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ABSTRACT
Matrix factorization is a central block in many graph algorithms
for embedding, clustering and a number of other tasks. This block
is usually the computational bottleneck of these algorithms and
a naive implementation can prevent them from scaling to large
datasets. However, the matrices to factorize often have a closed-
form "sparse + low-rank" structure. In this paper, we show how to
adapt state-of-the-art matrix factorization techniques to this class
of matrices. We demonstrate that the method is highly competitive
with respect to a naive implementation and that it comes at a very
small extra cost as compared to the decomposition of the sparse
component alone.
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1 INTRODUCTION
Also known as "spectral methods", matrix factorization-based algo-
rithms are widely used in graph mining: spectral clustering [21],
spectral modularity optimization [17], manifold learning [1], graph
classification [4], node ranking [19], natural language processing
[14], connected-components search [5], anomaly detection [9]... As
the decomposition of the matrix is usually the computational bot-
tleneck, it has to be able to scale to large graphs in order for these
algorithms to compete with iterative methods for analogous tasks
[2, 6, 8, 11, 15]. Making such graph algorithms scale is mandatory
to obtain more comprehensive benchmarks.

In the course of this paper, we use the following notations:
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• A ∈ Rn×n denotes the adjacency matrix of directed or undi-
rected graph,

• B ∈ Rn1×n2 denotes the biadjacency matrix of a bipartite
graph,

• m is the number of non-zero coefficients in a matrix (i.e. the
number of edges in the graph),

• d = A1 or B1 denotes the out-degree vector, andD = diag(d),
• f = AT 1 or BT 1 denotes the in-degree vector,
• w = 1TA1 or 1T B1 is the total weight of the graph.

There are two distinct issues to tackle in order for spectral meth-
ods to scale: the matrix factorization itself, but also the storage of
the input. Indeed, even though the adjacency matrix of a graph
and some derived matrices are usually very sparse (random walk
transition matrix, Laplacian matrix,...), other matrices of interest
are dense, and in the case of large graphs, they do not fit in the
RAM. Such dense matrices include

• random surfer’s transition matrix [18]: Ri j = α
Ai j

di
+

1 − α

n
,

• modularity [16]: Qi j =
1
w
Ai j −

γ

w2didj ,

• shifted pointwise mutual information1 [3]:

SPMIi j = log
(wAi j
didj

)
Ai j>0 − log(k),

• regularized graph Laplacian [22]: Lτi j = I −
Aτi j√
dτi d

τ
j

,

where Aτi j = Ai j + τ/n,
• principal components analysis matrix [20]: Āi j = Ai j − fj/w .

However, note that thesematrices all have a closed-form “sparse + low-
rank” decomposition (even sparse + rank-1 in this case) i.e. one can
write them as S + xyT where S is a sparse matrix and x and y are
vectors of appropriate dimensions. For the sake of simplicity, we
only consider "sparse + rank-1" matrices. However, the extension
to higher ranks is trivial.

Formally, these matrices are represented by tuples of the form
(S, (x ,y)). Storing such tuples only requires O(m + 2n) memory
space (O(m + 2rn) if there are r rank-1 tuples) instead of O(n2)
or O(n1n2) for S + xyT . Besides, this specific structure allows to
leverage powerful factorization methods as discussed in Section 2.

The identification of the low-rank factors is almost direct for all
the aforementioned matrices as shown in Table 1.

2 FACTORIZATION METHOD
Computing partial spectral decomposition, i.e. the k first singu-
lar vectors or eigenvectors, is well researched problem. Standard
solvers usually rely on power-iteration methods such as [13]. Faster

1The pointwise mutual information is set to 0 if Ai j = 0.
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matrix S (sparse) (x ,y)

random surfer αD−1A ( 1−α
n 1, 1)

modularity 1
wA (−γ d

w ,
d
w )

SPMI log(wD−1AD−1)Ai j>0 (− log(k)1, 1)
Laplacian I − D

−1/2
τ AD

−1/2
τ (− τ

n
√
di + τ ,

√
di + τ )

PCA A (
f
w , 1)

Table 1: Identification of sparse and low-rank factors.

methods use randomized projections to reduce dimensionality be-
fore factorizing [7]. The key point of these methods is that their
computational bottlenecks are two simple primitives, namely ma-
trix transposition and matrix-vector product.

Indeed, recall algorithm 4.4 in [7]:

Algorithm 1 Randomized Subspace Iteration
Require: input matrixM
1: Generate an n × 2k Gaussian test matrix Ω.
2: Form Y0 = MΩ and compute its QR factorization Y0 = Q0R0.
3: for i = 1, . . . ,q do
4: Form Ỹi = MTQi−1 and compute its QR factorization

Ỹi = Q̃i R̃i .
5: Form Yi = MQ̃i and compute its QR factorization

Yi = QiRi .
6: Q = Qq .

The parameter q is usually a small integer (between 1 and 3).
Once Q is computed, form the small matrices Beiд = QTMQ and
Bsvd = QTMMTQ ∈ R2k×2k . Compute their respective k first
eigenvectors using any method: Beiд ≈ UeiдΛU

T
eiд and Bsvd ≈

UsvdΣ
2UT

svd . QUeiд and QUsvd ∈ Rn×k are respective approxima-
tions of the k first eigenvectors and left singular vectors ofM .

Now, consider the two primitives, transposition and matrix-
vector product for "sparse + low-rank" matrices. The dense trans-
posed matrix is simply ST + yxT . Hence, the transposed tuple is
(ST , (y,x)). In the standard compressed sparse row format2, trans-
posing a matrix comes at the cost of sorting its non-zero entries,
hence O(m logm), whereas it comes at a constant cost for dense
matrices. However, this drawback is well compensated by the ef-
ficiency of the second primitive. Indeed, consider the following
matrix vector products:

a = (S + xyT )z,

b = Sz + (yT z)x .

Even though these two vectors are formally equal i.e. a = b,
computing b does not require to store a dense matrix while com-
puting a does. Besides, computing b requires O(m + 2n) floating
point operations while O(n2) or O(n1n2) operations are necessary
to compute a. As a result, decomposing a sparse + low-rank matrix
comes at the cost of the overhead of computing the matrix-vector
product of its low-rank part with respect to the usual sparse case.
Algorithms 2 and 3 summarize the two primitives.
2https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html

Algorithm 2 Transposition

Require: (S, (x ,y)).
1: return (ST , (y,x)).

Algorithm 3 Matrix-vector product

Require: (S, (x ,y)).
1: return Sz + (yT z)x .

In the end, the trick to decompose large "sparse + low-rank"
matrices works as follows:

(1) Identify the sparse and low-rank components (See Table 1
for examples.).

(2) Overwrite transposition and matrix-vector with Algorithms
2 and 3 respectively.

(3) Plug-and-play with Halko’s algorithm.
Note that, for very large graphs, the random projection matrix,

which has between nk and 2nk floating-number coefficients, can be
a memory bottleneck if k ≥ m

n (especially if the graph has simple
binary edges). Therefore, the average number of neighbors of the
nodes in the graph is a natural limit to the number of factors in
the case of simple implementations. One way to overcome this
issue is to drop the QR factorizations as suggested in [7] and form
Beiд and Bsvd , accessing the data chunk by chunk. However, this
engineering lies beyond the scope of this paper.

3 EXPERIMENTS
We compute the partial eigenvalue decomposition and the partial
singular value decomposition of the modularity matrix of 7 undi-
rected and 7 bipartite graphs respectively. In the bipartite case, the
modularity matrix is defined as 1

w B −
γ
w2d f

T . The graphs are col-
lected from the Konect [12] database such that they have a varying
number of nodes and edges. See Table 2 for some metadata. We ex-
tract 16 components in each case and record the computation times
for our modified Python implementation of Halko’s method. We
compare our results to the computation times of the direct Lanczos
method using Scipy [10].

We also record the running times for the Reactome (undirected)
andMovieLens user–tag (bipartite) graphs fork ∈ {8, 16, 32, 64, 128, 256}.

All experiments are performed on a laptop equipped with an
Intel i7-7820HQ CPU (2.90 GHz) and 16 GB of RAM. The code to re-
produce the experiments is available online3. Results are displayed
in Figure 1 and Figure 2 respectively.

In this setup, memory errors arise around n2 or n1n2 = 109 for
the dense implementation. At this point, the Lanczos method is
already between one and two orders of magnitude slower than
Halko’s. On the other hand, the "sparse + low-rank trick" enables
to handle graphs with more than 3 million nodes and 234 million
edges in approximately five minutes. Furthermore, note that the
running time for the implicit dense matrix is quite close to the
running time for its sparse component. This holds for a fixed k and
varying graphs as well as for fixed graphs and varying k .

In the end, we have demonstrated that, without any specific
hardware, spectral methods can easily scale to handle graphs at
3https://github.com/nathandelara/Matrix-Factorization
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undirected
code name n m

MK Kangaroo 2.101 2.102

JZ Jazz musicians 2.102 5.103

Shf Hamsterster 2.103 2.104

RC Reactome 6.103 3.105

GW Gowalla 2.105 2.106

SK Skitter 2.106 2.107

OR Orkut 3.106 2.108

bipartite
code name n1, n2 m

SW Southern women 1 2.101, 2.101 9.101

UL Unicode languages 2.102, 6.101 1.103

SX Sexual escorts 1.104, 6.103 4.104

Mut MovieLens user–tag 4.103, 2.104 4.104

R2 Reuters-21578 2.104, 4.104 1.106

M3 MovieLens 10M 7.104, 1.104 1.107

RE Reuters 8.105, 3.105 6.107

Table 2: Metadata of the datasets.
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Figure 1: Computation times in seconds for partial decompo-
sition ofmatrices. Top: undirected graphs. Bottom: bipartite
graphs.
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Figure 2: Computation times in seconds for different values
of k . Top: Reactome. Bottom MovieLens user–tag.

least as big as the ones used to benchmark most iterative methods.
A Python module to perform such factorizations is implemented
in Scikit-network4. We hope that this will help produce richer
benchmarks for graph algorithms.
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