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ABSTRACT
Network in the real world generally contains topology information
and attribute information together. How to leverage these two in-
formation simultaneously has gradually become one of the research
focuses on network embedding. In this position paper, we propose
SANE: scalable attribute-aware network embedding to learn the
joint embedding representations efficiently. The present prelimi-
nary results show that, by enforcing the alignment of the locally
linear relationship between each node and its K-nearest neighbors
on topology and attribute space, the embedding representations
learned by SANE are more informative comparing with the one
generated from topology or attribute information alone. In addition,
comparing matrix factorization based network embedding methods
with quadratic time complexity, SANE can easily support scalable
learning for its quasilinear time complexity.
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1 INTRODUCTION
Network embedding (NE) intends to learn latent, dense and low di-
mensional representations of nodes on the network, through topol-
ogy information, such as node-pairs. Due to the broad applicability
of the method, NE has become one of an active area of research and
innovation within academia as well as the industry. The generated
embedding representations pave the way for various applications,
∗These two authors are co-first authors. Datasets and a reference implementation of
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such as node classification [4, 9, 12], link prediction [3, 5, 17, 20],
node clustering [1, 2, 18], name disambiguation[19, 21, 22], and
visualization [13, 16], etc.

With the deepening of research, more and more works have
begun to use attribute information of nodes as well as the topology
information, to learn joint embedding representations. As attribute
information is another non-negligible source which is capable of
describing the characteristic of a particular node, besides, the at-
tribute information also commonly exists on a graph in the real
world. The advantage of learning such joint embedding space is
evident, as the embedding results can fuse effective information
from different perspectives simultaneously, which provides us a
more comprehensive way to understand the essential nature of the
target graph.

Hence, a lot of works have explored attributed graph embedding.
By considering the two kinds of information as two different views
of vertices, [10] proposed to apply co-regularized spectral cluster-
ing on the multi-view data collectively, and two co-regularization
schemes, which are pair-wise and centroid based co-regularization
respectively, are proposed to accomplish this. [11] proposed DANE
to capture individual properties and correlations of topology and
attribute. By enforcing consistency of the pairwise similarity in the
original space and embedded space, DANE can learn the embedding
representations for each space. Meanwhile, DANE tries to maxi-
mize correlations of embeddings (or equivalently minimize their
disagreements) to seek a consensus embedding. Furthermore, [8]
proposed a label informed attributed network embedding (LANE)
framework to enhanced DANE through incorporating label infor-
mation. By jointly embedding topological structure, node attributes
and label information into a low-dimensional representation, LANE
achieves significantly better performance compared with the state-
of-the-art network embedding algorithms. But please be aware that,
unlike other regular attribute-based NE methods that only rely on
topology and attribute information, LANE also leverages the label
information, which may explain their better performance.

However, most of these proposed methods are based on matrix
factorization (e.g. eigen-decomposition) which presents obstacles
in 1).a relatively slow procedure of eigen-decomposition, and 2).to
require a large enough space to process the adjacency matrix.

To tackle the aforementioned challenges, we propose SANE, a
locality-based attribute-aware network embedding algorithm for
scalable learning the joint representations from topological fea-
tures among node pairs, as well as attribute information for each
node. To be specific, on the topology space, we use truncated ran-
dom walk to build a set of local neighbors to depict the target node.
On attribute space, we focus on a small set of nodes that locate in
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the vicinity of the target node. As a result, this locality-based algo-
rithm inherently has scalability. Then, by using stochastic gradient
updates, the objective can be efficiently optimized. Moreover, by
enforcing the alignment of a locally linear relationship between
each node and its K-nearest neighbors on topology and attribute
space, SANE returns joint embedding representations that maxi-
mize the likelihood of preserving the effective information from
both topology and attributes space.

2 PROPOSED METHODS: SANE
Given a network G = (V ,E,A) with vertex set V , edge set E and
attribute matrix A, SANE learns a mapping function f : V → Rd

to transfer the relationships among nodes into a vector space Rd ,
and such space Rd reveals a much denser and more representative
way to indicate the particular node relationships of interest. Here,
d is the chosen dimension of the vector space.

To learn the topological features of the network, we choose a
famous locality based network embedding method – node2vec [6],
which learns embedding representations based on the corpus C of
a graph generated from truncated second-order random walks. On
the other hand, to leverage the attribute information on the net-
work, we borrow the idea from “locally linear embedding (LLE)”[15],
as LLE holds the assumption that the linear relationship between
each node and its K-nearest neighbors should be preserved in the
newly projected space. Similarly, in order to incorporate the fea-
tures (represented as the linear relationship) extracted on node
attributes into the final embedding representations, we consider
the linear relationship as a proxy to transfer the effective infor-
mation extracted from node attributes into the process of running
node2vec. Then, through enforcing the alignment of the locally lin-
ear relationship from attribute and topology, SANE learns a jointly
embedding space from both sides simultaneously. To achieve so,
the objective is designed to maximize the degree of agreement of
topology and attribute information by measuring the alignment
of a linear relationship between the target node and its K-nearest
neighbors. Eq.1 gives the objective function of SANE.

L =
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u ∈V

∑
v ∈V

#(u,v) { logσ (
−−−−−→
W u
node ·
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Here, #(u,v) denotes the number of times the pair (u,v) appears
in C ,

−−−−−→
W u
node denotes the embedding representation of u inWnode ,

k is the number of negative samples, vN is the sampled context
based on the empirical unigram distribution PC (v), and σ is the
sigmoid function. The first two terms of Eq.1 are same with the
objective function in node2vec, which is trying to maximize the dot-
product between the vectors of frequently occurring node pairs and
minimize it for random ones. λ is a positive hyper parameter that
balances the contribution of attribute information. Nu

i is the ith
(i = 1, ...,K ) nearest neighbor of nodeu on the attribute spaceA, and
Rui represents the linear coefficient of Nu

i for reconstructing node

u using its K-nearest neighbors, which is obtained by minimizing

ε(R) =
∑
u ∈V

�����−→Au − K∑
i=1

Rui
−−→
Aui

�����2, (2)

where K is the number of nearest neighbors that are used for recon-
struction, and −−→Aui (i = 1, ...,K) represents the attribute vector of ith
K-nearest neighbors of the node u on the attribute space. Therefore,
by enforcing the linear relationship, which is extracted within each
node and its locality on the attribute space, to be preserved in the
joint embeddings, SANE successfully fuses topology information
and attribute information. In addition, the embedding representa-
tions generated by word2vec (the core algorithm of node2vec) has
been proven to support arithmetic calculation [14], the objective
function we proposed is actually trying to extend the number of
nodes related to arithmetic calculation from 4 (element-wise addi-
tion/subtraction: a −b = c −d) to K + 1. Please note that, the linear
mapping is only enforced on the node vectorsWnode , rather than
onWnode andWcontext together, which is mainly for lower time
complexity.

To optimize Eq.1, we use stochastic gradient updates in the same
way with node2vec. Alg.1 gives the pseudo code for the proposed
method.

Algorithm 1: SANE: Scalable attribute-aware network embed-
ding
Input: G = (V ,E,A)

1 corpus ← Build corpus from node2vec procedure based on
topology information;

2 neiдhbors ,weiдhts ← Find K-nearest neighbors and calculate
R according to Eq.2 based on attribute information;

3 Optimize L according to Eq.1;

3 EXPERIMENTS
3.1 Datasets
Herewe test the proposedmethod on three datasets. 1.BlogCatalog
is a real-world social media dataset1; 2.Cora is a dataset based on
citations between scientific papers2; 3.PPI is a graph built based
on the protein-protein interaction (PPI)3. Table 1 gives the detailed
information of these datasets.

Table 1: Detailed information of the datasets.

Name # Nodes # Edges # Attributes # Labels

Cora 2708 10858 1433 7
BlogCatalog 5196 171743 8189 6

PPI 56944 818716 50 121

1https://github.com/xhuang31/LANE
2https://linqs.soe.ucsc.edu/data
3https://downloads.thebiogrid.org/BioGRID
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3.2 Results
Table 2 reports the F1-scores on SANE, along with five baseline al-
gorithms: Local Linear Embedding (LLE) [15], node2vec [6], Accel-
erated Attributed Network Embedding (AANE) [7], Label Informed
Attributed Network Embedding (LANE) [8] and MultiView [10] on
the task of node classification.

Table 2: Classification performance (F1 score) of different
methods on different datasets results.

Datasets
Algorithms Cora BlogCatalog PPI

LLE 0.33 0.34 −

node2vec△ 0.79 0.65 0.69
AANE 0.78 0.91 −

LANE▽ 0.84 0.92 −

MultiView 0.82 0.83 −

SANE 0.84 0.92 0.77

SANE settings (λ,K ) (0.8, 127) (8.0, 112) (0.8, 81)
Gain of node2vec [%] 6.3 41.5 11.6

Notes △: We use default node2vec hyper parameters: p = q = 1; ▽:
LANE needs a fraction of label information as well; −: Impractical
to calculate due to scalability flaws of the algorithm; The number of
embedding dimension of these methods are all fixed to d = 96;

From the results, it is evident that the joint embedding represen-
tations generated by SANE outperforms the single embedding from
topology space only (node2vec) and attribute space only (LLE). For
Cora and BlogCatalog dataset, SANE is able to achieve a level of
performance comparable or better than other methods, even have
the same performance with LANE (which needs label information
as well in the training phase). Future work will focus on how to
integrate label information into the framework of SANE.

For PPI dataset, as it needs more than 40G = (4 × 50K)2bytes
memory space to complete the matrix decomposition, LLE, AANE,
LANE, and MultiView suffer from the scalability problem. Thus, it
is impractical to get results from PPI dataset in a meaningful time
(e.g., in several hours). On the contrary, as SANE uses the local
view on both attribute and topological space, the empirical results
show that it takes within 20 minutes to learn the joint embedding
representations for PPI dataset.

3.3 Complexity analysis
According to Alg.1, SANE comes with three parts: 1). Building
Corpus; 2). Building K-nearest neighbors and weights; 3). Learning
joint embedding representations. Here we give a detailed analysis
for each part.

(1) “Building Corpus:” As node2vec use a second order random
walk to capture the interconnections between the neighbors
of every node, the space complexity of building corpus is
O(α2N ), where N is the number of nodes, α is the average
degree of the graph, and is usually small for the real-world
networks. On the other hand, as the transition probabilities
for the second order random walk can be precomputed, then
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Figure 1: Micro-F1 score on different (λ, K) for Cora dataset.
The λ axis denotes the hyperparameter in Eq.1 ranging from
0.4 to 8.0, K axis denotes the number of nearest neighbors
ranging from 1 to 200, andy axis denotes theMicro-F1 score.

by using alias sampling, the time complexity of building
corpus is O(L), L is the length of the random walk.

(2) “Building K-nearest neighbors and weights:” Here a ball-tree
is constructed for finding K-nearest neighbors, therefore the
time complexity and space complexity areO(Dloд(K)Nloд(N ))
and O(KN ), respectively. Calculation of the weight matrix
construction needs solving a K ×K linear equation, thus the
time complexity and space complexity are both O(DNK3),
whereD is the dimension of attribute vector,K is the number
of nearest neighbors.

(3) “Learning joint embedding representations:” SANE needs
to use two matricesWin andWout to store the embedding
representations of nodes and contexts, respectively. Hence,
the space complexity is O(2Nd), where d is the embedding
dimension. In addition, as SANE updates only a constant
number of nodes at a time, the time complexity is O(N ).

Therefore, comparing with matrix factorization with quadratic time
and space complexity, SANE is more suitable for scalable learning.

3.4 Parameter Sensitivity
As λ and K are two important hyperparameters to learn the joint
representations, here we use Cora dataset as an example to demon-
strate the performance with λ and K . Figure 1 reports the result
with respect to λ ∈ [0.4, 8], and K ∈ [1, 200], on a fixed embedding
size d = 96.

It is clear to see an upward trend influence of (λ, K) on per-
formance. Among them, K has a more significant impact on per-
formance than λ. To be specific, when K increases from 1 to 200,
the classification performance in terms of Micro-F1 grows rapidly;
After that, performance turns to grow slowly. This phenomenon
makes sense as the more neighbors are included, the more accurate
they can describe the target node. On the other hand, too many
neighbors always contain too many redundant information, which
has a minor contribution for learning the joint representations.
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4 CONCLUSION
Jointly incorporating the network topology and node attributes
into network embedding is promising but challenging. Therefore,
we propose a novel and scalable framework SANE, which learns
unified embedding representations by enforcing the alignment of
locally linear mapping from the two spaces. Without the eigen-
decomposition of a large matrix, SANE can easily support large-
scale attributed network embedding. Several experiments on real-
world datasets demonstrate that SANE is indeed an effective and
scalable algorithm.
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