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ABSTRACT
Since first working quantum computers are now available, acceler-
ated developments of this technology may be expected. This will
likely impact graph- or network analysis because quantum com-
puters promise fast solutions for many problems in these areas.
In this paper, we explore the use of adiabatic quantum computing
in finding shortest paths. We devise an Ising energy minimization
formulation for this task and discuss how to set up a system of quan-
tum bits to find minimum energy states of the model. In simulation
experiments, we numerically solve the corresponding Schrödinger
equations and observe our approach to work well. This evidences
that shortest path computation can at least be assisted by quantum
computers.
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1 INTRODUCTION
Quantum computing exploits quantum mechanical phenomena
such as superposition or entanglement for information processing
and is now becoming a technical reality. First quantum computers
are commercially available [7], governments and industry invest
heavily into research and development [6, 8, 13, 14, 21, 24], and
a growing number of voices predicts further rapid progress [5,
10]. These developments will likely impact graph analysis because
quantum computing promises efficient solutions to many of the
search- and optimization problems occurring in this ara. Examples
include but are not limited to computing vertex- or clique covers,
graph colorings Hamiltonian cycles and paths [18], or graph cuts
and clusterings [2, 23].

In this paper, we present first steps towards quantum shortest
path computation. For the time being, we consider a simple scenario
encountered in route planning and assume that we have access to a
matrix of path length distances between vertices of an undirected
graph. Incorporating this information, we discuss how adiabatic
quantum computing can identify vertices that lie on a shortest path
between a source and a target vertex.
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(a) didactic graph of 9 vertices
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(b) shortest path from v1 to v6
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Figure 1: Adiabatic quantum computing of shortest paths.
(c) visualizes the adiabatic evolution of a system of 9 qubits
set up to determine which vertices of the graph in (a) form a
shortest path fromv1 tov6. At time t , the system is in a super-
position of 29 = 512 basis states |ψi ⟩ each of which indexes
a possible subset of vertices. At the beginning, it is equally
likely to find the system in any of these states. At the end,
one basis state has a noticeably higher amplitude |ai |

2 than
the others and is thus more likely to be measured; this state
is |101101000⟩ and indexes the nodes highlighted in (b).

Our interest in adiabatic quantum computing stems from the fact
that devices following this paradigm solve optimization problems
that are not entirely alien to researchers in machine learning and
data mining. Indeed, devices such as produced by D-Wave Systems
[3, 9, 17] are tailored towards finding minimum energy states of
Ising models and therefore solve quadratic unconstrained binary
optimization problems of the following form

s∗ = argmin
s ∈{−1,+1}n

n∑
i, j=1

Qi j si sj +
n∑
i=1

qi si . (1)

Ising models were originally conceived to represent systems of
magnetic dipoles [15, 22]. An intuitive interpretation of (1) therefore
is the following: the 2n vectors s are possible global states of a
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system of n entities each of which can be in one of two local states
(either +1 or −1). The coupling matrixQ ∈ Rn×n models internal
interactions among the entities and the vector q ∈ Rn models
external influences.

However, Ising models are of broader use as they can be seen
to represent bi-partitioning problems where n entities need to be
divided into two disjoint subsets whose elements are labeled +1
and −1, respectively. Indeed, many problems are bi-partitioning
problems in disguise. For instance, the problem of finding a shortest
path in a graph can be understood as the problem of dividing its
vertices into those that are on and off the shortest path.

Yet, Ising models only make sense if we intend to solve them on
a quantum computer. For example, for a graph of n vertices there
are 2n possible bi-partitions which generally prevents exhaustive
searches for solutions. On an adiabatic quantum computer, however,
we can prepare a system of n quantum bits (qubits) such that it is
in a quantum mechanical superposition of all 2n possible partitions
and more likely to be measured in a configuration that reflects the
desired solution. Hence, once (adiabatic) quantum computers reach
quantum supremacy, i.e. once they can harness the phenomena
of quantum mechanics to their full potential, they will be able to
search more efficiently than digital computers1.

One strategy for running graph algorithms on adiabatic quantum
computers is thus to attempt to (re)formulate them in terms of min-
imization objectives whose solutions correspond to the minimum
energy states of an Ising model.

In section 2, we therefore devise Ising models for the problem
outlined above and show how vertices on a shortest path can be
identified through Ising energy minimization.

We will distinguish two general cases. In the first case, there
is a single shortest path from a source to a target vertex; in the
second case, there exist several shortest paths. We shall see that
Ising models for the first case are almost trivial whereas the second
one requires more elaborate models. For simplicity, our focus in
this paper will thus be on the first case and we leave most aspects
of the second case to future work.

In order for this paper to be self contained and accessible to a
wider audience, we then review quantum computing in general and
adiabatic quantum computing in particular. That is, in section 3, we
provide a brief and concise overview of basic concepts of quantum
computing and introduce the corresponding mathematical notation.

In section 4, we then discuss details as to how to set up a system
of qubits as well as corresponding Hamiltonian operators such that
our Ising models for shortest path computation can be solved via
adiabatic quantum computing.

Finally, in section 5, we present simulation experiments which
demonstrate that our adiabatic quantum computing approach to
the shortest path problem is feasible and yields reasonable, useful
results.

In short, the work reported in this paper presents initial steps
towards quantum computing for graph analysis and exemplifies
how to set up a well known problem such that it could be solved
on current generation quantum computers.

1Indeed, the theoretically best performance for quantum computational search is
known to be O (

√
n) [11, 25] and we note that, while simple adiabatic quantum com-

puting as considered in this paper may not reach this level of efficiency, more elaborate
versions will [20].

2 ISING MODELS FOR SHORTEST PATHS
In this section, we devise simple Ising models for the shortest path
problem as it occurs in the context of route planning. Throughout,
we consider undirected, weighted graphs

G = (V ,E,w) (2)

with verticesV = {v1, . . . ,vn }, edges E ⊆ V ×V , and edge labeling
functionw : E → R+ and we note that an unweighted graph is but
a weighted one wherew(vi ,vj ) = 1 for all (vi ,vj ) ∈ E.

Given such a graph, we can run Dijkstra’s algorithm to compute
a distance matrix D ∈ Rn×n+ such that its elements

Di, j = d(vi ,vj ) (3)

indicate path lengths between pairs of vertices vi ,vj ∈ V .
Note that, although D provides information as to the lengths of

shortest paths, the paths themselves are not immediately available.
Nevertheless, D is of practical value. In route planning, it allows
for running (variants of) the A∗ algorithm once a source and target
vertex have been decided for. Seen in this light, this section thus
suggests how to replace A∗ computations by a quantum computing
approach.

Given G and D, we next discuss Ising models for two situations
that may occur in context of shortest path computation. First, we
address the rather simple case where there is a single shortest
path from the source vertex vs to the target vertex vt . Second, we
consider the more general and more elaborate case where there
exist several shortest paths.

2.1 Case I: A Single Shortest Path
Our derivation of an Ising model for the shortest path problem for
the case where there is a unique path between source vs and target
vt is based on the following observation: if vi is a vertex on the
shortest path from vs to vt , then

d(vs ,vt ) = d(vs ,vi ) + d(vi ,vt ) (4)

or, equivalently
Ds,i + Di,t − Ds,t = 0. (5)

This immediately provides a criterion for testing whether or not
a vertex lies on a shortest path. In order to incorporate it into an
Ising model, we let ds = Ds, : be the row of matrix D containing
distances w.r.t. vs and dt = Dt, : be the corresponding row for vt .
Then,

d = ds + dt − Ds,t · 1 ≥ 0 (6)
is an n-dimensional vector whose zero elements indicate vertices
on a shortest path from vs to vt .

For instance, for the unweighted graph in Fig. 1, the entries of the
distance matrix reflect “hop counts” between the nine vertices. For
source v1 and target v6 we would therefore find d = [010010223]⊺
which indicates that v1, v3, v4, and v6 lie on the shortest path
between source and target.

This way, the problem of identifying a shortest path becomes
the problem of identifying the smallest elements of d ∈ Rn .

For an unweighted graph, we can read the number k of vertices
on the path from vs to vt from the associated “hop count” matrix
and find k = Ds,t + 1. Identifying the k smallest elements of d is
then tantamount to finding a bipolar vector s with k elements equal
to +1 and n−k elements equal to −1 such that the positive entries of
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Figure 2: One of the two shortest paths from v1 to v7.

s index the sought after elements ofd . Formally, this corresponds to
the following quadratically constrained linear optimization problem

s∗ = argmin
s ∈{−1,+1}n

s⊺d

s.t.
(
s⊺1 − ck

)2
= 0

(7)

where ck ≡ k · +1 + (n − k) · −1 = 2k − n. Expanding the quadratic
constraint (

s⊺1 − ck
)2
= s⊺11⊺s − 2cks⊺1 + c2k (8)

where the constant c2k is independent of s , the Lagrangian of the
problem in (7) amounts to

L(s, λ) = s⊺d + λs⊺11⊺s − 2λcks⊺1 (9)

= λs⊺11⊺s + s⊺
(
d − 2λckk

)
. (10)

Treating the Lagrange multiplier λ as a constant, we then have
L(s) = s⊺Qs + s⊺q where Q = λ11⊺ and q = d − 2λckk . hence,
the problem in (7) can be expressed as

s∗ = argmin
s ∈{−1,+1}n

s⊺Qs + s⊺q (11)

which we recognize as an Ising energy minimization problem.
For weighted graphs, we cannot read the number k of vertices

along a shortest path from the distance matrix. Nevertheless, we
may still use (11) to solve our problem.We simply let ck = n and, for
weighted and unweighted graphs, choose λ such that |λck | ∈ O(1).

2.2 Case II: Several Shortest Paths
For situations where there are several shortest paths from vs to
vt , the optimization objective derived above is overly simplistic.
This is because vector d will contain more zeros than there are
vertices along either of the shortest paths but the above model
does not incorporate structural constraints which would allow for
distinguishing between different paths.

For example, for the unweighted graph in Fig. 1 with source v1
and target v7 we have d = [010002022]⊺ meaning that v1, v3, v4,
v5, and v7 all lie on a shortest path between source and target. This
is certainly correct but neither of the two shortest paths from v1 to
v7 actually contains all these vertices.

Nevertheless, there is a principled solution, albeit one where we
need to consider considerably larger sets of bipolar parameters. Our
idea is based on work by Lucas on finding Hamiltonian paths [18]
and we shall briefly sketch it here.

We assume that the “hop count” diameter δ of the graph G is
known so that the maximum number of vertices along any shortest
path is ∆ = δ + 1. Using this, we introduce a bipolar matrix S of
size n × ∆ with elements Sv,p where v indexes a vertex of G and p
its position along a shortest path from vs to vt . Any such matrix S
that represents a solution to a shortest path problem is supposed to
have Sv,p = +1 if vertex v is at position p along the path; all other

elements of S should be −1. For instance, the shortest path between
v1 and v7 highlighted in Fig. 2 would be encoded as

1 2 3 4 5
v1 +1 −1 −1 −1 −1
v2 −1 −1 −1 −1 −1
v3 −1 +1 −1 −1 −1
v4 −1 −1 +1 −1 −1
v5 −1 −1 −1 −1 −1
v6 −1 −1 −1 −1 −1
v7 −1 −1 −1 +1 −1
v8 −1 −1 −1 −1 −1
v9 −1 −1 −1 −1 −1

from which we recognize it to be v1 → v3 → v4 → v7.
This example also provides us with a set of algebraic criteria

which any representation of any shortest path must obey.

First, rows s and t of S must contain an entry of +1 and in row s
this entry must occur in column one. This constraint is captured
by the following minimization term

T1 =
(
1 − Ss,1

)2
+

(
2 − ∆ −

∑
p

St,p

)2
. (12)

Second and third, for any valid solution, there can be at most one
entry of+1 per column and row; this can be enforced by minimizing

T2 =
∑
p

(
1 −

∑
v

Sv,p

)2
(13)

T3 =
∑
v

(
1 −

∑
p

Sv,p

)2
. (14)

Forth, we must penalize non-exiting transitions between vertices

T4 =
∑

(u,v)<E

∑
p

Su,p Sv,p+1. (15)

Finally, the length of any path found this way must of course be
small and this can be enforced incorporating vector d from above

T5 =
∑
p

(∑
v

dv Sv,p

)2
. (16)

Putting it all together, we obtain the overall minimization objective

T =
5∑
i=1

αi Ti (17)

where the αi are weighting coefficients that allow for trading off
the individual objectives.

Looking at (17), we realize that this objective is quadratic in the
Sv,p . Vectorizing matrix S and rewriting the above terms in form
of appropriate coupling matrices and influence vectors therefore
provides an Ising model of the form in (11) which would allow for
quantum computing solutions to the general shortest path problem.
Further details will, however, be left to future work.
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2.3 Discussion
While our Ising models for the case where there is a unique shortest
path between source and target are almost trivial, the prospective
model for the general case of several shortest paths is more involved
and more resource intensive. Indeed, solving the former on an
adiabatic quantum computer would require a device with only n
quantum bits (qubits) whereas the latter would require n ∆ qubits.

Moreover, while one might argue that, in practical scenarios such
as route planning between, say, cities, shortest path will typically
be unique, our simple models can only identify vertices along a
shortest path but not the order in which they occur. The extended
model, on the other hand, accomplishes identification and ordering
simultaneously. In this sense, our experimental results reported
below are but a first step in the direction of quantum computing
solutions for the shortest path problem.

3 QUANTUM COMPUTING IN A NUTSHELL
Quantum computing harnesses quantum mechanics for informa-
tion processing and obstacles that prevent it from receiving wider
attention in computer science are likely threefold: first, quantum
mechanical phenomena such as superposition, entanglement, or
decoherence seem abstruse for they cannot be observed in everyday
life. Second, the mathematics required to model these phenomena
is arguably abstract. And, third, the mathematical notation used in
quantum computing appears even more abstract and needs getting
used to. Here, we therefore briefly introduce basic terminology and
concepts of quantum computing.

The basic units of information on a classical computer are bits
and the mathematics that describes their behavior is Boolean al-
gebra. On a quantum computer, the basic units of information are
qubits (quantum bits) and the mathematics used to reason about
their behavior is complex linear algebra.

While a classical bit assumes one and only one of two possible
states (0 or 1), a qubit exists in a superposition of two states simul-
taneously and only if it is measured does it collapse to either one
of them. Examples of physical systems where this phenomenon
occurs include the polarization of a photon (vertical or horizontal)
or the spin of an electron (up or down).

In order to mathematically describe the behavior of qubits, they
are modeled as unit vectors in a two-dimensional Hilbert space.
Using the Dirac notation2, we write a qubit as a linear combination��ψ 〉

= a
��0〉 + b ��1〉 (18)

where the coefficients a,b ∈ C are called the amplitudes of the two
basis states

��0〉 and ��1〉. They obey the normalization condition

|a |2 + |b |2 = 1 (19)

and are interpreted as follows: if a measurement is performed on��ψ 〉
, the probability of finding it in state

��0〉 is |a |2 whereas the
probability of finding it in state

��1〉 amounts to |b |2.

2Readers not familiar with this notation may think of the two basis kets |0⟩ and |1⟩
in terms of the Euclidean vectors [1, 0]T and [0, 1]T , respectively. Yet, any other pair
of orthogonal vectors would work as well. One of the reasons why physicists prefer
Dirac’s notation is that it allows for great symbolic flexibility. For example the two
basis polarizations of a photon could be written as |↕⟩ and |↔⟩ and the two basis
spins of an electron could be written as |↑⟩ and |↓⟩, respectively.

Importantly, measurements of
��ψ 〉

are irreversible operations as
they constitute interactions with the outside world and thus lead to
quantum decoherence. In other words, once a qubit has collapsed
to either one of its basis states, it behaves like a classical bit.

Operations on qubits that preserve their quantum mechanical
nature are called reversible. Mathematically, these correspond to
unitary linear operators U = e−iHt/ℏ where H is another operator
called the Hamiltonian. It represents the total energy of a quantum
system in the sense that its spectrum is the set of possible outcomes
of measurements of the system’s total energy.

Just as classical bits can form bit registers, qubits can form qubit
registers. Yet, while a single qubit

��ψ 〉
exists in a superposition

of 2 basis states, a quantum register
��ψ〉

of n qubits exists in a
superposition of 2n basis states. Mathematically, this is to say that��ψ〉

=

2n−1∑
i=0

ai |ψi ⟩ (20)

where the amplitudes obey
∑
i |ai |

2 = 1 and the basis states |ψi ⟩
of the register are 2n-dimensional tensor products3 of single qubit
basis states.

For instance, for a quantum register where n = 3, we would have
the following 23 = 8 basis states

|ψ0⟩ =
��0〉 ⊗ ��0〉 ⊗ ��0〉 ≡ ��000〉 (21)
...

|ψ7⟩ =
��1〉 ⊗ ��1〉 ⊗ ��1〉 ≡ ��111〉. (22)

There are two distinct approaches towards quantum computing:
quantum gate computing and adiabatic quantum computing. The
former attempts problem solving by means of sequencing quantum
mechanical operators just as digital computers work by sequencing
Boolean operators. The latter is the paradigm we are concerned
with in this paper.

Adiabatic quantum computing (AQC) is based on the adiabatic
theorem [4] which states that if a quantum system starts in the
lowest energy state of a Hamiltonian which then gradually changes
over a period of time, the system will end up in the ground state
of the resulting Hamiltonian. To harness this for problem solving,
one prepares a system in the ground state of a simple, problem
independent Hamiltonian and evolves it towards a Hamiltonian
whose ground state represents a desired solution [1].

Hence, one of the challenges in adiabatic quantum computing is
to devise suitable problem Hamiltonians. However, if the problem
at hand can be expressed as an Ising energy minimization problem,
this challenge is minor because, as we shall see next, it is easy to
construct Hamiltionians for Ising models.

4 AQC FOR SHORTEST PATHS
To perform adiabatic quantum shortest path computation on a
graph of n vertices based on an Ising model such as in (11), we
consider a quantum register of n qubits that is in a time-dependent

3The tensor product of two kets can be thought of as the Kronecker product of
the corresponding Euclidean vectors. For instance |0⟩ ⊗ |1⟩ can be understood as
[1, 0]T ⊗ [0, 1]T = [0, 0, 1, 0]T .
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superposition of 2n basis states��ψ(t)〉 = 2n−1∑
i=0

ai (t)
��ψi 〉. (23)

Looking at (23), we point out that the time dependence of the system
is confined to the amplitudes ai ∈ C whereas the corresponding
basis states

��ψi 〉 themselves are constants.
With respect to these basis states, we assume that each represents

one of the 2n possible partitions of the graph. In other words, we
understand the ��ψ0

〉
=

��00 . . . 000〉 (24)��ψ1
〉
=

��01 . . . 000〉 (25)��ψ2
〉
=

��10 . . . 000〉 (26)��ψ3
〉
=

��11 . . . 000〉 (27)
...

as indicator vectors which indicate whether a vertex belongs to a
path or not.

If a quantum system such as the one in (23) evolves under the
influence of a time-dependent Hamiltonian operator H (t), it is
governed by the Schrödinger equation

∂

∂t

��ψ(t)〉 = −i H (t)
��ψ(t)〉 (28)

where we have set ℏ = 1. In adiabatic quantum computing, we
consider periods ranging from t = 0 to t = T and assume the
Hamiltonian at time t to be given as a convex combination of two
static Hamiltonians, namely

H (t) =
(
1 − t

T
)
HB +

t
T HP . (29)

We say that HB is the beginning Hamiltonian whose ground state is
easy to construct and that HP is the problem Hamiltonian whose
ground state encodes the solution to the problem we want to solve.

Above, we introduced Ising models for the shortest path problem.
For models such as these, there are by now standard suggestions
for how to set up a suitable problem Hamiltonian [1]. In particular,
we may define

HP =

n∑
i, j=1

Qi j σ
i
z σ

j
z (30)

where σ iz denotes the Pauli spin matrix

σz =

[
1 0
0 −1

]
(31)

acting on the ith qubit. In other words, σ iz is given by a tensor
product of n operators, namely

σ iz = I ⊗ I ⊗ . . . ⊗ I︸           ︷︷           ︸
i−1 terms

⊗ σz ⊗ I ⊗ I . . . ⊗ I︸        ︷︷        ︸
n−i terms

. (32)

The beginning Hamiltonian is then typically chosen to be or-
thogonal to the problem Hamiltonian, for instance

HB = −

n∑
i=1

σ ix (33)

where σ ix is defined as above, however, this time with respect to
the Pauli spin matrix σx .

To compute a path, we evolve |ψ(t)⟩ from |ψ(0)⟩ to
��ψ(T )〉 where

|ψ(0)⟩ is the ground state of the beginning Hamiltonian. That is, if
λ denotes the smallest eigenvalue of HB , the initial state |ψ(0)⟩ of
our quantum register corresponds to the solution of the following
eigenvector/eigenvalue problem

HB
��ψ(0)〉 = λ ��ψ(0)〉. (34)

Finally, upon termination of its evolution, a measurement is
performed on the qubit register. This will cause the wave function��ψ(T )〉 to collapse to a particular basis state and the probability for
this state to be

��ψi 〉 is given by the amplitude |ai (T )|
2. However,

since the adiabatic evolution was steered towards the problem
Hamiltonian, basis states that correspond to ground states of HP
are more likely to be found.

On an adiabatic quantum computer, all these ingredients of our
quantum shortest path algorithm can be prepared correspondingly
and the adiabatic evolution be carried out physically. On a digital
computer, we may simulate this quantum mechanical process by
numerically solving��ψ(T )〉 = −i

∫ T

0
H (t)

��ψ(t)〉 dt . (35)

The experimental results we present next were obtained using this
latter approach.

5 PRACTICAL EXAMPLES
In this section, we present simulation experiments which illustrate
the feasibility and inner workings of adiabatic quantum computing
for shortest path finding. Our simulationswere carried out in Python
using the scientific computing modules NumPy and NetworkX and,
notably, the quantum computing toolbox QuTiP [12, 16, 19].

Both our examples address the case where there is a unique
shortest path between a source and a target vertex. In other words,
both our examples deal with the Ising model in (11). In both ex-
amples, we set up the ground state

��ψ(0)〉 and the Hamiltonians
HB and HP according to equations (34), (33), and (30) and consid-
ered an evolution of T = 75 steps. We used methods provided in
QuTiP to numerically solve (35) for each 0 ≤ t ≤ T so as to be able
to visualize the evolution of the probability amplitudes |ai |2 and
thus to provide insights into the inner workings of the quantum
computing approach discussed in this paper.

In our first experiment, we consider the unweighted graph of 9
vertices in Fig. 1 and attempt to identify the shortest path between
v1 and v6.

Figure 1(c) shows the temporal evolution of the amplitudes
|ai (t)|

2 of the 29 = 512 basis states |ψi ⟩ the 9 qubit system |ψ(t)⟩
used for this task can be in. At t = 0, all basis states are equally likely
but over time their amplitudes begin to increase or decrease. At
t = T , one basis state has a noticeably higher amplitude than the oth-
ers so that a measurement of the quantum system will likely cause
it to collapse to this most probable state. This state is |101101000⟩
and can be understood as a vector indicating verticesv1,v3,v4, and
v6 which indeed form the sought after shortest path in Fig. 1(b).

In our second experiment, we consider the weighted real world
graph in Fig. 3. It represents high-speed railroad connections among
16 cities in northwest Germany and the task is to find the shortest
path (in terms of kilometers traveled) between Bonn and Bremen.
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(a) railroad network in northwest Germany (b) adiabatic evolution of a 16 qubit system
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(c) shortest path between Bonn and Bremen

Figure 3: Realworld example of adiabatic quantumpathfinding. Thenetwork in (a) represents high speed railroad connections
among 16 German cities; the task is to plan a trip from Bonn (BN) to Bremen (HB). Panel (b) visualizes the adiabatic evolution
of a system of 16 qubits that was set up to solve this task. During their evolution over time t , the qubits are in a superposition
of 216 = 65536 basis states |ψi ⟩ each of which represents a possible subset of cities. Upon termination, state |1100101000101011⟩
has the highest amplitude |ai |

2 and is thus most likely to be measured. It indexes the nodes BN, K, W, HA, DO, MS, OS, and HB
which, when sorted according to their distance to the source node, form the path highlighted in (c).

Figure 3(b) depicts the amplitude evolution of the 65336 basis
states the corresponding 16 qubit system can be in. At t = T , the
most likely state to be measured is |1100101000101011⟩. It indexes
vertices BN, K, W, HA, DO, MS, OS, and HB which, when sorted
w.r.t. their distance to the source, form the path in Fig. 3(c).

6 SUMMARY AND OUTLOOK
Quantum computing is on the verge of becoming an established
technology and thus will likely impact graph analysis and mining
because many common problems in these areas are known to be
solvable on quantum computers [2, 18, 23].

In this paper, we presented first steps towards finding shortest
paths by means of adiabatic quantum computing. We devised Ising
models for the simple case where there is a unique shortest path
between a source and a target vertex, discussed how to set the
models up for computation, and presented simulation experiments
which demonstrated the feasibility and effectiveness of our ideas.

We also sketched the ingredients of an Ising model for the more
general casewhere there exist several shortest paths between source
and target. While we leave further details as to this idea to future
work, we believe that our results so far suggest that further research
in the direction of (adiabatic) quantum computing for graph mining
is worthwhile and may lead to solutions of practical importance.
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