
The Sparse + Low-Rank Trick for Matrix Factorization-Based
Graph Algorithms

Nathan de Lara
ndelara@enst.fr
Télécom Paris
Paris, France

ABSTRACT
Matrix factorization is a central block in many graph algorithms
for embedding, clustering and a number of other tasks. This block
is usually the computational bottleneck of these algorithms and
a naive implementation can prevent them from scaling to large
datasets. However, the matrices to factorize often have a closed-
form "sparse + low-rank" structure. In this paper, we show how to
adapt state-of-the-art matrix factorization techniques to this class
of matrices. We demonstrate that the method is highly competitive
with respect to a naive implementation and that it comes at a very
small extra cost as compared to the decomposition of the sparse
component alone.

CCS CONCEPTS
• Computing methodologies→ Machine Learning;

KEYWORDS
algorithms, matrix factorization, graph mining
ACM Reference format:
Nathan de Lara. 2019. The Sparse + Low-Rank Trick for Matrix Factorization-
Based Graph Algorithms. In Proceedings of KDD ’19: 25th ACM SIGKDD
conference on knowledge discovery and data mining, Anchorage, Alaska, Au-
gust 04–08, 2019 (KDD ’19), 4 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Also known as "spectral methods", matrix factorization-based algo-
rithms are widely used in graph mining: spectral clustering [21],
spectral modularity optimization [17], manifold learning [1], graph
classification [4], node ranking [19], natural language processing
[14], connected-components search [5], anomaly detection [9]... As
the decomposition of the matrix is usually the computational bot-
tleneck, it has to be able to scale to large graphs in order for these
algorithms to compete with iterative methods for analogous tasks
[2, 6, 8, 11, 15]. Making such graph algorithms scale is mandatory
to obtain more comprehensive benchmarks.

In the course of this paper, we use the following notations:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’19, August 04–08, 2019, Anchorage, Alaska
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

• A ∈ Rn×n denotes the adjacency matrix of directed or undi-
rected graph,

• B ∈ Rn1×n2 denotes the biadjacency matrix of a bipartite
graph,

• m is the number of non-zero coefficients in a matrix (i.e. the
number of edges in the graph),

• d = A1 or B1 denotes the out-degree vector, andD = diag(d),
• f = AT 1 or BT 1 denotes the in-degree vector,
• w = 1TA1 or 1T B1 is the total weight of the graph.

There are two distinct issues to tackle in order for spectral meth-
ods to scale: the matrix factorization itself, but also the storage of
the input. Indeed, even though the adjacency matrix of a graph
and some derived matrices are usually very sparse (random walk
transition matrix, Laplacian matrix,...), other matrices of interest
are dense, and in the case of large graphs, they do not fit in the
RAM. Such dense matrices include

• random surfer’s transition matrix [18]: Ri j = α
Ai j

di
+

1 − α

n
,

• modularity [16]: Qi j =
1
w
Ai j −

γ

w2didj ,

• shifted pointwise mutual information1 [3]:

SPMIi j = log
(wAi j
didj

)
Ai j>0 − log(k),

• regularized graph Laplacian [22]: Lτi j = I −
Aτi j√
dτi d

τ
j

,

where Aτi j = Ai j + τ/n,
• principal components analysis matrix [20]: Āi j = Ai j − fj/w .

However, note that thesematrices all have a closed-form “sparse + low-
rank” decomposition (even sparse + rank-1 in this case) i.e. one can
write them as S + xyT where S is a sparse matrix and x and y are
vectors of appropriate dimensions. For the sake of simplicity, we
only consider "sparse + rank-1" matrices. However, the extension
to higher ranks is trivial.

Formally, these matrices are represented by tuples of the form
(S, (x ,y)). Storing such tuples only requires O(m + 2n) memory
space (O(m + 2rn) if there are r rank-1 tuples) instead of O(n2)
or O(n1n2) for S + xyT . Besides, this specific structure allows to
leverage powerful factorization methods as discussed in Section 2.

The identification of the low-rank factors is almost direct for all
the aforementioned matrices as shown in Table 1.

2 FACTORIZATION METHOD
Computing partial spectral decomposition, i.e. the k first singu-
lar vectors or eigenvectors, is well researched problem. Standard
solvers usually rely on power-iteration methods such as [13]. Faster

1The pointwise mutual information is set to 0 if Ai j = 0.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KDD ’19, August 04–08, 2019, Anchorage, Alaska De Lara

matrix S (sparse) (x ,y)

random surfer αD−1A (1−α
n 1, 1)

modularity 1
wA (−γ d

w ,
d
w)

SPMI log(wD−1AD−1)Ai j>0 (− log(k)1, 1)
Laplacian I − D

−1/2
τ AD

−1/2
τ (− τ

n
√
di + τ ,

√
di + τ)

PCA A (
f
w , 1)

Table 1: Identification of sparse and low-rank factors.

methods use randomized projections to reduce dimensionality be-
fore factorizing [7]. The key point of these methods is that their
computational bottlenecks are two simple primitives, namely ma-
trix transposition and matrix-vector product.

Indeed, recall algorithm 4.4 in [7]:

Algorithm 1 Randomized Subspace Iteration
Require: input matrixM
1: Generate an n × 2k Gaussian test matrix Ω.
2: Form Y0 = MΩ and compute its QR factorization Y0 = Q0R0.
3: for i = 1, . . . ,q do
4: Form Ỹi = MTQi−1 and compute its QR factorization

Ỹi = Q̃i R̃i .
5: Form Yi = MQ̃i and compute its QR factorization

Yi = QiRi .
6: Q = Qq .

The parameter q is usually a small integer (between 1 and 3).
Once Q is computed, form the small matrices Beiд = QTMQ and
Bsvd = QTMMTQ ∈ R2k×2k . Compute their respective k first
eigenvectors using any method: Beiд ≈ UeiдΛU

T
eiд and Bsvd ≈

UsvdΣ
2UT

svd . QUeiд and QUsvd ∈ Rn×k are respective approxima-
tions of the k first eigenvectors and left singular vectors ofM .

Now, consider the two primitives, transposition and matrix-
vector product for "sparse + low-rank" matrices. The dense trans-
posed matrix is simply ST + yxT . Hence, the transposed tuple is
(ST , (y,x)). In the standard compressed sparse row format2, trans-
posing a matrix comes at the cost of sorting its non-zero entries,
hence O(m logm), whereas it comes at a constant cost for dense
matrices. However, this drawback is well compensated by the ef-
ficiency of the second primitive. Indeed, consider the following
matrix vector products:

a = (S + xyT)z,

b = Sz + (yT z)x .

Even though these two vectors are formally equal i.e. a = b,
computing b does not require to store a dense matrix while com-
puting a does. Besides, computing b requires O(m + 2n) floating
point operations while O(n2) or O(n1n2) operations are necessary
to compute a. As a result, decomposing a sparse + low-rank matrix
comes at the cost of the overhead of computing the matrix-vector
product of its low-rank part with respect to the usual sparse case.
Algorithms 2 and 3 summarize the two primitives.
2https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html

Algorithm 2 Transposition

Require: (S, (x ,y)).
1: return (ST , (y,x)).

Algorithm 3 Matrix-vector product

Require: (S, (x ,y)).
1: return Sz + (yT z)x .

In the end, the trick to decompose large "sparse + low-rank"
matrices works as follows:

(1) Identify the sparse and low-rank components (See Table 1
for examples.).

(2) Overwrite transposition and matrix-vector with Algorithms
2 and 3 respectively.

(3) Plug-and-play with Halko’s algorithm.
Note that, for very large graphs, the random projection matrix,

which has between nk and 2nk floating-number coefficients, can be
a memory bottleneck if k ≥ m

n (especially if the graph has simple
binary edges). Therefore, the average number of neighbors of the
nodes in the graph is a natural limit to the number of factors in
the case of simple implementations. One way to overcome this
issue is to drop the QR factorizations as suggested in [7] and form
Beiд and Bsvd , accessing the data chunk by chunk. However, this
engineering lies beyond the scope of this paper.

3 EXPERIMENTS
We compute the partial eigenvalue decomposition and the partial
singular value decomposition of the modularity matrix of 7 undi-
rected and 7 bipartite graphs respectively. In the bipartite case, the
modularity matrix is defined as 1

w B −
γ
w2d f

T . The graphs are col-
lected from the Konect [12] database such that they have a varying
number of nodes and edges. See Table 2 for some metadata. We ex-
tract 16 components in each case and record the computation times
for our modified Python implementation of Halko’s method. We
compare our results to the computation times of the direct Lanczos
method using Scipy [10].

We also record the running times for the Reactome (undirected)
andMovieLens user–tag (bipartite) graphs fork ∈ {8, 16, 32, 64, 128, 256}.

All experiments are performed on a laptop equipped with an
Intel i7-7820HQ CPU (2.90 GHz) and 16 GB of RAM. The code to re-
produce the experiments is available online3. Results are displayed
in Figure 1 and Figure 2 respectively.

In this setup, memory errors arise around n2 or n1n2 = 109 for
the dense implementation. At this point, the Lanczos method is
already between one and two orders of magnitude slower than
Halko’s. On the other hand, the "sparse + low-rank trick" enables
to handle graphs with more than 3 million nodes and 234 million
edges in approximately five minutes. Furthermore, note that the
running time for the implicit dense matrix is quite close to the
running time for its sparse component. This holds for a fixed k and
varying graphs as well as for fixed graphs and varying k .

In the end, we have demonstrated that, without any specific
hardware, spectral methods can easily scale to handle graphs at
3https://github.com/nathandelara/Matrix-Factorization

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
https://github.com/nathandelara/Matrix-Factorization

The Sparse + Low-Rank Trick for Matrix Factorization-Based Graph Algorithms KDD ’19, August 04–08, 2019, Anchorage, Alaska

undirected
code name n m

MK Kangaroo 2.101 2.102

JZ Jazz musicians 2.102 5.103

Shf Hamsterster 2.103 2.104

RC Reactome 6.103 3.105

GW Gowalla 2.105 2.106

SK Skitter 2.106 2.107

OR Orkut 3.106 2.108

bipartite
code name n1, n2 m

SW Southern women 1 2.101, 2.101 9.101

UL Unicode languages 2.102, 6.101 1.103

SX Sexual escorts 1.104, 6.103 4.104

Mut MovieLens user–tag 4.103, 2.104 4.104

R2 Reuters-21578 2.104, 4.104 1.106

M3 MovieLens 10M 7.104, 1.104 1.107

RE Reuters 8.105, 3.105 6.107

Table 2: Metadata of the datasets.

102 103 104 105 106 107 108

number of edges, "m"

10 3

10 2

10 1

100

101

102

tim
e

(s
)

MK JZ Shf

RC

GW

SK

OR

MK
JZ

Shf

RC

sparse + low rank
dense

102 103 104 105 106 107 108

number of edges, "m"

100

101

102

tim
e

(s
)

SW UL SXMut
R2

M3

RE

SW UL

SXMut

R2 M3sparse + low rank
dense

Figure 1: Computation times in seconds for partial decompo-
sition ofmatrices. Top: undirected graphs. Bottom: bipartite
graphs.

101 102

number of eigenvectors, "k"

10 1

100

101

tim
e

(s
)

sparse + low rank
dense

101 102

number of singular vectors, "k"

10 1

100

101

tim
e

(s
)

sparse + low rank
dense

Figure 2: Computation times in seconds for different values
of k . Top: Reactome. Bottom MovieLens user–tag.

least as big as the ones used to benchmark most iterative methods.
A Python module to perform such factorizations is implemented
in Scikit-network4. We hope that this will help produce richer
benchmarks for graph algorithms.

REFERENCES
[1] Mikhail Belkin and Partha Niyogi. 2002. Laplacian Eigenmaps for Dimensionality

Reduction and Data Representation. Neural Computation 15 (2002), 1373–1396.
https://doi.org/10.1162/089976603321780317

[2] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. 2008. Fast unfolding of communities in large networks. Journal
of Statistical Mechanics: Theory and Experiment 2008, 10 (Oct. 2008), P10008.
https://doi.org/10.1088/1742-5468/2008/10/P10008

[3] Gerlof Bouma. 2009. Normalized (pointwise) mutual information in collocation
extraction. Proceedings of GSCL (2009), 31–40.

[4] Nathan de Lara and Edouard Pineau. 2018. A Simple Baseline Algorithm for
Graph Classification. arXiv:1810.09155 [cs, stat] (Oct. 2018). http://arxiv.org/abs/
1810.09155 arXiv: 1810.09155.

[5] Chris H. Q. Ding, Xiaofeng He, and Hongyuan Zha. 2001. A Spectral Method
to Separate Disconnected and Nearly-disconnected Web Graph Components. In
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’01). ACM, New York, NY, USA, 275–280. https:
//doi.org/10.1145/502512.502551 event-place: San Francisco, California.

[6] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855–864.

4https://github.com/sknetwork-team/scikit-network

https://doi.org/10.1162/089976603321780317
https://doi.org/10.1088/1742-5468/2008/10/P10008
http://arxiv.org/abs/1810.09155
http://arxiv.org/abs/1810.09155
https://doi.org/10.1145/502512.502551
https://doi.org/10.1145/502512.502551
https://github.com/sknetwork-team/scikit-network

KDD ’19, August 04–08, 2019, Anchorage, Alaska De Lara

[7] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. 2009. Finding structure
with randomness: Probabilistic algorithms for constructing approximate matrix
decompositions. arXiv:0909.4061 [math] (Sept. 2009). http://arxiv.org/abs/0909.
4061 arXiv: 0909.4061.

[8] T. Haveliwala. 1999. Efficient Computation of PageRank. Technical Report 1999-31.
Stanford InfoLab. http://ilpubs.stanford.edu:8090/386/

[9] Tsuyoshi Idé and Hisashi Kashima. 2004. Eigenspace-based Anomaly Detection
in Computer Systems. In Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’04). ACM, New York,
NY, USA, 440–449. https://doi.org/10.1145/1014052.1014102 event-place: Seattle,
WA, USA.

[10] Eric Jones, Travis Oliphant, and Pearu Peterson. 2001. {SciPy}: Open source
scientific tools for {Python}. (2001). http://www.scipy.org

[11] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[12] Jérôme Kunegis. 2013. KONECT: The Koblenz Network Collection. In Proceedings
of the 22Nd International Conference on World Wide Web (WWW ’13 Companion).
ACM, New York, NY, USA, 1343–1350. https://doi.org/10.1145/2487788.2488173
event-place: Rio de Janeiro, Brazil.

[13] Cornelius Lanczos. 1950. An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators. United States Governm. Press
Office Los Angeles, CA.

[14] Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix
factorization. In Advances in neural information processing systems. 2177–2185.

[15] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
2013. Distributed Representations of Words and Phrases and their Com-
positionality. In Advances in Neural Information Processing Systems 26,
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Wein-
berger (Eds.). Curran Associates, Inc., 3111–3119. http://papers.nips.cc/paper/
5021-distributed-representations-of-words-and-phrases-and-their-compositionality.
pdf

[16] M. E. J. Newman. 2006. Modularity and community structure in networks.
Proceedings of the National Academy of Sciences 103, 23 (June 2006), 8577–8582.
https://doi.org/10.1073/pnas.0601602103

[17] M. E. J. Newman. 2013. Spectral methods for community detection and graph
partitioning. Physical Review E 88, 4 (Oct. 2013), 042822. https://doi.org/10.1103/
PhysRevE.88.042822

[18] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking: Bringing Order to the Web. Technical Report 1999-
66. Stanford InfoLab. http://ilpubs.stanford.edu:8090/422/ Previous number =
SIDL-WP-1999-0120.

[19] Nicola Perra and Santo Fortunato. 2008. Spectral centrality measures in complex
networks. Physical Review E 78, 3 (Sept. 2008), 036107. https://doi.org/10.1103/
PhysRevE.78.036107

[20] Marco Saerens, Francois Fouss, Luh Yen, and Pierre Dupont. 2004. The Principal
Components Analysis of a Graph, and Its Relationships to Spectral Clustering. In
Machine Learning: ECML 2004 (Lecture Notes in Computer Science), Jean-François
Boulicaut, Floriana Esposito, Fosca Giannotti, and Dino Pedreschi (Eds.). Springer
Berlin Heidelberg, 371–383.

[21] Ulrike von Luxburg. 2007. A tutorial on spectral clustering. Statistics and
Computing 17, 4 (Dec. 2007), 395–416. https://doi.org/10.1007/s11222-007-9033-z

[22] Yilin Zhang and Karl Rohe. 2018. Understanding Regularized Spectral Clustering
via Graph Conductance. In Advances in Neural Information Processing Systems 31,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett (Eds.). Curran Associates, Inc., 10631–10640. http://papers.nips.cc/paper/
8262-understanding-regularized-spectral-clustering-via-graph-conductance.
pdf

http://arxiv.org/abs/0909.4061
http://arxiv.org/abs/0909.4061
http://ilpubs.stanford.edu:8090/386/
https://doi.org/10.1145/1014052.1014102
http://www.scipy.org
https://doi.org/10.1145/2487788.2488173
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1103/PhysRevE.88.042822
https://doi.org/10.1103/PhysRevE.88.042822
http://ilpubs.stanford.edu:8090/422/
https://doi.org/10.1103/PhysRevE.78.036107
https://doi.org/10.1103/PhysRevE.78.036107
https://doi.org/10.1007/s11222-007-9033-z
http://papers.nips.cc/paper/8262-understanding-regularized-spectral-clustering-via-graph-conductance.pdf
http://papers.nips.cc/paper/8262-understanding-regularized-spectral-clustering-via-graph-conductance.pdf
http://papers.nips.cc/paper/8262-understanding-regularized-spectral-clustering-via-graph-conductance.pdf

	Abstract
	1 Introduction
	2 Factorization method
	3 Experiments
	References

