>0 (see Section 5.2.1), associate one

weight from the vector w with each function, and find optimal
assignment r ∈ L1 × . . . × LK as argminr w⊺Φ (r, s).

4.3 Extension: Time-Propositional
Although the event-propositional model gives the most likely com-
position of an event, represented by r, it is limited to a single event.
It also doesn’t indicate whether an event will occur. We will replace
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the single event r with a more general binary encoding. In the
encoding, an element of vector e = (e1, . . . , eu ) exists for each of u
possible configurations of roles in L1 × . . . × LK and ei is true iff
its corresponding configuration of roles occurs in an event. Because
this models all events in a time step, we refer to this model as time-
propositional. We rewrite the event-propositional feature functions
for the binary representation; they become Φ : S × {0, 1}u → R≥0
and defined over projections of events. We illustrate rewriting in
Figure 6d-f, in which an edge annotated with a set γ ⊆ {1, . . . ,K}

refers to a feature function defined over an event e , but using only
a projection of e’s roles, i.e., πγ (e) using relational algebra.

Example 4.4. Logical atoms are a convenient representation for
e, so we use theK-ary logical predicate event to represent all events,
where the number K of logical terms representing roles varies by
the type of attack. CERF also uses this representation (Section 5.2).
Extending Example 4.3, we rewrite assignment (r1, r2, r3) = (22,
TCP, UAA) as e1 = event(22, TCP, UAA). Rule ϕ4 in Figure 6c places
dependencies on r1 and r2; the equivalent function in Figure 6f uses
projection π1,2(e1) to do the same with the 1st two roles of the
event, e.g., assigning low incompatibility between 22 and TCP.

Handling multiple events is the goal of time-propositional mod-
els; we illustrate a multi-event example in Figure 6g.

Example 4.5. As shown in Section 3.2, similar events tend to
cluster. Suppose we predict a phishing event e2 = event(gmail,
timesheet, MD) (see Example 2.1). Also, suppose we have simi-
larities across location labels, e.g., between Maryland (MD) and
Virginia (VA) (see Section 5.3.2). Function ϕ7 could add a depen-
dency linking our confidence in e2 with confidence in an additional
similar event e3 = event(gmail, timesheet, VA).

Given s and w, we find optimal e ∈ {0, 1}u as argmine w⊺Φ (e, s).

4.4 Extension: Event-Relational
To capture dependencies across time steps t1, . . . , tn , we replace
s with vectors s = (s1, . . . , sn ). We refer to this model as event-
relational and illustrate an example for n = 3 in Figure 6h.

Example 4.6. Clusters of attacks tend to continue over multiple
time steps (Section 3.3). We extend Example 4.4 and assume that in
step t1 event e3 occurs, which we now represent as event(t1, gmail,
timesheet, VA). Function ϕ8 adds a dependency between e3 and e4,
where e4 is identical except it occurs in t2.

In summary, the following four parameters (counts) characterize
the size and complexity of an event-relational model:

• K roles in each event
• u = |e| = |L1 × . . . × LK | possible events in each time step
• n time steps
• p = |Φ| feature functions

With the event-relational model, we find an optimal e as follows:

argmin
e∈{0,1}nu

w⊺Φ (e, s) (1)

Although solving Equation 1 exactly is NP-hard, in Section 5 we
describe how CERF finds an approximate solution efficiently. We
have shown how the event-relational model enables statistical de-
pendencies including all types shown in Figure 6d-h, which capture
each of the insights described in Section 3.

5 CYBER EVENT RELATIONAL FUSION
In this section, we describe CERF, our system applying the event-
relational model from Section 4 to CENs (Section 3).

5.1 Probabilistic Soft Logic
We use probabilistic soft logic (PSL) [1] to implement the event-
relational model. Using PSL has several advantages: (a) PSL uses
logic, a natural representation for roles, events and feature functions.
(b) Solving Equation 1 exactly is NP-hard, but PSL provides a high
quality approximation. (c) PSL scales well to large CENs.

5.2 Mapping to Event-Relational Model
We use logical atoms to represent event set e (see Section 4.3). We
use the following mapping to produce the model in PSL:

• Roles⇒ Logical terms (logical variables or constants)
• Events⇒ Logical atoms
• Sensor output⇒ Ground logical atoms

5.2.1 Inference and Learning. A PSL program defines a hinge-loss
Markov random field (HL-MRF), where weighted logical rules are
feature functions Φ and atoms with soft truth values are RVs. Max-
imum a posteriori (MAP) inference in the HL-MRF allows a highly
efficient approximation [1]. This is done in PSL by approximating
the following, where x and y represent observed and inferred atoms,
respectively: argminy∈[0,1]v w⊺Φ (y, x). A high quality binary so-
lution y ∈ {0, 1}v is possible by applying conditional probabilities
rounding to the soft-valued output [1]. In CERF, x ≡ s, y ≡ e, and
v ≡ nu, establishing equivalence with our objective in Equation 1.
We learn w with maximum likelihood estimation [2].

5.2.2 Soft Truth Values. In addition to the binary solution, the soft-
valued e ∈ [0, 1]nu from PSL has advantages: We can present high-
value events to analysts, and measure AuROC and lift (Section 6).

5.3 Predicates
Logical predicates define the inputs, outputs, and latent variables
of a PSL program. We use the following three predicates:

• event: a CEN node; its first term is time stepT ; the remaining
K terms vary by event type

• σi (R,R
′): a CEN edge – similarity of R ∈ Li and R′ ∈ Li

• si (T ,R): an edge of a SG for role i
MAP inference assigns truth values of inferred event atoms. Truth
values of all observed event atoms (see Section 6.4) are set to 1.0.

5.3.1 Sensors. Truth values of si atoms are based on the confidence
of the sensor for those outputs (Section 6.1.3).

5.3.2 Similarities. All similarity σi atoms are observed; their truth
values are set by external similarity functions.

5.3.3 Categories. We use sets of categories over labels within roles.
Binary predicate ≻ represents membership in a category; Ri ≻ ℓ is
true iff label Ri ∈ Li is a member of category ℓ ∈ χi , where set χi
contains all categories for role i .

Categories have several benefits: (a) They add sensor information
to labels. (b) They control the number of parameters (weights)
and over-fitting for template-based rules (see Section 5.4.1). (c)
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Figure 8: Fragment of aCERFmodelwithn = 2 and examples
of Rule RP (ϕ1), Rule EP (ϕ2), Rule TP (ϕ3), and Rule ER (ϕ4).

They help CERF scale to larger CENs with higher values for K by
controlling the number of groundings of template-based rules.

5.4 CERF PSL Rules
PSL rules implement feature functions of the event-relational model.
The simplest rule is the prior ¬event(T ,R1, . . . ,RK ), i.e., any attack
is individually improbable. The remaining CERF rules are as follows,
where rules with parameterized weights, e.g.,wTP(i), are templates:

wRP :
∧

i ∈1, ...,K
si (T ,Ri ) → event(T ,R1, . . . ,RK ) (RP)

wEP(i, j, ℓ, ℓ
′) : ¬

(
event(T ,R1, . . . ,Ri , . . . ,Rj , . . . ,RK )

∧ (Ri ≻ ℓ) ∧
(
Rj ≻ ℓ

′
) )

(EP)

wTP(i) : event(T ,R1, . . . ,Ri , . . . ,RK ) ∧ σi (Ri ,R
′
i )

∧ Ri , R′
i → event(T ,R1, . . . ,R′

i , . . . ,RK ) (TP)
wER : event(T ,R1, . . . ,RK ) ∧ σt (T ,T

′)

∧T , T ′ → event(T ′,R1, . . . ,RK ) (ER)

Rule RP is role-propositional and assumes roles are independent,
combining confidence levels from sensors for each role with a
simple conjunction. Rule EP is event-propositional; it penalizes
incompatible combinations of categories (Section 5.3.3). Rule TP is
time-propositional, propagating confidence across similar events
in the same time step. Rule ER is event-relational; it is a variant of
Rule TP that crosses time steps.

5.4.1 Partial-Grounding. Rules TP and EP are templates; partial-
grounding is the process of setting constant values for each template
parameter, e.g., i in wTP(i). We do partial-grounding as follows:
Create a copy of Rule TP for every role i ∈ 1, . . . ,K to learn separate
weights for each role. Using category sets χ1, . . . , χK (Section 5.3.3),
create a copy of Rule EP for every 4-tuple in the following set:{

(i, j, ℓ, ℓ′) with (i, j) ∈ [1, . . . ,K]2, i , j, (ℓ, ℓ′) ∈ χi × χj
}

5.4.2 Collective Inference. To illustrate how rules combine for col-
lective inference, in Figure 8 we present a small, notional fragment
of a CERF model. RP rule ϕ1 allows sensor output in s1 for the
2nd role (i.e., r2) to influence the 2nd role of e1. EP rule ϕ2 also
influences role 2 by preferring compatibility between it and the 4th
role. TP rule ϕ3 is satisfied if e1 clusters with another similar event
e2 that varies with respect to role 4. ER rule ϕ4 is satisfied if event e2
continues in time step 2. Sensor outputs used in any rule can have
a global effect on the predicted CEN via this chain of dependencies.

Table 2: Event roles in the GT CEN

# Role (Variable) Label Set

1 Class of attack (C) L1 = {Phish, Malware}
2 Job category (J ) L2 = {Acquisitions, . . . , Training}
3 Location (L) L3 = {AK, AL, . . . , WI}
4 Grade/level (G) L4 = {1, 2, 3, 4, 5, 6, 7, C}

For example, if event e3 is unlikely according to sensor data, that
can cause CERF to change its predicted roles for event e1.

6 EVALUATION
We evaluate CERF on a real corporate database of cyberattacks. Our
goals are to evaluate the following:

• Accuracy: measured using AuROC and lift (Section 6.3)
• Partially-observed events: their effect on accuracy (Section 6.4)
• Rules: their relative contributions to accuracy (Section 6.5)
• Scalability: running time of CERF (Section 6.6)

Predicting well-differentiated events is another goal. Sensors
produce one role each, so CERF’s output is K times more detailed.
This factor of improvement impacts the cost of solving Equation 1,
but we show CERF scales well to K = 4 (Section 6.6).

6.1 Data
We describe the GT CEN collected from internal organization
records, and the input SGs collected from a variety of external
data sources.

6.1.1 A Real Cyberattack Event Network. To evaluate CERF, we
use a GT CEN with nine months of actual attack events against a
large US corporation. The GT is provided by the Cyberattack Auto-
mated Unconventional Sensor Environment (CAUSE) project,1 and
is available through agreement with the US Intelligence Advanced
Research Projects Activity (IARPA). The GT focuses on significant
attacks that current network defenses do not stop; it excludes spam
email, routine network scans and other low-impact events. We filter
GT further to events in which each label appears at least twenty
times in the nine months. Although this GT is not openly available,
it is representative of attacks against similar organizations in the
same time period. It would be reasonable to extend our results using
a data set for a similar organization.

As described in Section 5, the event predicate has K + 1 terms.
The first is time step T identifying the date. We list the remaining
K roles, their logical variable names, and their label sets in Table 2.
Role 1 identifies the class of attack: phishing events are emails
containing malicious attachments or links, and malware events
are malicious applications discovered on computer hosts. Roles 2-4
give details about the victim of the attack. We represent each GT
CEN event as a grounding of event(T ,C, J , L,G) with truth value 1.
Similarities over labels are simple predefined measures of similarity
(see Section 5.3.2), e.g., σ3(MD, VA) = .75.

6.1.2 Cross Validation. We split the nine months of GT M =

m1, . . . ,m9 into three sets (д1,д2,д3) by month: дi =
{
mj ∈ M |

1https://www.iarpa.gov/index.php/research-programs/cause
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Figure 9: Lift of CERF (blue, top) and the baseline (grey).

(j − 1) mod 3 + 1 = i
}
. We use the three sets for training sensors,

training CERF, and testing CERF, respectively. We define the sets
this way so each is representative of the entire period, to limit
over-fitting caused by correlations across sets or caused by training
CERF on the same events used to train its inputs (the sensors), and
to have contiguous periods to train and test Rule ER.

6.1.3 Sensor Graphs. We use one SG for each of the K = 4 roles.
For each SG, we represent an edge between label R and time T
with si (T ,R). For example, the truth value of ground atom s2(Jan1,
Acquisitions) represents our confidence that employees with job
category Acquisitions will be attacked on Jan1. To generate the
SGs, we train discriminative, multi-output classifiers on projections
of д1, conditioned on features extracted from the following original
data sources: Twitter; the Global Database of Events, Language, and
Tone (GDELT)2 [10]; Open Threat Exchange; Wikidata; and Global
Vectors for Word Representation (GloVe) [16]. The sensors produce
SG outputs for day T = t using evidence from t − 7, i.e., seven-day
forecasts. CERF uses any time step given in a SG, whether past,
present, or future. We refer to Okutan et al. for further details about
how we use these sources [14, 15].

6.2 Systems
Our final CERF implementation used in the evaluation uses a subset
of the possible partially-ground rules: We ground Rule EP on the
following pairs of terms: (T , L), (C, L), (J ,G), and (L,G), which we
found balances accuracy and efficiency. We use day of week as
categories for dates and treat all other labels as singleton categories.
The final model has 518 rules with weights trained on д2.

We compare CERF with a baseline assuming roles are distributed
independently within events. It uses Rule RP, plus the simple prior,
and we train it on д2. Due to the sparseness of the t-norm used in
PSL conjunctions, we actually do this join outside PSL as a normal
product, then load the results into PSL.

6.3 AuROC and Lift
We calculate AuROC by comparing soft truth values from CERF and
the baseline with true events in д3. AuROC is .76 for the baseline,
and .78 for CERF, confirming CERF’s over-all improvement to accu-
racy, but we are especially interested in the rate of false positives
among high-confidence predictions, as analysts are only able to
2https://www.gdeltproject.org
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Figure 10: AuROC (95% CI) of CERF (blue, top) and the base-
line (grey) as partial observation varies from zero to 20%.
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Figure 11: AuROC of CERF (RP+EP+TP+ER); the baseline
Rule RP; and rules EP, TP, and ER.

review a small number of predictions every day. Lift is a better
measure than AuROC for this. In Figure 9 we show the lift of CERF
(blue, top) compared to the baseline (grey). Applying a threshold
on truth value predicts a sample of the whole population of some
size ≤ nu (horizontal axis of Figure 9). The lift of a detector is the
ratio of its precision in that sample to expected precision (percent
of the total population that is positive). For high-confidence pre-
dictions, CERF has up to double the lift of the baseline, indicating
that analysts using CERF recommendations will have fewer false
positives, compared to using sensors alone.

6.4 Partially-Observed Events
Analysts learn of some attacks as they occur. To measure our ability
to leverage these partially-observed events, we remove a random
sample of events from test set д3 (so later accuracy measurements
ignore them) and add them to the inputs of each model with truth
value 1.0 (see Section 5.3), without retraining the models. In Fig-
ure 10, we measure AuROC for both systems as we vary the size
(as a percentage of д3) of the random sample. For each setting,
we repeat with five different random sets of observed events. For
zero observed events, we do not measure repeatedly as results are
constant. The baseline lacks rules crossing events, so its accuracy
changes little with observed events. CERF uses its event-crossing
rules (TP, ER) to increase accuracy with the size of the observed
set. This suggests that when some attacks are known, CERF can
rapidly alert analysts to other likely attacks.

6.5 Rule Contributions
Rule RP is the baseline and necessary to make predictions; without
it, the rules could be trivially satisfied by predicting no events. To un-
derstand the contributions of the remaining three rules, we enable
each in combination with RP. We use two settings for partially-
observed events: one at 10% (results averaged over five random
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Figure 12: Running time of CERF (RP+EP+TP+ER), the base-
line Rule RP, and the three remaining rules.

sets), and another with 0%. We plot AuROC in Figure 11. Compared
to the baseline, Rule EP is more accurate, but it is insensitive to
observed events – as expected, because EP focuses on event com-
position. For both cross-event rules (TP and ER), without observed
events their accuracy is similar to the baseline. This suggests that
the benefits of the current similarity measures are small when no
events are observed. However, with observed events their accuracy
increases substantially – especially with TP. CERF (RP+EP+TP+ER)
combines all four types of rules and inherits their strengths.

6.6 Scalability
Increasing K , u, or n increases the cost of solving Equation 1 (Sec-
tion 4.4), but for the GT CEN with K = 4, u = 5600, and n = 269
(over 1.5M RVs), CERF learns the model and infers events in just
69 and 10 minutes, respectively. Cost also varies by which of the
p = 518 rules are enabled. In Figure 12 we plot running times with
different subsets of rules. Rule EP contributes the longest running
time because it acts as a template with more partial-groundings
than the other rules (Section 5.4.1). We ran all experiments on a
machine with 16 2.67GHz Xeon cores and 256GB RAM.

7 CONCLUSION
We introduce the new event-relational structured prediction model
to solve the sensor fusion and structured prediction problems jointly.
We apply the model to the problem of predicting cyberattack event
networks. We evaluate CERF, the resulting system, on a CEN with
nine months of real cyberattacks against a US corporation. We
confirm CERF predicts events more accurately than sensors alone.
Results suggest high utility for cybersecurity analysts, especially if
some actual attacks are already known. We anticipate expanding
or refining the sensors, similarity functions, and categories used in
the model would increase accuracy further.
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