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ABSTRACT
The Internet today is replete with forum sites that - in the context
of the deep/dark web - are used to sell illicit goods, and to deal
in illegal activities including human trafficking (HT). Working on
the DARPA MEMEX project, our team collaborated with law en-
forcement to perform bulk analysis and crawl these sites and in
doing so found a number of challenges. Forum sites contained pages
with many links and little content and the ads - the rich source of
content - were hidden behind link-dense hubs. To identify impor-
tant links that led to ads, crawlers had to take advantage of CSS
visual cues. As forum sites changed often, training a model offline
would not be sufficient.We address these issues by creating ROACH,
or Reinforcement-based, Online, Apprentice-Critic based focused
crawling approacH. ROACH provides an online, adaptive crawling
mechanism that employs static subject matter expert knowledge,
with online learning based on a simplified version of reinforce-
ment learning with back propagation. We use the widely popular
apprentice-critic framework for performing this capability. ROACH
is independent of any crawler implementation. The approach is
scalable and accurate and overall provides better link relevancy
scores than two baseline approaches including Apache Nutch. We
evaluate ROACH on a dataset collected in the human trafficking
domain from the DARPA MEMEX effort.

CCS CONCEPTS
• Information systems → Information retrieval; • Applied
computing → Computer forensics;
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1 INTRODUCTION
The abundance of data on the so-called “deep web“ has been es-
timated to include more than 97% of the Internet as we know it
[9]. Hidden in the deep web are a variety of legitimate business
products: for example, the deep web includes your personal pur-
chases of products on Amazon, your home banking and mortgage
information; and other e-commerce. Also in the deep web are a
variety of what can best be described as illicit goods and activities:
drugs, weapons, forgeries; even humans as slaves or what has been
more commonly known as “human trafficking” (or HT, as we use
throughout the paper) [10].

The data on the deep web is hidden behind a series of check-
points that typically stop crawlers and big companies e.g., Google
and Bing from accessing it: for example, the content is behind a
login/password, or behind Javascript/AJAX page rendering calls,
or finally the content itself is multimedia and not easily analyzed
or summarized. We experienced this as we worked on the DARPA
MEMEX initiative [10] and built the first full catalog of human
trafficking on the deep web: including over 60 million ads (today
80 million) and 40 million images [10].

While developing approaches to perform bulk analysis on this
data with DARPA and our law enforcement partners, our team
noticed that many of these products are sold on what are commonly
called “forum sites”. Forum sites are akin to older bulletin board
systems in which an Internet user authors a post (in this case an
“ad”) on then other Internet users browse the ad and interact with it.
The user determines if she is interested in the product being sold;
may post a comment; or potentially write down or call the phone
number associated with the ad (if listed). Users may be required to
register with these sites, and may have some identifying “handle”,
e.g., a username, a location, and other properties.

Given that the deep web is so large; and that the MEMEX pro-
gram only had access to a limited set of computational resources,
developing a focused crawling approach - in which we direct the
crawlers only at pages that are “relevant” to the topic at hand - was
a key interest of many of the teams on the program, including our
own. While working on our own focused crawler for the human
trafficking domain, developing methodologies to handle forum sites
became quite a challenge. This is part due to the organization of
forum sites. Forums are typically “hubs” of links [19], that contain
little content on the "hub" pages, but then detailed information on
the "authority" pages or "content" pages they point to, in this case,
the HT ads. This problem is often described as the web crawling
“myopia problem” which refers to crawlers discounting hub pages
that do not have relevant content.
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Complicating the situation was the problem of detecting when a
forum hub link actually pointed to an ad, versus, e.g., pointed to
navigation for another area of the site, or another product that did
not have to do with human trafficking. Manual examination of the
forum pages by our team and Subject Matter Experts (SMEs) in the
domain revealed that styling and visual properties of links and their
surrounding tags were the key “cue” highlighting the difference
between an actual ad in the HT domain instead of navigation or
other links on the site.

Our team surveyed the available focused crawlers and selected
the Apache Nutch system because of our familiarity with the project
and because Nutch was representative of most of the other crawlers
in the domain. Our prior work focused on adding focused crawling
support for both multi-class page labeling (using Naive Bayes);
and/or page text feature modeling (using Cosine Similarity). Neither
of these focused crawling capabilities or others for that matter e.g.,
from Scrapy [29]; ACHE [25]; Storm Crawler [17] were sufficient
because the focused crawling models they use are trained offline
and they do not adjust to the board’s constantly changing visual
stylistic structure for its hub links based on forum posts.

To address this myriad of issues, we developed an approach
for focused crawling that we dub “ROACH” for Reinforcement
basedOnlineApprentice Critic focused crawling approacH. ROACH
makes several contributions that overcome the issues encountered
while trying to perform focused crawling over forum sites on
the modern Internet, including: (1) delivering an online/adaptive
crawler that can learn in a scalable and accurate manner even on
forum sites; (2) considering modern CSS visual and stylistic prop-
erties; (3) providing a mechanism for the crawler to learn, both
statically, seeded with SME domain knowledge; and in an online
adaptive fashion using a simplified version of reinforcement learn-
ing and back propagation; and (4) making the approach independent
of crawler implementation as it can be applied to all of the major
crawling systems and does not rely on any particular library.

A roadmap of the paper is as follows. Section 2 will motivate
ROACH by considering related work in the domain. Section 3 de-
scribes how ROACH crawls including its approach for online learn-
ing and training. Section 4 describes ROACH’s derived visual fea-
tures. Section 5 highlights the experiments conducted with ROACH
and the results of the work and Section 6 concludes the paper,
pointing to areas of future work.

2 RELATEDWORK
Some of the earliest works in the area of focused crawling were the
FishSearch system by De Bra et al. [7] and SharkSearch by Hersovici
et al. [12]. These systems used simple keyword search or matching
based on the bag of words approach. Menczer et al. [23] provide
an evaluation framework for topical crawling algorithms. They
experimented with the trade-off between exploration vs. exploita-
tion and concluded that a hybrid approach works best. They also
improved and generalized the previous topic crawling algorithms.
Chakrabarti et al. coined the term focused crawling in their paper
[6]. In their work, they engage the user to provide initial exam-
ples of good urls, and according to their pre-fitted classification
tree, trained using a canonical taxonomy, help user decide the best

classes or categories for the urls. They use this information to train
a classifier which is used during the crawl process.

Since these earlier efforts, there have been many projects to
improve the idea of focused crawling. Lu et al. [22] used a multi-
stage process for focusing their crawler, where each outgoing link
from a page (or “outlink”) undergoes multiple filtering stages based
on varying level of contexts: from more general to more specific.
They use a classifier based on an improved tfidf weighting system
to classify the whole web page. They then further divide the web
page into smaller blocks based on its layout, and further classify
each block. The outlinks from the non-relevant blocks are subjected
to classification based on anchor-text and link-context to be able to
finally make it to a priority queue. Hao et al. [11] experimented with
Latent Symantec Indexing (LSI) as an alternate to tfidf in vectorizing
the text used in classification and similarity finding tasks usually
during a focused crawl. They proved that the combination of LSI and
tfidf achieves better relevancy results. Pant et al. [24] use web page
text and two kinds of link context features: one with a fixed window
size and another using the hierarchical tag structure around the
link. They use combinations of each link context feature with the
web page text feature and a balancing hyper-parameter to combine
these features in different weight proportions.

Unlike the above mentioned general purpose focused crawlers,
there are some crawlers that have targeted certain part of the In-
ternet. For example, the work by Illou et al. [14] creates a crawler
specifically to crawl the dark web, similar to our own efforts on
MEMEX and with ROACH. The project uses text features from
the parent and target web pages and it uses textual context from
around the outlink to predict its relevancy. Illou et al.’s system
employs a rule based approach to define the combinations of differ-
ent classification techniques for different situations, for example
when crawling Tor or the surface internet, similar to our own
work with ROACH. Unlike our ROACH project though, Illou et al.’s
crawling work does not learn or adapt - it simply follows the rules
as to which classifier to use: instead ROACH learns through its
Apprentice-Critic framework (described in the next section). Jiang
et al. [15] created a crawler specifically for collecting data from
web forums, similar to the goals of ROACH. Jiang et al.’s crawler
learns the patterns in the URL structures across forums since they
are structured and these patterns are common across many if not
most of the forums. Our own work on ROACH is less focused on
URL patterns (though it does consider textual features from around
the URL) and it employs visual/stylistic pattern learning.

Several works have entertained the idea of the graph context
or delayed reward for focused web crawling. Much of this work
stems from the domain of reinforcement learning (RL) literature
and informs the ROACH approach to apprentice-critic learning
(described in the next paragraph briefly and more so in the next
section). Some initial works on this concept came from Diligenti
et al.[8] and Rennie et al. [26]. Dilligenti et al. creates and trains
‘context graphs’ to assess how far a particular page is from a relevant
page. They start from a list of seed urls, which are supposed to be
examples of good targets. They build a backward link graph for
each seed using a search engine. They then use the information
about the distance of each backward page from the target pages to
train a predictor. Some other notable works have considered the
idea of backlinks, although not solely for the purposes of crawling,
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Figure 1: Shows a small sample of the recursive json format saved by our
custom parser

are [4] and [2]. Rennie et al. [26] map context features from around
the outlink to a future reward value (or Q value), rather than the
immediate reward for the page. By doing this, it simplifies the
problem of using RL for crawling to a classification problem. Other
crawling works that leverage RL include L. Jiang et al. [16]. The
authors formalize Q-leaning for crawling. Their system searches
the web based on queries and assumes the web as a database. The
authors of “Yet Another Focused Crawler” [28] use the whole web
page instead of just the outlink context to predict the future reward.
The FICA approach by Bidoki et al. [3], although not a topically
focused crawler, provides a general purpose algorithm based on RL
to rank the pages better to avoid crawling the web exhaustively.
Although not RL based, the work of Hongyu Liu at al. [21] models
focused crawling as a sequential task and uses maximum entropy
markov models (MEMM) to infer the “state/distance” of a new link
relative to a target/good page.

Chakrabarti et al. [5] model crawling in a online learning frame-
work called the apprentice-critic framework. The approach enables
a crawler to adaptively and in an online fashion. The crawler uses
two classifiers. One is an online classifier, “apprentice”, which also
learns with more crawl data. The other classifier, a “critic”, is a
static relevancy model that provides training instances to the ap-
prentice. The apprentice-critic approach has been used by several
other researchers besides our own work, for example in Barbosa at
al. [1]. They use the actor critic framework and url context features
to make predictions. Barbosa et al.’s work learns to predict the
expected distance from a good page and also to balance between
exploration and exploitation steps it tries to fetch links with both
highest expected reward and delayed reward. Apprentice-critic is
the focused crawling technique we employ in ROACH.

3 APPROACH
3.1 Crawling Process
In ROACH, we first fetch the pages in rounds or in a breadth first
manner. Each round corresponds to a particular articulation of the
priority order in which links (either initial seeds, or those extracted

Figure 2: Crawling (Data collection) Framework

from pages) are visited. For each link, the corresponding page con-
tent is fetched and then extracted and parsed as described later in
this section. The parsed page is represented as a recursive JSON
structure, an example of which is provided in Fig. 1. A JSON is
created for every page and saved for later processing. The JSON
is a simplified version of the html content of the page that goes
through a cleaning process described in the next paragraph. As
part of the fetching process, ROACH headlessly renders every page
using PhantomJs [13] and then uses the computed values to discern
Cascading Style Sheet (CSS) properties - these are the properties
that capture stylistic and visual elements of links in the modern
Internet and dealing with these properties captures the intuitive
cues that Subject Matter Experts (SME) use when browsing the
web.

As part of the ROACH cleansing process, we remove the script,
style, link and meta tags for the rendered page. All the tag attributes
are ignored except href and link attributes associated with a tags
and attributes associated with link tags. Additionally, ROACH con-
verts all relative links to absolute links. Finally, text is extracted
from each tag on the rendered page. Since the extracted text con-
tains an abundance of boilerplate in our experiments, to expel it,
ROACH removes any sentence that is less than five words. ROACH
then vectorizes the document using 1,2 and 3-grams. We create a
vector for each page and save it as our Critic model described in
the next subsection.

ROACH restricts its focus to only external outlinks – those not
belonging to the same host as the page itself. If we considered all
links (external and internal) the fetch-list becomes too large too
quickly, violating our already stated goal of ensuring that ROACH
can be online and adaptive. Only considering external links also
aids our process by removing biases and loops in the crawl graph.
All the outlinks that we process are given ids and a reference to
their parent ids is maintained in order trace their lineage. This data
structure is referred to as the ROACH crawl graph. Since each round
grows in size quickly, we crawl each round in parts incrementally.
If there is an error and the crawler aborts, the next crawl will be
checkpointed and will start from the last step of that round, and
not from the very beginning of that round. The overall ROACH
process is highlighted in Fig. 2.
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3.2 Learning Process
ROACH employs the critic-apprentice model first suggested by
Chakrabarti et al. [5]. In this model there are two parts. One is a
static evaluator, called as the Critic. The other part is the online
learning system, called the Apprentice. The Critic represents a
subject matter expert (SME) who has a good sense of what she
is looking for. The Critic is equivalent to a topic or language
model. It is usually trained offline and not during the crawl and is
therefore a static model. The Apprentice can use the knowledge
of the Critic to learn the best approach for finding more relevant
pages. It can be thought of as the necessary clues that the SME
learns while browsing that achieve the most relevant pages in the
fastest manner.

ROACH implements the Critic with a Cosine Similarity based
approach. Cosine Similarity is used here instead of classification
(e.g., Naive Bayes) to assess the relevancy of pages because it is
difficult to create an initial dataset with both relevant and irrelevant
examples. This is especially apparent in domains where exploratory
analysis is required, such as the DARPA MEMEX domain of human
trafficking that motivated this work. In particular, it is difficult to
label any one page as “not relevant”, especially when exploratory
analysis is required. So, by using Cosine Similarity, an SME can
simply define pages that are (more) relevant.

The Apprentice is implemented in ROACH using regression
and tree-based algorithms. The Apprentice learns to map a list of
features based on extracted page text and its CSS visual properties
to the importance of a page. This model then can be used to predict
the importance of a link before fetching it. Regression and random
forest classification are both used to train the ROACH Apprentice
model using data from previous rounds and to predict scores for the
later rounds. The results of this process are evaluated based on how
well the ROACH Apprentice ranks the outlinks. The Criticmodel
provides a relevancy score to a page once it is fetched, whereas the
Apprentice model provides a score to an unfetched link.

A correct ranking of the outlinks is very important for any fo-
cused crawler as it helps to conserve resources by only considering
highly scored links, and by removing poorly scored links each round.
Considering that in a round-based crawling model, the number of
pages per round increases exponentially, having an appropriate con-
sideration of only the most important outlinks saves the crawler
time and memory resources. Along these lines, to evaluate our
overall focused crawling approach in ROACH, we used a weighted
version [20] of Kendall’s Tau statistic [27]. Kendall’s Tau statistic is
used to measure the similarity between two rankings. In ROACH
we are strongly interested in pages in which rankings that are not
strongly correlated become strongly correlated. To embody this
idea we penalize these situations/inversions based on the absolute
distance between the true relevancy of the pages. This makes the
ranking similarity evaluation more robust and also removes noise.

4 FEATURES
In this section, we describe ROACH’s unique features extracted
that provide appropriate cues used in focused crawling to emulate
a Subject Matter Expert (SME). First we describe page score (PS),
recorded for both the page and its parent - this is a Lineage-based
Feature. Then we describe two Context-based features: the first is

Figure 3: Shows the context features with respect to the DOM tree of an
HTML page.

the extracted CSS properties capturing visual and stylistic elements
of the link (VC); and second is the text of the page (TC).

4.1 Lineage Based Feature
4.1.1 Page Score. As already mentioned in the prior section as

part of the Critic as part of ROACH we train a Cosine Similarity
based model to give an immediate relevancy score or reward to
each page in the context of a domain/topic - for example in our
test data for the human trafficking (HT) domain. This relevancy
score is both a feature and also is used for ground truth. The score
is ranged between 0 and 1 and is given to a parsed page. Every page
has two relevancy scores associated with it. One is that of its parent
page, which is used as a feature, and the second is the relevancy
score of itself (when fetched). The Apprentice tries to learn the
true relevancy score, beyond the initial value used for ground truth.

We start with a list of relevant pages curated by subject matter
experts (SMEs) in the domain - for our work - in the HT domain.
We then parse each of pages in the list and extract text from as
detailed in process outlined in Section 3.1. To score a new page
we use the same process and create a vector for the new page and
find Cosine Similarity with each of the page vectors in our Critic
model. ROACH then computes an arithmetic mean of all the cosine
scores. The mean is then used as the relevancy score for the page.

To further improve our model, we remove the pages that demon-
strate lesser relevance compared to other pages in the model. To do
so we allow the user to provide a relevancy threshold which can be
used to tune the algorithm’s scalability and to ensure that it can be
run in an online mode.

4.2 Context Based Features
We also consider features from a particular outlink’s surrounding
context. ROACH identifes features "closest" to the outlinks through
inspection of the Document Object Model (DOM) structure of the
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Figure 4: CSS features used: divided categorically according to their type of
value

page. As an example, Fig. 3 represents a small part of a page’s
DOM tree. The green nodes represent the leaf nodes and the node
just before the leaf node in the tree. For each outlink we select its
immediate tag and its parent’s tag. The boxes represent the contexts
for the tree outlinks (represented by the a tags). We use two types
of context features. The CSS properties and text in the context of
the outlink, both of which we will describe below.

4.2.1 CSS features. CSS features represent the modern codifica-
tion of visual and stylistic cues and are often overlooked in other
approaches besides ROACH. ROACH extracts CSS and then cleans,
normalizes, and vectorizes the CSS (referred to as VC) as we will
describe in this section.We used 28 types of CSS attributes as shown
in Fig. 4. We divide the features into three parts based on the type of
value of the attribute: (1)Numerical-valued features – These features
are the CSS properties that have a numerical value. We directly use
the numerical value to create our vector. Some values have more
than one part e.g., background-color=rgba(255,0,0,0). We di-
vide such properties into e.g., background-color1:0,
background-color2:0, background-color3:0 and
background-color4:0; (2) Categorical-valued features – these CSS
attributes have a categorical value, and not a number. For example,
the CSS property float can have values e.g., top, right, left and
so on. We use one-hot encoding to vectorize such properties/fea-
tures; and (3) Multivalued features – The only CSS multi-valued
property we are currently evaluating is font-family. Each html
tag may contain one or more fonts associated with it. We use a
multi-label binarizer to encode this feature. Finally, we concatenate
all the features together to one large feature array for each data
sample. In total we have 61 features after flattening the color based
features as shown.

ROACH also considers the CSS properties of the tag closest to
the outlink (a tag) but also the parent tag of it. So for each outlink
we have 61+61=122 CSS features.

Figure 5: x-axis: The round used for evaluation
y-axis: The Modified Kendall’s Tau score

Figure 6: x-axis: Round
y-axis: Number of outlinks found

4.2.2 Textual features. ROACH extracts text features from the
context of each outlink - the text is also vectorized, similarly to
the CSS feature context. The vectorized text is referred to as “Text
Content” or TC. Text is extracted from the leaf and parent a tag,
similar to the CSS feature step. During experimentation, we noticed
that the text was very noisy. In the domain of human trafficking,
the text contained phone numbers, names of people and had many
biases including location names. We performed named entity recog-
nition (NER) on the text and removed numbers, names, dates and
locations and common English stop words. We further removed
names/usernames by removing any term that had a number or
punctuation in it.

For each round we prepare the above three features for each
outlink. Parent score corresponds to the score for the parent page
of the outlink (also referred to as PS_parent). We also score the page
pointed by the outlink (PS_outlink) and use it as the ground truth.
We remind the reader that PS_outlink becomes the PS_parent for
the next round of data.



KDDD 2018, August 2018, London, United Kingdom A. Mishra, C. Mattmann, P. Ramirez, W. Burke

Table 1: Train round-0 , Test round-1

Table 2: Train round-1 , Test round-2

Table 3: Train round-2 , Test round-3

Table 4: Train round-3 , Test round-4

5 EXPERIMENTS AND RESULTS
To evaluate ROACH, we experimented using Regression and Tree
based algorithms to understand the best ways to model our fea-
tures. We also tried different ways to combine our various feature
categories. Below we describe our two baselines, Baseline 1 or B1,
and Baseline 2 (B2), respectively.

B1 We use Breadth First Search or BFS as our first baseline.
This baseline gives ranks to the outlinks according to the
the sequence in which they were extracted by a system that
does not care about rearranging the outlink queue according
to some topical preference.

B2 We use the idea behind Apache Nutch [18], which is one of
the most popular open source web crawlers, as the baseline
for our experiments. Our own prior work added a Naive
Bayes classifier to Nutch for focused crawling. In each round
the classifier discards outlinks that are not relevant based on
a binary classification, which encodes SME knowledge of a
page as ‘relevant’ or ‘irrelevant’ and which uses it to evaluate
the outlinks of the parent page. We don’t use Nutch as is,
but have emulated its behavior by using just the pagescore
(PS) feature to predict the relevancy/score of an outlink. We
use this as our baseline, which we dub Nutch-Proxy.

There are some other key technical differenced between Nutch-
Proxy and Nutch. The former provides predictions (between 0 and
1) of pages based on an average tfidf score, which helps us rank the
pages and compare it against our results, whereas the latter discards
the pages altogether if it is found irrelevant by a binary Naive Bayes
classifier. This makes it difficult to rank the pages or even control
the amount of outlinks for the next round. These are some of the
reasons we are using a Nutch-Proxy which is technically different
but embodies the same idea of judging the outlinks based on just
the score for the parent page.

As many sites in the HT domain may present a captcha, or an
explicit opt-in overlay button to log in to the page, these sites skew
our overall raw PS scores resulting in a score of 0 for the pages
where we were not able to fetch the link content. To deal with this
we discard the data points that have a 0 PS score in our experiments
when we are doing predictions for any outlinks.

For our experiments we prepared four datasets named Dataset-
[1,2,3,4] with ground truth. We also have a Dataset-[0] but will
only use it for our first experiment because it is rather small in size,
only 1137 pages. To further understand it, consider that Dataset-[n]
contains outlinks from the round-[n-1] of our crawl which is also
the links crawled in round-[n]. It also contains the features for
those outlinks i.e. context features from around the outlink and
the relevancy score for its parent page. The ground truth for this
round is the relevancy score for the fetched and parsed version of
the outlinks themselves. One dataset can be used to train or test
any model for predicting the relevancy of the page based just on
the features of the outlink. For the rest of this paper we will use
the word round in place of dataset as explained.

5.1 Predicting outlink rankings
In this experiment, we use the feature group (PS,TC,VC) (also
shown as (Parentscore, t f id f andCSS) in the figures) and ground
truth from round n to train our ROACH ranking. The ranking is
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pn+1 = P(f eatn+1,M(f eatn ,дtn )) (1)
sn+1 = S(pn+1,дtn+1) (2)

Where P is the prediction function, M is the modeling func-
tion, S is the Modified Kendall’s Tau scoring function, gt is
the ground truth, p is the prediction and s is the Modified
Kendall’s Tau score.

a Regression based model as shown by the mathematical formu-
lation in Eq. 1, which also shows that then we use the features
for round n+1 to predict the relevancy scores using the trained
model. Eq. 2 shows the evaluation of the predictions based on the
ground truth, using the Modified Kendall’s Tau Score. We used two
different regression techniques, Ridge Regression (linear regres-
sion) and Random Forest Regression. We evaluated multiple feature
combinations. To combine different features we concatenated them.
We then trained on this concatenated set of features.

Experiments were conducted over four sets of rounds Train[0]
Test[1], Train[1] Test[2], Train[2] Test[3], Train[3] Test[4]. Table
1, 2, 3 and 4 shows the results or each feature combination and
Regression Model pair in a heatmap (that is, larger values, or more
relevant links are selected when the color green is darker; otherwise
lighter means less relevant). The results show that the in the first
three rounds tfidf is a very dominating feature. In the last round
however, which has the most number of data samples (82,609 pages),
we note that the combination of tfidf and parentscore produced the
best results, as highlighted in in the first row of Table 3. Although,
the combination of all three features followed closely, it did not
perform the best which suggests that better modeling approaches
are needed to model all the three features together successfully.
The CSS feature proved to be a better indicator of good pages
compared to our non-focused baseline (BFS) in the last two rounds.
Table 3 and Table 4 highlight the focusing capabilities of the CSS
properties or visual indicators on a page. We also noted that the
linear regressors produced better and more consistent results than
the Random Forest regressors. Fig. 5 shows the plot of the Modified
Kendall’s Tau for the predictions on different rounds. We compare
the results between the best performing models in each round, only
CSS based model and the two baselines. It shows that our best
models consistently outperformed both baselines. Fig. 6 shows the
number of outlinks we found for each round.

5.2 Stacking
We hypothesized that concatenating the three features may not be
the best technique because it increases the dimensionality of the
data, which makes it harder for any model to learn and may also
lead to the model becoming more biased towards certain feature
groups. This is not ideal as the three different features are inherently
different. All the three different features represent different cues
from a page. Moreover, the Parentscore (PS) and tfidf (TC) have
floating point values whereas the CSS feature (VC) has integer
values. To address this concern with the simple model, we tried to
combine the models using stacking. We used the first dataset to
train multiple models and tested them on the second dataset. Eq. 3,
4, 5 and 6 show this process. a and b represent two different models.

Figure 7: Shows a representation of a small portion of the crawl graph and
how scores are backpropagated

For example, model-a could be based on CSS+tfidf and Model-b on
Parentscore, as also shown in Fig. 8. Then based on the performance
of the different models measured by the Mod. Kendall’s Tau, we
attributed them respective importances (In general this could be
thought as using regression on the models themselves). We further
normalized the importances to find the relative importances, as
shown in Eq. 7, 8, 9, 10. We then used the second dataset to train
multiple new models and predict the scores for the last dataset as
in Eq. 11, 12. We then modified the predictions on the third dataset
taking a weighted (based on the importance of the model) average
of all the models, as in Eq. 13.

pn+1,a = P(f eatn+1,Ma (f eatn ,дtn )) (3)
pn+1,b = P(f eatn+1,Mb (f eatn ,дtn )) (4)

sn+1,a = S(pn+1,a ,дtn+1) (5)
sn+1,b = S(pn+1,b ,дtn+1) (6)

ia = sn+1,a (7)
ia = sn+1,b (8)

ria = sn+1,a/(sn+1,a + sn+1,b ) (9)
rib = sn+1,b/(sn+1,a + sn+1,b ) (10)

pn+2,a = P(f eatn+2,Ma (f eatn+1,дtn+1)) (11)
pn+2,b = P(f eatn+2,Mb (f eatn+1,дtn+1)) (12)

pn+2 = (pn+2,a ∗ ria ) + (pn+2,b ∗ rib ) (13)
sn+2 = S(pn+2,дtn+2) (14)

For this experiment we used a set of two and three models as
shown in Table 5 and 6. It did perform well in combining the three
features in the first set of data we used, row-1 Table 5, and pro-
vided a marked improvement over the score for the three feature
combination in row 1 of Table 3 (0.660804 compared to 0.752245).
Although, the second set of data we used did not provide any gain
over the normal modeling, the results still remained close to that of
the normal modeling approaches. Overall, the stacking approach
produced resilient baseline scores against the remainder of the ex-
periments. In an online situation when we have to make a decision
about which ranking to choose for the next round, this can serve
as a safe option. It shows that it is useful to use the Mod. Kendall’s
Tau as a feedback to learn model importances.
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Table 5: Learning from : (Train round-1 , Test round-2) ; Ma-
nipulating : (Train round-2 , Test round-3)

Table 6: Learning from : (Train round-2 , Test round-3) ; Ma-
nipulating : (Train round-3 , Test round-4)

5.3 Reinforcement
As we stated earlier, a known shortcoming of focused crawlers is
the “myopia problem”. We try to address this issue by correcting
the relevancy scores / ground truth for the outlinks. We reinforce
the scores by backpropagating the scores using the crawl graph.
We start from the most recent round and move backwards. The
score for each link in a round is replaced by the average score of
its child links in the next round.

The Eq. 15, 16, 17 represent the three different kinds of data en-
riching approaches we are contrasting in this section. Eq. 15 repre-
sents our usual approach with data from a single dataset/round. Eq.
16 represents the approach where we use data frommultiple rounds
in a model. Eq. 17 is equivalent to Eq. 16 except we recursively re-
inforce the data of the previous rounds with backpropagation as
explained by the Figure 7. It shows a small crawl graph with three
levels/rounds. We show how the scores are backpropagated in this
graph.

The nodes represent a page. The dashed red lines represent the
direction of crawl, whereas the blue arrows represent the direction
of backpropagation in the graph. The numbers in red are the rele-
vancy scores for a page. The scores in blue are the reinforced scores
for the pages.

mn = M(f eatn−1,дtn−1) (15)
mn,data = M(C(f eatn−1, .., f eatn−k ),

C(дtn−1, ..,дtn−k )) (16)
mn,r einf orced,data = M(C(f eatn−1, .., f eatn−k ),

C(дtn−1, ..,дtn−k−1, ..,n−1,дtn−k, ..,n−1)) (17)
pn = P(f eatn ,mn ) (18)

pn,data = P(f eatn ,mn,data ) (19)
pn,r einf orced,data = P(f eatn ,mn,r einf orced,data ) (20)

Where C is the concatenation function, k is the depth of re-
inforcement.

Figure 8: Shows a representation of the process of stacking for two models.

Table 7: Train round-3 , Test round-4

Table 8: Train round-(1,2,3) , Test round-4

Table 9: Train round-(1,2,3) with reinforcement , Test round-
4
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To understand the usefulness of reinforcement, we "combined"
the data from the rounds 1, 2 and 3 in with and without reinforce-
ment. Whereas in both the cases we took all the data from these
three rounds and used it to predict round-[4], in the latter we also
reinforced the scores of round-[2] with round-[3] and then round-
[1] with round-[2]. We also contrasted the results with the usual
approach we used on all the previous experiments in this paper,
training with round-[3] for a subset of our models. Table 7 (for
reference to our usual approach), Table 8 and Table 9 present the
results of this experiment. The results, shown in the second rows
of Tables 7 and Table 8 respectively demonstrate that combining all
the previous data to predict link accuracy improves the result. Also,
the reinforced dataset improves the best score even a bit further as
indicated in the second rows of Tables 8 and Table 9, respectively.

6 CONCLUSION
We presented ROACH, an online adaptive focused crawling ap-
proach that combines static subject matter expert (SME) knowledge
with online learning and back propagation of scores based on CSS
visual cues and other page and link features. Our approach im-
proved on the baseline link accuracy when compared with Apache
Nutch, and also a traditional BFS crawling approach, and found
more relevant content, faster. It provided a case for using the Modi-
fied Kendall’s Tau for evaluation of crawl results. ROACH provided
some valuable insights into the usefulness of the previously ne-
glected CSS features for focused crawling and a case for continuing
its exploration. ROACH contributed a methodology for capturing
SME learning using a simplified form of reinforcement learning
with back propagation. The results of our work demonstrate that
ROACH is a viable focused crawling approach and we intend to
evaluate it in other web domains both on the surface and deep web.
In future, we would like to explore better ways of modeling CSS
features and using them to improve the more dominant textual
features. We would also like to do more testing over other topic
domains and a larger dataset to see how the results contrast. We
are also interested in trying more Ensemble and Meta-learning
approaches. We would also like to implement this crawler into an
open source product to be able to compare it more fairly with other
crawlers and techniques in a more online setting.
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