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ABSTRACT

For trajectory data (e.g., flight itineraries) that tend to have beyond
first-order (i.e., non-Markovian) dependencies, higher-order net-
works have been shown to accurately capture details lost with a
standard (aggregate) network representation. At the same time, rep-
resentation learning has shown success on a wide range of network
tasks, removing the need to hand-craft features for these tasks.
In this work, we propose a node representation learning frame-
work called EVO or Embedding Variable Orders, which captures
non-Markovian dependencies by combining work on higher-order
networks with work on node embeddings. We show that EVO out-
performs baselines in tasks where high-order dependencies are
likely to matter, demonstrating the benefits of considering high-
order dependencies in node embeddings. We also provide insights
into when it does or does not help to capture these dependencies. To
the best of our knowledge, this is the first work on representation
learning for higher-order networks.
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1 INTRODUCTION

Recent work on higher-order networks1 (HONs) has demonstrated
the importance of considering non-Markovian dependencies when
building a network representation from trajectory data [12, 13].
Meanwhile, representation learning has been useful for learning
feature representations for standard (first-order) networks that
can be directly used for downstream tasks [14]. While high-order
dependencies are important for accurately modeling a network,
it is not immediately obvious that the added modeling accuracy
is always useful to learn over. To understand when it is useful,
we evaluate the performance of learning over HONs on several

1Note that we are using “higher-order” to refer to non-Markovian or beyond first-order
dependencies in trajectories, rather than motifs [10]
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Figure 1: The proposed EVO framework (white background),

contrasted with the standard approach SWNE (gray back-

ground) (§ 4.2). EVO takes trajectories as input (e.g., flight

itineraries) and, in step 1, creates a HON that may contain

multiple versions of a node (e.g., DTW ismapped to two con-

ditional nodes, DTW|LGA andDTW|DSM, since the 0.5 prob-

ability of visiting SFO from DTW changes to 0.67 or 0.33 de-

pending on how DTW was reached). In step 2, EVO learns

node embeddings from the HON, and in step 3, it combines

the embeddings of all node versions into a single embedding

that captures the important properties of all its versions.

Note that SWNE has only two steps.

classification and clustering tasks, and compare to the performance
of learning over standard network representations.

We focus on two research questions: (RQ1) how can we cap-
ture non-Markovian dependencies in feature representations and
(RQ2) when are these dependencies useful? In response to the first
question, we propose EVO (Figure 1), a modular framework for
representation learning that works with HON representations to
learn dependency-preserving node representations. In response
to the second question, we find that EVO is effective at capturing
higher-order dependencies and is useful for a range of tasks related
to network trajectories. However, contrary to what might be ex-
pected, we find that capturing high-order dependencies for tasks
where they are not very relevant is not only ineffective, but can
be detrimental, suggesting that capturing more information is not
always helpful. This is a significant finding, since HON representa-
tions consist of multiple nodes for multiple dependencies, requiring
extra computational power—something highly undesirable for large
graphs. Our main contributions are:
• We propose a general, modular framework that combines
work in representation learning and HONs to generate node
embeddings that capture non-Markovian dependencies. It readily
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Table 1: Major symbols and their meanings.

Symbol Definition

V ,E a set of nodes and edges, resp.
T trajectories over nodes V
G(V ,E) standard network
H (VH ,EH ,δ ) HON w/ mapping from V to VH
rv embedding of node v

supports both neighborhood and structural embeddings, and
works with any embedding approach.

• Through diverse experiments, we bring insights intowhendown-

stream tasks can benefit from these embeddings.

2 RELATEDWORK

Higher-order Networks attempt to preserve non-1st-order dependen-
cies in a network representation. While works such as [11] used a
fixed-order representation, generally only modeling 2nd-order de-
pendencies, recent work developed network representations with
variable-order dependencies, which are automatically identified
from trajectories [12, 13]. Xu et al. [13] build a variable-order net-
work by creating multiple versions of nodes to capture multiple
dependencies. The resulting HON admits standard graph methods.
Another approach [12] generates a layered network, each layer cor-
responding to a progressively higher dependency level. Since the
network is multi-layered, it may require tailored graph methods.

Representation Learning aims to learn feature representations for
nodes (or other structures) which can be directly used for network
tasks. Many methods are inspired by word embeddings [6], replac-
ing the linear context around words with graph structure around
nodes by using variants of random walks. Some are proximity-
based, e.g. [3, 7], while others are structural, e.g. [9]. Other meth-
ods, e.g. [5], utilize the connection between matrix factorization
and skip-gram with negative sampling [8]. For more, [14] surveys
the extensive work in representation learning. To the best of our
knowledge, we are the first to look at representation learning for
HONs. While [10] uses similar terminology, it is not closely related,
using “higher-order networks” to refer to graph motifs, whereas
we use it to refer to non-Markovian dependencies.

3 METHOD

3.1 Preliminary Definitions

A (standard or first-order) network or graph G = (V ,E) is a set
of nodes and a set of edges among them, optionally with weights
denoting connection strengths. G implicitly encodes the Markov
assumption.

We follow [13] and define a higher-order network (HON) H =
(VH ,EH ,δ ) as a network, along with a bijective function δ : V →

P(VH ) mapping each node v ∈ V to the subset of nodes in VH
encoding v’s dependencies. For instance, in Figure 1, δ (DTW) =
{DTW|LGA, DTW|DSM}. Its inverse maps the nodes back:
δ−1({DTW|LGA, DTW|DSM}) = DTW.

Table 2: Dataset statistics: Themedian length of trajectories,

the max dependency found by [13], the size of G (formed

by aggregating the edges appearing in T ), and the size of H ,

respectively.

Dataset Med. Traj. Len. Max Dep. |V | |E | |VH | |EH |

Us Flights 5 4 175 1,598 9,776 49,700
London Tube 12 2 268 646 1,029 2,073

3.2 Problem Definition

Problem 1. Given a set of trajectories T over nodes V , where the
Markov assumption may be violated, find a representation rv ∈ Rd

for each node v ∈ V such that the representations capture the non-
Markovian dependencies.

3.3 EVO: Embedding Variable Orders

EVO or “Embedding Variable Orders” works in three steps:
(S1) Construct Higher-order Network.Any approach for building
a HON (e.g. [13]) can be used as long as there exists some δ and
δ−1 to map nodes to and from VH .
(S2) Learn Representations from HON. For each node h ∈ VH ,
we obtain its representation rh . Assuming that the HON is a conven-
tional graph (e.g., not layered), any representation learning method
can be used.
(S3) Combine Representations. This step uses a function
f : P(Rd ) → Rd to create a single representation for each node
in V from its corresponding nodes in VH . For any node v , we get
its embedding (denoted rv ) by applying f (e.g., average, max, etc.)
to the embeddings of all the nodes in VH which correspond to v
(which may vary in number per node). Let R = {rh : h ∈ δ (v)} be
the set of embeddings of nodes in δ (v), which we acquired in step
2. Formally, rv = f (R) ∀v ∈ V .

In summary, the EVO framework allows multiple methods, each
requiring the selection of (1) a HON representation, (2) a repre-
sentation learning method, and (3) a function f to convert the
representations of HON nodes VH to representations for nodes V .

4 EVALUATION

In this section, we discuss our experiments, which aim to answer
two main research questions:
• RQ1 Performance: Does EVO effectively capture high-order
dependencies?

• RQ2 Appropriate Uses: In what situations does it make sense
to capture high-order dependencies? We consider a variety of
node classification and clustering tasks.

4.1 Datasets

We use two datasets [12] (Table 2): (1) A London Tube dataset
containing passenger itineraries from the London subway system
and (2) a US Flights dataset containing flight itineraries, such as LGA
→ DTW→ SFO (Figure 1), meaning someone flew from LaGuardia
to Detroit to San Francisco.

4.2 Baselines

We consider three baselines:
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• SNE or “Standard Network Embedding” aggregates the tra-
jectories into a standard network representation, where an
edge exists between two nodes if the edge occurred in at
least one trajectory. Node representations are learned via
the same embedding approach used in EVO.

• SWNE or “Standard Weighted Network Embedding” is iden-
tical to SNE except that it introduces edge weights, which
count the edge occurrences in the trajectories.

• ARWE or “Altered-Random-Walk Embedding” is an approach
we introduce. ARWE runs variable-order Markov random
walks to generate context for skip-gram-based represen-
tation learning directly, without building the intermediate
HON. The random walks simulate trajectories by obeying
the same dependencies used to build H .

4.3 Experimental Setup

For S1 of EVO, we construct a HON using [13] without using
the optional min-support parameter. For S2, we use node2vec [3],
struc2vec [9], or xNetMF [5], depending on the task. xNetMF and
struc2vec do not use weights. Furthermore, xNetMF does not use
random walks, while struc2vec’s walks are on a k-level graph, so
SWNE and ARWE are not usable here. For node2vec and struc2vec,
we set the walk length to be the median trajectory length for that
dataset (e.g. 5 for Flights), to treat random walks as simulations of
real trajectories. We perform 50 walks per node, and use a window-
size of 10. We use none of struc2vec’s computational optimizations.
For S3, we consider multiple options—max, min, average, and Had-
mard product—for f , each of which is applied elementwise. We also
tried concatenation, but saw similar or worse results. We found
that max and average worked best, so we report results for only
these, named EVO-max and EVO-avg.

Results are reported as averages with standard deviations over
10 runs. The top result for each metric is shaded gray. If the result
is statistically significant (which we consider p ≤ 0.05 for a paired
t-test), we mark it with an “*”. We discuss results in each task’s
section, and takeaways in § 4.6.

4.4 Node Classification

We designed four binary classification tasks to answer our research
questions. We use node representations of each method as input to
a random forest classifier with 100 trees, running with 10 different
70%/30% train/test splits (the same splits for each method). When
using node2vec, we tune its p and q parameters as in [3], using grid
search with 10-fold cross-validation. We report Accuracy (ACC),
AUROC (AUC), and F1 score in Table 3, and discuss results in § 4.6.

1) Trajectory Node Classification is designed to investigate
EVO’s usefulness for tasks related to trajectories. In this task, we
attempt to predict whether each London Tube station services one
line or multiple lines. Since trains follow lines, this task is related to
trajectories, and requires that a method distinguish between traffic
that comes from one line vs. traffic that comes from multiple lines.
Setup. We use our methods with node2vec. Note that 70.9% of
stations service one line.
Results. EVO’s benefit is clear, as it outperforms all baselines by
a statistically significant amount by all metrics, demonstrating

that EVO captures trajectories and can identify traffic from multi-
ple lines. In contrast, the baselines only capture how much traffic
comes through each station. To help explain this, we observe that
stations with multiple lines have 6.12 dependencies on average,
while stations with only one line have only 2.91. Thus, when a sta-
tion services more lines, it matters more where a train comes from
when determining where it will go next, leading to more depen-
dencies. Indeed, the number of lines station v services is correlated
with the size of δ (v) (0.6381 Pearson correlation coefficient).

2) Geographic Node Classification investigates whether EVO
captures geographic information. Unlike the London Tube network,
where edges connect nearby stations, flights often directly cross
geographic regions (e.g. LAX to JFK), causing the network to not
reflect geography. However, itineraries often end in the same region
as they began. The task is to predict whether an airport is in the
Western or Eastern US.
Setup.We use the Census Bureau’s 9 US divisions [1] and consider
divisions 1, 2, 3, 5, and 6 (65.7% of airports) as the Eastern region.
We use our methods with node2vec.
Results. EVO outperforms all baselines by a statistically signifi-
cant amount, suggesting that EVO captures geographic information
in trajectories, which is lost by networks where edges do not re-
spect geography. Indeed, 84.5% of edges cross regions, but 92.8% of
itineraries end in the same region as they started (largely due to
round-trip flights).

3) Structural Node Classification seeks to predict whether
or not an airport is a hub, as characterized by the FAA [2], which
defines hubs in terms of the quantity of enplanements. This is highly
related to node degree, and is hence structural.
Setup. To capture the structure of nodes, we use xNetMF (we also
tried struc2vec, but saw similar results). The baseline accuracy is
62%, as 38% of airports are not hubs.
Results. SNE performs the best, suggesting that degree information
is lost in a HON. Indeed, the median size of δ (v) for airports is 14.
However, for the 25 highest degree airports, the median size is 88.
Thus, because hubs have more nuanced flying patterns, they also
have more dependencies. The hub’s degree in G is then distributed
across more nodes in H , leading to loss of degree information.

4) NeighborhoodNode Classification tests whether dependen-
cies are appropriate for tasks related to node neighborhoods. The
task is to predict whether a London Tube stop is in an outer or an
inner zone. The Tube system is split into 9 zones forming rings
around the city center (i.e., zone 1 is the city center, zone 2 is a ring
around zone 1, etc.).
Setup. To capture neighborhood information, we use our methods
with node2vec. Note that 65.1% of stations are in the inner zone
(which we consider to be zones 1, 2, & 3).
Results. Either SNE or SWNE perform the best on this task, likely
because Tube trajectories cross 3.2 zones on average, biasing node
contexts away from neighborhoods. In contrast, a station is gener-
ally in the same zone as its neighbors.

4.5 Clustering

We further investigate RQ1 and RQ2 in an unsupervised setting
with more than two classes by clustering nodes and comparing
to four ground truth groupings: (1) Tube stations grouped by the
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Table 3: For EVO, “*” marks results statistically significantly better than all baselines. For baselines, it marks results stat.

significantly better than EVO-max and EVO-avg.

NodeClassification (§ 4.4):Task 1: Classifywhether a stop services one line ormore (trajectoriesmatter). The results suggest

that EVO captures high-order dependencies. Task 2: Classify airports by region (geography matters). The results suggest that

EVO captures geography via dependencies. Task 3: Classify airports as hubs (structure matters). Results suggest that degree

is lost in H . Task 4: Classify tube stops as inner or outer-zone (neighborhoods matter). Results suggest that trajectories can be

deceptive.

Clustering (§ 4.5): Results are consistent with classification (except that SWNE outperforms SNE on zones), demonstrating

that our observations hold even in an unsupervised setting where we consider all categories, unbinarized.

Task Metric SNE SWNE ARWE EVO-avg EVO-max

1. Trajectory Node Classification
ACC 0.8259 ± 0.03 0.8481 ± 0.05 0.8506 ± 0.04 0.8321 ± 0.04 0.8901* ± 0.03
AUC 0.8859 ± 0.04 0.9037 ± 0.04 0.9026 ± 0.04 0.8823 ± 0.05 0.9627* ± 0.02
F1 0.8792 ± 0.02 0.8960 ± 0.03 0.8969 ± 0.03 0.8886 ± 0.03 0.9254* ± 0.02

2. Geographic Node Classification
ACC 0.6000 ± 0.06 0.5980 ± 0.07 0.6160 ± 0.04 0.7280* ± 0.05 0.7100* ± 0.05
AUC 0.5233 ± 0.09 0.5951 ± 0.05 0.5179 ± 0.06 0.7791* ± 0.04 0.7611* ± 0.06
F1 0.2155 ± 0.09 0.2921 ± 0.12 0.1241 ± 0.13 0.4988* ± 0.09 0.4180* ± 0.08

3. Structural Node Classification
ACC 0.8748* ± 0.04 N/A N/A 0.7730 ± 0.05 0.8107 ± 0.04
AUC 0.9227* ± 0.04 N/A N/A 0.8785 ± 0.03 0.9006 ± 0.03
F1 0.8991* ± 0.03 N/A N/A 0.8212 ± 0.04 0.8429 ± 0.04

4. Neighborhood Node Classification
ACC 0.9556* ± 0.02 0.9333 ± 0.02 0.9160 ± 0.03 0.9296 ± 0.03 0.9148 ± 0.03
AUC 0.9916* ± 0.01 0.9867 ± 0.01 0.9791 ± 0.01 0.9770 ± 0.02 0.9684 ± 0.03
F1 0.9668* ± 0.01 0.9502 ± 0.02 0.9369 ± 0.02 0.9469 ± 0.02 0.9358 ± 0.02

Clustering on Lines NMI 0.6478 ± 0.01 0.6258 ± 0.02 0.6458 ± 0.01 0.7100* ± 0.01 0.7125* ± 0.02
Clustering on Regions NMI 0.1441 ± 0.00 0.1245 ± 0.00 0.1096 ± 0.01 0.3856* ± 0.00 0.2880* ± 0.02
Clustering on Hubs NMI 0.4138* ± 0.00 N/A N/A 0.0505 ± 0.01 0.2844 ± 0.00
Clustering on Zones NMI 0.2542 ± 0.02 0.2705* ± 0.02 0.1933 ± 0.03 0.2192 ± 0.01 0.2444 ± 0.02

line they are on, (2) airports grouped by their region, (3) airports
grouped by their FAA hub category, and (4) Tube stations grouped
by the zone they are in.
Setup.When considering lines as ground truth, we disregard sta-
tions which fall on multiple lines, leaving 190 stations. Likewise,
when considering zones, we disregard stations in multiple zones,
leaving 242. There are 11 Tube lines, 9 zones, 9 airport regions, and 4
airport hub categories (large, medium, small, and non-hub); we use
K-Means for clustering with K set to the number of ground truth
groups. We use node2vec for all tasks except hubs, where we use
struc2vec. For node2vec, since there is no training set, we try the
same pairs of p and q as classification, and report results with the
best pair. We evaluate the quality of clusterings using Normalized
Mutual Information (NMI), and report results in Table 3.
Results. EVO-max and EVO-avg lead to clusters most similar to
station lines and airport regions respectively, while either SNE or
SWNE lead to clusters most similar to hubs and station zones. The
results are consistent with the classification results, suggesting
that our observations hold even in the non-binarized, unsupervised
clustering setting.

4.6 Discussion

For trajectory related tasks, such as clustering stations by line or
classifying an airport’s region, EVO significantly outperforms the
baselines, demonstrating that EVO captures high-order dependen-
cies. For instance, high-order dependencies capture information

about Tube lines, since where passengers go next depends on what
line they are on. Furthermore, while edges in an airport network
violate geography, high-order dependencies remember the region
of origin, since passengers are likely to return there.

However, for many tasks, accurately capturing high-order depen-
dencies can distract from the information that is actually important
for that task. We see this in the degradation of performance on
structural tasks, where degree information is lost, and likewise on
neighborhood tasks, where node contexts are biased away from
their neighbors.

We found that either element-wise max or average worked best
for f in S3. We conjecture that whenmaxworks best, if a feature has
large magnitude for any of the embeddings of δ (v), the property
is likely important for v as well, and max preserves this. When
average works best, distributional information may be important.
This is reminiscent of max- and average-pooling, e.g. [4].

We conjecture that ARWE’s poor performance is due to the
fact that it aggregates context from variable-order random walks
before learning. In contrast, EVO builds context for each node in
VH separately and learns from that.

5 CONCLUSION

We propose a modular representation learning framework called
EVO, which captures non-Markovian dependencies in node embed-
dings. We investigate EVO’s performance on a wide range of tasks,
empirically evaluating when accurately capturing non-Markovian
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dependencies is useful for network tasks. We find that if a task
is related to trajectories, capturing the non-Markovian dependen-
cies is highly useful, and EVO is an effective way of doing this.
However, if a task is unrelated to trajectories, learning over the
non-Markovian dependencies can actually be distracting, leading
to decreased performance.
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