GeniePath: Graph Neural Networks with Adaptive Receptive
Paths

Ziqi Liu
Ant Financial Services Group
Hangzhou, China
zigilau@gmail.com

Jun Zhou

Ant Financial Services Group
Beijing, China

ABSTRACT

We present, GeniePath, a scalable approach for learning adaptive
receptive fields of neural networks defined on graph data. In Ge-
niePath, we propose an adaptive path layer that consists of two
complementary functions designed for breadth and depth explo-
ration respectively, where the former learns the importance of
different sized neighborhoods, while the latter extracts and filters
signals aggregated from neighbors of different hops away. Extensive
experiments on node classification tasks compared with state-of-
the-art methods show that our approaches are competitive on both
transductive and inductive settings.

KEYWORDS
Graph Neural Networks, Adaptive Receptive Fields

ACM Reference Format:

Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, and Le Song.
2018. GeniePath: Graph Neural Networks with Adaptive Receptive Paths. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

In this paper, we study the representation learning task involv-
ing data that lie in an irregular domain, i.e. graphs. Many data
have the form of a graph, e.g. social networks [17], citation net-
works [18], biological networks [21], and transaction networks [16].
Convolutional Neural Networks (CNN) have been proven success-
ful in a diverse range of applications involving images [11] and
sequences [6]. Recently, interests and efforts have emerged in the
literature trying to generalize convolutions to graphs [4, 8, 10, 15],
which also brings in new challenges.

Unlike image and sequence data which lie in regular domain,
graph data are irregular in nature, making the receptive field of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-Xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Chaochao Chen
Ant Financial Services Group
Hangzhou, China
chaochao.ccc@antfin.com

Xiaolong Li
Ant Financial Services Group
Seattle, Washington

Longfei Li
Ant Financial Services Group
Hangzhou, China
longyao.llf@antfin.com

Le Song
Georgia Institute of Technology
Ant Financial Services Group
Atlanta, GA

each neuron different for different nodes in the graph. Assum-
ing an undirected graph G = (V,&) with N nodes i € V, |E]
edges (i,j) € &, the sparse adjacency matrix A € RN*N | diagonal
node degree matrix D (Dj; = };; Aij), and a matrix of node fea-
tures X € RN-F. Considering the following calculations in typical
graph convolutional networks [9, 15]: H+D = 0'(¢(A)H(t)W(t))

at the t-th layer parameterized by w0 e RKXK where H®) ¢
RNXK denotes the embeddings of N nodes at the t-th layer. In
case ¢(A) = D™1A and we ignore the activation function o, this
leads to H(T) = ¢(A)TH (O W1 with the T-th order transition matrix
(D71A)T [5] as the pre-defined receptive field. That is, the depth
of layers T determines the extent of neighbors to exploit, and any
node j satisfies d(i,j) < T, where d is the shortest path distance,
contributes to node i’s embedding, with the importance weight pre-
defined as ¢(A)£ Essentially, the receptive fields in graph domain
are equivalent to subgraphs consist of paths.

Is there a specific path in the graph contributing mostly to the
representation? Is there an adaptive and automated way of choos-
ing the receptive field or path of a graph convolutional network?
It seems that the current literature has not provided such a solu-
tion. For instance, graph convolution neural networks lie in spec-
tral domain [2] heavily rely on the graph Laplacian matrix [3]
L =1-D"2AD71/2 to define the importance of the neighbors
(and hence receptive field) for each nodes. Approaches lie in spatial
domain define convolutions directly on the graph, with receptive
field more or less hand-designed. For instance, GraphSage [9] used
the mean or max of a fix-size neighborhood of each node, or an
LSTM aggregator which needs a pre-selected order of neighboring
nodes. These pre-defined receptive fields, either based on graph
Laplacian in the spectral domain, or based on uniform operators
like mean, max operators in the spatial domain, thus limit us from
discovering meaningful receptive fields from graph data adaptively.
For examples, the performance of GCN [15] based on graph Lapla-
cian could deteriorate severely if we simply stack more and more
layers to explore deeper and wider receptive fields (or paths).

To address the above challenges, (1) we propose adaptive path
layer with two complementary components: adaptive breadth and
depth functions, where the adaptive breadth function can adaptively
select a set of significant important one-hop neighbors, and the

'We collapse [TZ, W) as W, and HO® = X e RN*P,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

adaptive depth function can extract and filter useful and noisy sig-
nals up to long order distance. (2) experiments on several datasets
empirically show that our approaches are quite competitive es-
pecially on large graphs. Another remarkable result is that our
approach is less sensitive to the depth of propagation layers.

Intuitively our proposed adaptive path layer guides the breadth
and depth exploration of the receptive fields. As such, we name
such adaptively learned receptive fields as receptive paths.

2 GRAPH CONVOLUTIONAL NETWORKS

Generalizing convolutions to graphs aims to encode the nodes with
signals lie in the receptive fields. The output encoded embeddings
can be further used in end-to-end supervised learning [15] or unsu-
pervised learning tasks [7, 17].

The approaches lie in spectral domain heavily rely on the graph
Laplacian operator L = I — D™/2AD™1/2 [3]. The real symmet-
ric positive semidefinite matrix L can be decomposed into a set
of orthonormal eigenvectors which form the graph Fourier basis
U € RNXN guch that L = UAUT, where A = diag(Ay, ..., A,) €
RN*N s the diagonal matrix with main diagonal entries as or-
dered nonnegative eigenvalues. As a result, the convolution opera-
tor in spatial domain can be expressed through the element-wise
Hadamard product in the Fourier domain [2]. The receptive fields in
this case depend on the kernel U. Kipf and Welling [15] further pro-
pose GCN to design the following approximated localized 1-order
spectral convolutional layer:

g+ O-(A]{U)w(t)), (1)

where A is a symmetric normalization of A with self-loops, i.e.
A= ﬁ_%Aﬁ_%, A=A+ 1, D is the diagonal node degree matrix
of A, H®) € RN-K denotes the t-th hidden layer with H 0 = x
w0 is the layer-specific parameters, and o denotes the activation
functions.

GCN requires the graph Laplacian to normalize the neighbor-
hoods in advance. This limits the usages of such models in inductive
settings. One trivial solution (GCN-mean) instead is to average the
neighborhoods:

H = o(AHOW D), @
where A = D™'A is the row-normalized adjacency matrix.

More recently, Hamilton et al. [8] proposed GraphSAGE, a method
for computing node representation in inductive settings. They de-
fine a series of aggregator functions in the following framework:

g = a(CONCAT(¢(A, H(”),H(”)W(f)), 3)

where ¢(-) is an aggregator function over the graph. For example,
their mean aggregator ¢(A, H) = D™'AH is nearly equivalent to
GCN-mean (Eq. 2), but with additional residual architectures [11].
They also propose max pooling and LSTM (Long short-term mem-
ory) [13] based aggregators. However, the LSTM aggregator op-
erates on a random permutation of nodes’ neighbors that is not
a permutation invariant function with respect to the ordering of
neighborhoods, thus makes the operators hard to understand.

A recent work from Veli¢kovic et al. [19] proposed Graph Atten-
tion Networks (GAT) which uses attention mechanisms to parame-
terize the aggregator function ¢(A, H; ©). This method is restricted

Ziqi Liu et al.

T
Adaptive OL(Z) Adaptive @
breadth depth i ¢ o
eV l
OR 2=NG @

WAR

Figure 1: A demonstration for the architecture of GeniePath.
Symbol (P denotes the operator ' ;¢ (i)uii) oc(hf.t), hj(.t)) . hj(.t).

to learn a direct neighborhood receptive field, which is not as gen-
eral as our proposed approach which can explore receptive field in
both breadth and depth directions.

To summarize, the major efforts put on this area is to design
effective functions that can propagate signals around the T-th order
neighborhood for each node. Few of them try to learn the meaning-
ful paths that direct the propagation. Our experiments in Figure 2
show that the mean operator, even the graph Laplacians cannot
lead to indicative directions while propagating signals over the
graph.

3 PROPOSED APPROACHES

In this section, we design neural network layers to learn “receptive
paths” on graph.

3.1 Adaptive Path Layer

Our goal is to learn the breadths and depths of receptive paths
adaptively. To explore the breadth of the receptive paths, we learn
an adaptive breadth function ¢(A, H 1), @) parameterized by ©, to
aggregate the signals by adaptively assigning the importance of
each neighbor. To explore the depth of the receptive paths, we learn
an adaptive depth function q)({f(hgt)lhgt_l))lt € {1,..T}}; ®) pa-
rameterized by ® that could further extract and filter the aggregated
signals at the ¢-th order distance away from the anchor node i by
modeling the dependencies of aggregated signals at various depths.

Now it remains to specify the adaptive breadth and depth func-
tion, i.e. ¢(.) and ¢(.). We propose the following adaptive path
layer.

T
B = tanh (WOT S el W) -A) @
JEN (i)U{i}
then

ij = O.(M/i(t)T hgtmp))7 fi = O'(W(t)T hgtmp))

o = oW AT ¢ = ranh(w O A™)

- foc 1i0d,
and finally,

hgtﬂ) =0; 0O tanh(CEHl)), 5)

The i; and f; can be viewed as gated units that play the roles of
extracting and filtering aggregated signals at the ¢-th order depth
for node i. We maintain for each node i a memory C; along the
receptive paths for long dependencies of various depths, and ouput

GeniePath: Graph Neural Networks with Adaptive Receptive Paths

Conference’17, July 2017, Washington, DC, USA

Table 1: Dataset summary.

Dateset Type \% E # Classes # Features Label rate (train / test)
Pubmed Citation Network 19,717 88,651 3 500 0.3% / 5.07%
BlogCatalog! Social Network 10,312 333,983 39 0 50% / 40%
BlogCatalog? Social Network 10,312 333,983 39 128 50% / 40%
PPI Protein-protein interaction 56, 944 818,716 121 50 78.8% 1 9.7%
Alipay Account-Device Network 981,748 2,308,614 2 4,000 20.5% / 3.2%
the filtered singals as hf *+1 given the memory. Furthermore, we Inductive setting. In inductive settings, all the nodes in test are

parameterize the generalized linear attention operator a(:, -) that
assigns the importance of neighbors as follows
a(x,y) = softmaxy (‘UT tanh(W," x + W; y)), 6)
oy = _expfy) .
and softmaxy f (-, y) = Sy epl T The overall architectures of

adaptive path layer is illustrated in Figure 1. The first equation
(Eq. (4)) corresponds to ¢(.) and the rest gated units correspond to
¢(.). We let hgo) = W, X; with weight matrix Wy € RD-k
i’s feature X; € RD.

Note that the adaptive path layer with only adaptive breadth
function ¢(.) reduces to the proposal of GAT, but with stronger non-
linear representation capacities. Our generalized linear attention
can also assign symmetric importance with constraint Wy = Wy.

A variant. Next, we propose a variant called “GeniePath-lazy”
that postphones the evaluation of the adaptive depth functions

¢(.) at each depth. We rather propagate signals up to T-th order
distance by merely stacking adaptive breadth functions. Given those

and node

T hidden units {hgt) }, we add adaptive depth function ¢(.) on top
of them to further extract and filter the signals at various depths.

We initialize ,ugo) = W] X;, and feed ,ugT) to the final softmax or

sigmoid layers for classification. Formally given {hgt)} we have:

i = o (W] w®T CONCAT(R", 4 @)

).
fi = o(wf (07 concat(h{"), u{")),
0i = oW’ coNcat(nl?, (”)

)

& = tanh(w® " coneat(n?, ut)),

o foc 400,

[JE[-H) =0; © tanh(CEHl)).

4 EXPERIMENTS

In this section, we first discuss the experimental results of our
approach evaluated on various types of graphs compared with
strong baselines. We then study its abilities of learning adaptive
depths. Finally we give qualitative analyses on the learned paths
compared with graph Laplacian.

4.1 Transductive and Inductive Settings

We summarize the differences as follows.

Transductive setting. In transductive settings, we allow all the
algorithms to access to the whole graph, i.e. all the edges among
the nodes, and all of the node features.

completely unobserved during the training procedure.

4.2 Datasets

We conduct the comparison experiments on both transductive set-
tings and inductive settings.

Transductive setting,.

The BlogCatalog' [20] is a type of social networks, where nodes
correspond to bloggers listed on BlogCatalog websites, and the
edges to the social relationships of those bloggers. There are a
total of 10, 312 nodes, 333, 983 edges, and 39 classes. We treat the
problem as a multi-label classification problem. We randomly split
50% (10%) of nodes for training (validation), and the rest 40% for
testing. Different from other datasets, the BlogCatalog! has no
explicit features available, as a result, we encode node ids as one-
hot features for each node, i.e. 10, 312 dimensional features.

To further study the performance of learning on the same graph
with features, we decompose the adjacency matrix A of BlogCatalog!
by SVD (Singular-value decomposition). We use the 128 dimen-
sional transformed singular-vectors as features for each node. Such
features can be viewed as global features directly decomposed from
the whole graph. We name this dataset as BlogCatalog?.

The Alipay dataset [16] is a type of Account-Device Network,
built for detecting malicious accounts in the online cashless pay-
ment system at Alipay. The nodes correspond to users’ accounts
and devices logged in by those accounts. The edges correspond
to the login relationships between accounts and devices during a
time period. Node features are counts of login behaviors discretized
into hours and account profiles. There are 2 classes in this dataset,
i.e. malicious accounts and normal accounts. The Alipay data set
is random sampled during one week. There are a total of 981, 748
nodes, 2,308, 614 edges and 4, 000 sparse features per node. The
dataset consists of 82, 246 subgraphs.

Inductive setting,.

The PPI [8] is a type of protein-protein interaction networks,
which consists of 24 subgraphs with each corresponds to a human
tissue [21]. The node features are extracted by positional gene sets,
motif gene sets and immunological signatures. There are 121 classes
for each node from gene ontology. Each node could have multiple
labels, then results into a multi-label classification problem. We use
the exact preprocessed data provided by Hamilton et al. [8]. There
are 20 graphs for training, 2 for validation and 2 for testing.

We summarize the statistics of all the datasets in Table 1.

4.3 Experimental Settings

We describe our experimental settings as follows.

Conference’17, July 2017, Washington, DC, USA

Table 2: Summary of testing results on BlogCatalog and Ali-
pay in the transductive setting. In accordance with former
benchmarks, we report Macro-F1 for BlogCatalog, and F1 for
Alipay.

Transductive
Methods BlogCatalog! BlogCatalog® Alipay
MLP - 0.134 0.741
node2vec 0.136 0.136 -
Chebyshev 0.160 0.166 0.784
GCN 0.171 0.174 0.796
GraphSAGE* 0.175 0.175 0.798
GAT 0.201 0.197 0.811
GeniePath* 0.195 0.202 0.826

Table 3: Summary of testing Micro-F1 results on PPI in the
inductive setting.

Inductive
Methods PPI
MLP 0.422

GCN-mean 0.71
GraphSAGE* 0.768
GAT 0.81

GeniePath® 0.979

Table 4: A comparison of GAT, GeniePath, and additional
residual “skip connection” on PPL

Methods PPI
GAT 0.81
GAT-residual 0.914
GeniePath 0.952
GeniePath-lazy 0.979

GeniePath-lazy-residual 0.985

4.3.1 Comparison Approaches. (1) MLP, which is the classic
multilayer perceptron consists of multiple layers of fully connected
neurons. The approach only utilizes the node features but does not
consider the structures of the graph.

(2) node2vec [7]. In our experiments, we feed the embeddings to
a softmax layer or a sigmoid layer depends on the type of classifica-
tion problem we are dealing with. Note that, this type of methods
built on top of lookup embeddings cannot work on problems with
multiple graphs, i.e. on datasets Alipay and PPI, because without
any further constraints, the entire embedding space cannot guaran-
tee to be consistent during training [8].

(3) Chebyshev [4], which approximate the graph spectral con-
volutions by a truncated expansion in terms of Chebyshev polyno-
mials up to T-th order. This method needs the graph Laplacian in
advance, so that it only works in the transductive setting.

Ziqi Liu et al.

(4) GCN [15], which is defined in Eq. (1). Same as Chebyshev,
it works only in the transductive setting. However, if we just use
the normalization formulated in Eq. (2), it can work in a inductive
setting. We denote this variant of GCN as GCN-mean.

(5) GraphSAGE [8], which consists of a group of inductive graph
representation methods with different aggregator functions. The
GCN-mean with residual connections is nearly equivalent to Graph-
SAGE using mean for pooling. We will report the best results of
GraphSAGEs with different pooling strategies as GraphSAGE*.

(6) Graph Attention Networks (GAT) [19] is similar to a reduced
version of our approach with only adaptive breadth function. This
can help us understand the usefulness of adaptive breadth and
depth function.

We pick the better results from GeniePath or GeniePath-lazy as
GeniePath*. We found out that the skip connections [12] are useful
for stacking deeper layers for various approaches and will report the
approaches with suffix “-residual” to distinguish the differences for
better understandings of the contribution of different approaches.

4.3.2 Experimental Setups. In our experiments, we implement
our algorithms in TensorFlow [1] with the Adam optimizer [14]. For
all the graph convolutional network-style approaches, we set the
hyperparameters include the dimension of embeddings or hidden
units, the depth of hidden layers and learning rate to be same. For
node2vec, we tune the return parameter p and in-out parameter
q by grid search. Note that setting p = g = 1 is equivalent to
DeepWalk [7]. We sample 10 walk-paths with walk-length as 80
for each node in the graph. Additionally, we tune the penalty of £,
regularizers for different approaches.

For pubmed, we set the number of hidden units as 16 with 2
hidden layers. For BlogCatalog!, we set the number of hidden units
as 128 with 3 hidden layers. For BlogCatalog?, we set the number
of hidden units as 128 with 3 hidden layers. For Alipay, we set the
number of hidden units as 16 with 7 hidden layers. For PPI, we set
the number of hidden units as 256 with 3 hidden layers.

4.4 Classification

We report the comparison results of transductive settings in Table 2.
In BlogCatalog! and BlogCatalog?, we found both GAT and
GeniePath work the best compared with other methods. Another
suprisingly interesting result is that graph convolutional networks-
style approaches can perform well even without explicit features.

Alipay [16] is a dataset with nearly 1 million nodes, the largest
graph ever reported in the literatures of graph convolutional net-
works. The graph is relative sparse, and we stack 7 hidden layers.
We found that GeniePath works quite promising on this large graph.
The results show that adaptively learning the receptive paths are
meaningful. Since the dataset consists of ten thousands of sub-
graphs, the node2vec is not applicable in this case.

We report the comparison results of inductive settings on PPI
in Table 3. Because GCN does not work in inductive settings, we
use the alternative “GCN-mean” by averaging the neighborhoods
instead. GeniePath performs extremely promising results on this
big graph, and shows that the adaptive depth function plays way
important on this data compared to GAT with only adaptive breadth
function.

GeniePath: Graph Neural Networks with Adaptive Receptive Paths

Conference’17, July 2017, Washington, DC, USA

Figure 2: Graph Laplacian (left) v.s. Estimated receptive paths (right) with respect to the black node on PPI dataset: we retain
all the paths to the black node in 2-step that involved in the propagation, with edge thickness denotes the importance w; ; =
a(hi, hj) of edge (i,) estimated in the first adaptive path layer. We also discretize the importance of each edge into 3 levels:

Green (w;,j < 0.1), Blue (0.1 < w; ; < 0.2), and Red (w; j > 0.2).

Ea — X
\.\
— N
i e
o
e
Loa .
S 77| =% GeniePath gl 0.61 —— GeniePath
GAT GAT e
0.21 —»- GraphSAGE ~& - GraphSAGE T
--®- GCN-mean 051 ... GeN e
0.0 *
4 5 7 8 5 10 15 20 25 30

3 6

Depth of propagation layers Depth of propagation layers
Figure 3: The classification measures with respect to the
depths of propagation layers: PPI (left), Alipay (right).

To further study the usefulness of residual architectures in var-
ious approaches, we compare GAT, GeniePath, and the variant
GeniePath-lazy with additional residual architecture (“skip con-
nections”) in Table 4. The results of PPI show that GeniePath is
less sensitive to the additional “skip connections”. The significant
improvement of GAT seems rely on the residual structure.

4.5 Depths of Propagation

We show our results on classification measures with respect to the
depths of propagation layers in Figure 3. As we stack more graph
convolutional layers, i.e. with deeper and broader receptive fields,
GCN, GAT and even GraphSAGE with residual architectures can
hardly maintain consistently resonable results. Interestingly, Ge-
niePath with adaptive path layers can adaptively learn the receptive
paths and achieve consistent results, which is remarkable.

4.6 Qualitative Analysis

We show a qualitative analysis about the receptive paths with re-
spect to a sampled node learned by GeniePath in Figure 2. It can
be seen, the graph Laplacian assigns importance of neighbors at
nearly the same scale, i.e. results into very dense paths. However,
the GeniePath can help select significantly important paths to prop-
agate while ignoring the rest, i.e. results into much sparser paths.
Such “neighbor selection” processes essentially lead the direction of
the receptive paths and improve the effectiveness of propagation.

5 CONCLUSION

In this paper, we studied the problems of prior graph convolutional
networks on identifying meaningful receptive paths. We propose
adaptive path layers with adaptive breadth and depth functions to
essentially guide the receptive paths. Experiments on large graphs
show that our approaches are quite competitive, and are less sensi-
tive to the depths of the stacked layers, as we showed in the node
classification tasks.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, and Michael Isard.
2016. TensorFlow: a system for large-scale machine learning. (2016).

[2] JoanBruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral net-
works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203
(2013).

[3] Fan RK Chung. 1997. Spectral graph theory. Number 92. American Mathematical
Soc.

[4] Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In Advances

Conference’17, July 2017, Washington, DC, USA

(5

=

(6]

[11]

[12

[13

[14

[15]

[16

[17]

[18

in Neural Information Processing Systems. 3844-3852.

Paul A Gagniuc. 2017. Markov Chains: From Theory to Implementation and
Experimentation. John Wiley & Sons.

Jonas Gehring, Michael Auli, David Grangier, and Yann N Dauphin. 2016. A
convolutional encoder model for neural machine translation. arXiv preprint
arXiv:1611.02344 (2016).

Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855-864.

William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. arXiv preprint arXiv:1706.02216 (2017).

William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learning
on Graphs: Methods and Applications. arXiv preprint arXiv:1709.05584 (2017).
David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. 2011. Wavelets
on graphs via spectral graph theory. Applied and Computational Harmonic
Analysis 30, 2 (2011), 129-150.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Identity mappings
in deep residual networks. In European Conference on Computer Vision. Springer,
630-645.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Ziqi Liu, Chaochao Chen, Jun Zhou, Xiaolong Li, Feng Xu, Tao Chen, and Le Song.
2017. POSTER: Neural Network-based Graph Embedding for Malicious Accounts
Detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS '17). ACM, New York, NY, USA, 2543-2545. https:
//doi.org/10.1145/3133956.3138827

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701-710.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph Attention Networks. arXiv preprint
arXiv:1710.10903 (2017).

Reza Zafarani and Huan Liu. 2009. Social computing data repository at ASU.
Marinka Zitnik and Jure Leskovec. 2017. Predicting multicellular function through
multi-layer tissue networks. Bioinformatics 33, 14 (2017), 1190-1198.

Ziqi Liu et al.

https://doi.org/10.1145/3133956.3138827
https://doi.org/10.1145/3133956.3138827

	Abstract
	1 Introduction
	2 Graph Convolutional Networks
	3 Proposed Approaches
	3.1 Adaptive Path Layer

	4 Experiments
	4.1 Transductive and Inductive Settings
	4.2 Datasets
	4.3 Experimental Settings
	4.4 Classification
	4.5 Depths of Propagation
	4.6 Qualitative Analysis

	5 Conclusion
	References

