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ABSTRACT
In this paper we introduce a model of marketing-influenced socially-

contingent decision-making with respect to a market of alterna-

tive Products. The model is based on the foundation of socially-

contingent random utility theory [17], [3], and as such, is data-
driven in the sense of viewing consumers’ perception of Product

utility as a parametrization of the observed frequencies with which

consumers choose among the alternative Products. This paper in-

troduces a marketing strength into this parametrization, and a mar-
keting response indicating the marketing strength applied to a con-

sumer as a function of investment by a Company. We analytically

and numerically illustrate the utility of this model by showing in a

market of two alternatives with no inherent biases and uniform so-

cial biases on a cycle network, for any dollar allocation between two

consumers, marketing share is optimized by targeting consumers

equidistant on the network; and that the optimal dollar allocation

between two consumers depends on the size of the budget.
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1 INTRODUCTION
Consider a market consisting of two alternatives, Product A and

Product B, between which consumers choose according to their

perception of the value of these two alternatives. The Products

may be commercial products or political candidates, for example.

Company A and Company B market their respective Products in
an effort to enhance consumers’ perception of the utility of these

Products. This paper is concerned with the problem of how Compa-

nies A and B should allocate marketing resources to optimize their

respective market share [2], the fraction of consumers that choose

their Product.
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We model consumer choice within the framework of random

utility [4], [17], in particular its extension to socially-contingent

decision-making [3]. A tenet of individual choice theory [26], [14],

[17], is that consumers seek to maximize perceived utility among

alternatives A and B. The theory of random utility [4], [17], states

that such utility maximization, with respect to the market consisting
of alternatives A and B, will result in choices that appear random
due to the fact that decisions made with respect to this market

will nevertheless be influenced by considerations external to this

market. Randomness in individual choice can also be derived by

hypothesizing bounded rationality [25] on the part of consumers. A

strength of the random utilitymodel is that utilities can be viewed as

a parametrization of the probabilities with which consumers make

decisions within a particular market, and thus can be estimated as

those that predict observed frequencies of choice by consumers.

We assume consumers belong to a social network, in which pairs

of consumers whose choices are contingent upon one another’s are

referred to as neighbors. Such socially-contingent decision-making

is referred to as a game [20]. The simplest such socially-contingent

parametrization includes inherent bias of individual consumers to-

wards one or the other Product, and social bias reflecting the degrees
to which neighboring consumers influence each others’ decisions.

In this paper we add to this parameterization action taken by a

marketer for Companies A and B to enhance consumers’ percep-

tion of the utility of Products A and B, respectively. In particular,

we introduce a marketing response for individual consumers that

determines the effectiveness of marketing in biasing their choices.

There has been a great deal of interest in modeling how products

are adopted on social networks. Some of this interest stems from

Malcolm Gladwell’s The Tipping Point [11]. In this work he com-

pared the fast, widespread adoption of a product to the contagious

nature of epidemics, and he can be credited, at least in part, with

our current jargon in referring to a product going viral. Much of

the early technical work on product adoption within a network

pursued the epidemic approach [29], modeling and analyzing the

spread of product preference within a social network as a virus.
The epidemic analogy is rather misleading, however, with respect

to the influences dictating choices made on a network. For example,

to use the vernacular of epidemics in the context of a market with

Products A and B, we might say that consumer i has been infected

with virus A, a neighbor j possibly with virus B. Then, if i infects j
with virus A, j would no longer be infected with virus B, perhaps
initiating an epidemic in which Product A is widely adopted. But

this is not how viruses spread, and therefore, product adoption

should not be modeled as viruses.
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The framework of socially-contingent decision-making through

the concept of games has been pursued by many researchers [3],

[31], [30], [19], [8]. Most of this work has modeled consumer choice

with best-response dynamics, which involve deterministic maxi-

mization between utility assigned to the different Products. When

stochastic choice dynamics have been considered [3], [19], it has

typically been in an effort to facilitate convergence of the network

dynamics to a particular Nash equilibrium, for example the payoff-

as opposed to the risk-dominant choice [13], [31]. Considered in

the framework of socially-contingent random utility, the problem

of Product adoption depends on the particular Product market.

(Near) best-response dynamics and Nash equilibria make sense for

markets in which utility with respect to the particular market, for

example fitting in with respect to social conventions, outweighs

considerations external to the market. However, for Products that

are either commercial products or political candidates, external fac-

tors do influence decision-making. More importantly, a Company

need not concern itself with what these external factors are, and

how much utility they may have to particular consumers. Rather,

the beauty of the random utility framework is in viewing utility as

a parametrization of actual frequencies of consumer choice, so that

a Company can choose a parametrization corresponding to measur-

able data, then simply estimate the values of the parametrization

that predict the choices actually being made by consumers.

Within the framework of socially-contingent decision-making,

many have considered the problem of which consumers to target

in order to facilitate adoption of a Product, for example [30], [19],

[8]. Invariably, these papers address the problem by considering

an initial seeding of a Product, followed by (best-response) choice

dynamics determined solely by inherent and social biases. But Com-

panies continue to market their Products long after the Products are

released. Moreover, the reason Companies market their Products is

the belief that such efforts will influence the decision-making that

takes place within the social network. As such, the marketer needs

to be included in a parametrization of (stochastic) consumer choice.

A Company’s marketing allocation consists of a subset of con-

sumers, together with respective amounts and types of marketing

for consumers within this subset. In general, the marketing allo-

cation will vary over time, as a Company collects data and infers

from this data where further gains can be made or losses need to be

cut. However, what is important to note is that with respect to the

problem of resource allocation, one must account for the fact that

marketing is applied (more or less) continuously and is not simply

a matter of inducing an initial configuration of sorts.

Marketing is designed to enhance perception of utility. The extent
to which additional marketing biases a consumer’s perception of

utility will vary according to the amount of marketing to which

the consumer has already been exposed. Therefore it is natural to

invoke the well-known Weber-Fechner law regarding changes in

perception as a function of stimulus intensity [5]. The scale and

shift of the resulting sigmoid function will in general depend on

the type of marketing, and this dependence will likely be consumer-

specific. In Section 3.2 we propose a marketing response to capture

the relationship between dollar investment in a particular type of

marketing to a particular consumer, and the resulting applied bias
exerted upon the consumer’s choice response.

In this paper we consider a very popular type of choice response

dynamics, the logit model. The logit model is frequently used in

modeling the product choices of consumers [12], [16], due to its

parametrization of choice response in terms of varying influences.

It is well known that the logit model resulting from random utility

theory is a special case of market share [2] in expressing the fraction

of amarket that a company gets due to various influences. In Section

2.2 we briefly discuss assumptions and implications of this model

as well as alternative models that may be more appropriate for

different markets.

In general, optimization of a Company’s marketing allocation

will involve simulation of choice response dynamics in order to

assess expected market share resulting from particular candidate

marketing allocations. However, a nice property of logit choice re-

sponse dynamics is that, under conditions which we discuss briefly

in Section 2.3, they converge to an equilibrium Gibbs distribution

[10], which makes it relatively simple to illustrate the broader con-

cepts of this approach. For example, in Section 3.3 we imagine a

Company optimizing total bias resulting from a two unit marketing

allocation with respect to such an equilibrium Gibbs distribution

on a cycle. We show analytically that for any distribution between

the two marketing allocations, total bias is increased by spacing

the allocations evenly around the cycle. We show numerically that

if the marketing budget is large enough, then distributing the mar-

keting budget evenly between the two allocations is optimal, for

any allocation placement, while if the budget is small, then it may

be better to skew the budget distribution towards one consumer.

This paper is organized as follows. In Section 2 we provide back-

ground on random utility and the resulting choice response dynam-

ics and equilibria. In Section 3.1 we discuss performance criterion

for our game, in Section 3.2 we describe the marketing response

function, and in Section 3.3 we illustrate analysis of our model.

2 BACKGROUND: UTILITY, CHOICE
RESPONSE DYNAMICS, AND EQUILIBRIA
OF COORDINATED DECISIONS

Consider a set V of consumers who interact on a social network
G = (V ,E), where E is the set of neighbors, or pairs of individuals
who interact on the network. We say that two consumers i and j
interact on G if there is direct communication between the two in

the sense that each observes and is potentially influenced by the

decisions of the other. We say that the interaction among neighbors

is pairwise in the sense of being additive in the sense that the

absolute influence exerted on consumer i’s decision by a neighbor j is
independent of the presence of other neighbors. That being said, the

relative influence of a neighbor on a given consumer will depend
on the presence of other neighbors and the absolute influences

that those other neighbors respectively exert on the consumer.

The set of neighbors of consumer i is denoted ∂i . Let A and B be

two Companies, each providing a single Product. To distinguish

between a Company and its Product, we may refer to Company

A and Product A, for example, though if no distinction is required

in a given context, we will simply refer to A. We are interested in

the market consisting of the exchange of value between consumers

and Companies A and B. The value provided by consumers can be

money or a vote, for example, exchanged for the perceived utilities
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derived from Products A and B. We will make use of the variable
xi , where

xi =

{
1 consumer i chooses A
−1 consumer i chooses B

, (1)

and we will abuse notation somewhat and let xi refer both to the

numerical value (1 or -1) and the choice (A or B).

At time t , the configuration of choices x(t ) = (x
(t )
1
, . . . ,x

(t )
|V | )

on the network represent preferences for the two Products. Con-

sumer i observes the choices {x
(t )
j : j ∈ ∂i} of his neighbors, for

example through posts on social media. Each consumer will up-
date his choice with a given frequency, which we will assume to

be a Poisson distribution, and we will further assume that this

frequency is the same for all consumers. A well-known conse-

quence of the Poisson assumption is that the probability that two

consumers update their choices simultaneously is essentially zero,

which means the dynamic process of choice updates can be mod-

eled as an appropriately-defined Glauber dynamics [9]. We will

discretize time according to the times at which consumers update

their choices. This model of choice updates is standard [3].

2.1 Random Rational Utility
We adopt the model of random utility [4], [17]. Assume consumers

are rational, that is, that they seek to maximize utility

U =

[
uA + ϵA
uB + ϵB

]
, (2)

where uA is a known utility derived from choosing Product A, and
ϵA is an unknown utility derived from choosing ProductA. Likewise
for Product B. The significance of the unknown utilities ϵA and

ϵB is that, with respect to the market of alternatives A and B, a
consumer’s perception of the utility of these alternatives will be

influenced by factors that a modeler is unable to account for.

We decompose the known utility that a consumer assigns to a

Product into inherent bias, social bias from neighbors, and applied
bias from marketing. For each pair of neighbors i and j, there is
a parameter θi j representing the social bias or interaction strength
between i and j . For each consumer i , there is parameter αi indicat-
ing an inherent bias toward Product A, where αi < 0 indicates an

inherent bias towards Product B. Consumer i receives an allocation

of marketing strengthmi
A from Company A and an allocation of

marketing strengthmi
B from Company B. It is important to note that

the marketing strengthsmi
A andmi

B represent perceived utility that

consumer i assigns to Products A and B, respectively, as a result of
marketing, rather than investment of resources by Companies A
and B. That is, a company could spend a lot of money on ineffective

marketing or very little money on rather effective marketing, and

it is natural to assume that such a marketing response would be

consumer-specific. We discuss this further in Section 3.2.

Given choices x∂i of his neighbors, the contingent utilities for
consumer i conditioned on the choices x∂i of his neighbors are

U =



αi +m
i
A −m

i
B +

∑
j ∈∂i

θi jx j + ϵ
i
A

−αi −m
i
A +m

i
B −

∑
j ∈∂i

θi jx j + ϵ
i
B


. (3)

The main assumption in this parametrization is the symmetric in-

fluence between neighbors, i.e., the utility derived by a consumer

depends on his choice and the choice of his neighbor, i.e., the contin-

gent utility for consumer i from choosingA given that his neighbor

j chooses B, is the same as the utility that j receives from choosing

A given that i chooses B. See [3] for a decomposition of games
corresponding to symmetric influence.

2.2 Choice Response Dynamics
Assume that consumer i updates his choice at time t . He observes
the choices {x j : j ∈ ∂i} of his neighbors. Modeling the unknown

sources of utility ϵA and ϵB as independent and identically dis-

tributed extreme values, it can be shown [17], [27], that in maximiz-

ing the decomposition of utility in (3), consumer i chooses between

ProductsA and B with respective conditional probabilitiesp (A|x(t )
∂i )

and p (B |x(t )
∂i ), summarized as

p
i |x(t )

∂i
=



1

Z
i |x(t )

∂i

exp{αi +m
i
A −m

i
B +

∑
j ∈∂i

θi jx
(t )
j }

1

Z
i |x(t )

∂i

exp{−αi −m
i
A +m

i
B −

∑
j ∈∂i

θi jx
(t )
j }



, (4)

where Z
i |x(t )

∂i
= exp{αi +m

i
A −m

i
B +
∑
j ∈∂i

θi jx
(t )
j }+exp{−αi −m

i
A +

mi
B −

∑
j ∈∂i

θi jx
(t )
j } is referred to as the local partition function for i

conditioned on x(t )
∂j . Using (1), this can be expressed succinctly as

p (xi |x
(t )
∂i ) =

1

Z
i |x(t )

∂i

exp{
∑
j ∈∂i

θi jxix
(t )
j + xi (αi +m

i
A −m

i
B )} . (5)

One can show [14] that the logit response model of (5) satisfies

the independence from irrelevant alternatives (IIA) property, which
states that the relative likelihood of choosing one product over

another does not change when an additional product is available

as an alternative. This property is due to the assumption that the

unknown sources of utility for the different choices are independent

of one another. Luce [14] derived the logit choice model viewing

IIA as an axiom. While IIA is often violated in practice, in markets

where the alternatives do not possess the IIA property, dependence

in unknown sources of utility among the alternatives leads to either

a nested or cross-nested [27] logit model, which can be formulated as

sequential logit models where, for example, a logit choice is made

between types of alternatives, followed by a type-specific logit

model among alternatives of the chosen type. In other words, even

in situations where the logit model is not appropriate per se, it still
serves as the basic building block for more realistic choice models.

The reader is referred to [27] for an excellent discussion of ((cross)

nested) logit models. If one assumes that the unknown sources of

utility ϵA and ϵB are instead sums of i.i.d. random variables, then

one would derive a probit model for the choice dynamics [15].

2.3 Steady-State Behavior
The collection of choice responses (5) constitute a specification [10],

[3] in that it specifies a set of conditional distributions with respect

to which individual consumers make their choices. If the specifi-

cation satisfies the Dobrushin-Langford-Ruelle (DLR) consistency
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condition [10], then there is at least one equilibrium Gibbs proba-

bility measure, on the set of choice configurations on the network,

whose conditional distributions for individual consumers condi-

tioned on the choices of their neighbors, are precisely those given

by the specification. In this paper we do not consider the issue of

phase transition [10] in which there are multiple equilibria.

The contingent influence of two neighbors is referred to as a

game. A game is said to be a potential game [18] if, rather than a

separate utility function for each neighbor, there is a single function

of the bivariate choices, called a potential function, such that if either
participant to the game changes his choice, the resulting difference

in the value of the potential function equals the difference in utility

that the consumer who changed his choice receives. Blume [3]

shows that 2 × 2 symmetric games always have a potential, so

the response dynamics of (5) converge to the equilibrium Gibbs
distribution given by

p (x;θ ) =
1

Z (θ )
exp{

∑
{i, j }∈E

θi jxix j +
∑
i ∈V

θixi }, (6)

where θi = αi +m
i
A −m

i
B , and

Z (θ ) =
∑
x

exp{
∑
{i, j }∈E

θi jxix j +
∑
i ∈V

θixi } (7)

is the (global) partition function.

For consumer i , we will refer to θi as the direct bias on i; and for

a neighbor j ∈ ∂i , to θi j as the social bias on i from j. The direct

bias is the sum of the inherent bias αi and the applied biasmi
A −m

i
B .

2.4 Belief Propagation
Belief Propagation [23] is a standard algorithm for computing prob-

abilities within Gibbs fields. In this section we provide a brief

overview of relevant concepts used in Section 3.3 to optimize mar-

keting allocation on a cycle.

For consumer i , we define the self-potential1

Φi
∆
=



eαi+m
i
A−m

i
B

e−αi−m
i
A+m

i
B


,

and likewise for a pair of neighboring consumers i and j with
interaction strength θi j , we define the edge-potential

Ψi j
∆
=

[
eθi j e−θi j

e−θi j eθi j

]
. (8)

The beliefZi for consumer i is a vector with components [Zi (xi )]
defined as

Zi (xi ) = Φi (xi )
∑
xV \i

∏
j,k

Ψjk (x j ,xk )
∏
j
Φj (x j ) . (9)

Our interest in the belief Zi is due to the fact that normalizing it

gives the probabilities that consumer i chooses A or B. That is,

pi (x ) =
Zi (x )∑

x ∈{A,B }
Zi (x )

.

1
This is a rather common abuse of notation, in which both the exponent and the

exponential can be referred to as a potential.

Belief Propagation (BP) is an algorithm for computing beliefs.

It was designed, and is both optimal and efficient, for acyclic net-

works, and involves the recursive computation ofmessages between
neighboring consumers. It is helpful to think of the message from

consumer j to a neighbor i as being computed by the fusion of

incoming message vectorsmk→j from neighbors other than i , and
the vector Φj for consumer j, followed by propagation via multipli-

cation with the matrix Ψi j . The belief at node i can be computed

from incoming messages as

Zi = Φi
∏
j ∈∂i

mj→i , (10)

where

∏
is component-wise multiplication. The messages are com-

puted recursively as

mj→i = Ψi jΦj
∏

k ∈∂j\i

mk→j . (11)

It will be useful in the following analysis to keep in mind the

identity
2

Ψi j =

[
eθ e−θ

e−θ eθ

]

=

[
1 1

1 −1

] [
Cθi j 0

0 Sθi j

] [
1 1

1 −1

]
,

where Cθ = coshθ and Sθ = sinhθ . This can be seen from the

spectral decomposition of Ψi j [1]. With this decomposition, the

product of Ψ matrices corresponding to a sequence of consumers

with degree 2 and no direct biases, simplifies to

Ψk+1,k · · ·Ψi−1,i

=

[
1 1

1 −1

]


k+1∏
j=i

Cθ j, j−1
0

0

k+1∏
j=i

Sθ j, j−1



[
1 1

1 −1

]
. (12)

3 A MARKETING GAME
We now introduce the main idea of this paper: that the choice re-

sponse models rigorously developed in economics and other social

sciences [26], [14], [17]; their natural extension to interdependent

decision-making [3], [6]; and the plethora of theory and algorithms

developed for such interconnected systems [28], provide a strong

foundation for now analyzing and optimizing the influence of mar-

keting on the coordinated decision-making of those in the network.

Moreover, the models derived within this framework, i.e., choice

responses (5) and equilibria (6), are data-driven in the sense of agree-
ing with observed data but making no additional assumptions [7].

The importance of a data-driven approach to marketing has long

proved successful [21] in the targeting of individual consumers.

The framework of socially-contingent random utility enables a sys-

tematic approach wherein a model of a social network’s collective

decision-making can be learned from data. By including marketing

allocation within this model, a Company can optimize expected

market share over candidate market allocations.

2
Beliefs can be correctly computed by eliminating common factors between compo-

nents of potentials and messages. We do so here for simplicity.
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3.1 Performance Criterion
The natural performance criterion for a Company to consider in

optimizing its marketing allocation is market share [2]. The market

share for Company A with respect to consumer k is the probability

pk (A) that consumer k chooses Product A. Likewise for Product B.
With respect to the entire network, the market share of a Company

is the sum, over all consumers in the network, of the probabilities

that each consumer chooses their Product. The bias of consumer k
is the difference in the probabilities of selecting A and B, i.e., the
moment for consumer k :

µk = pk (A) − pk (B)

=
Zk (A) − Zk (B)

Zk (A) + Zk (B)
. (13)

The total bias on the network is the sum of the biases of all con-

sumers, ∑
k ∈V

µk =
∑
k ∈V

[pk (A) − pk (B)] (14)

=
∑
k ∈V

pk (A) −
∑
k ∈V

pk (B) ,

which is the difference in market share of the two companies.

3.2 Marketing Allocation
The utilities mi

A and mi
B due to marketing indicate marketing

strengths applied to a consumer through effective marketing. The

art of marketing has long been a science [21], driven by research and
the articulation of precise rules. Through market research, a Com-

pany learns effective means of biasing consumer choice through

enhanced perception of Product utility. This suggests the need for a

marketing response function that captures the relationship between

expenditure on a form of marketing and the resulting applied bias,
or perception of utility, that such marketing induces in a consumer.

The respective marketing responses RiA and RiB for Companies A
and B will be functions of appropriately dollar denominated units

of investment, denoted diA and diB , in marketing to consumer i . The

resulting applied biasesmi
A andmi

B can be expressed as

mi
A = RiA (d

i
A ) mi

B = RiB (d
i
B ) .

The precise shape of these functions would, in practice, be de-

termined by market research such as surveys and focus groups.

However, we can assume certain characteristics that such functions

would possess.

There would be a saturation effect or diminishing returns where

additional marketing would not result in any appreciable increased

likelihood of a consumer choosing a Product. Moreover, the re-

sponse of a consumer to marketing by a Company would likely

depend on any inherent bias the consumer has towards Products

A or B. If a consumer has a bias towards one or the other product,

we would expect that he will be less responsive to marketing from

both Companies than if he has no bias. For instance, if a consumer

is biased in favor of Product A, marketing by Company A will only

incrementally add to the consumer’s perception of Product A’s util-
ity. On the other hand, if a consumer is biased in favor of Product

B, marketing by Company A can only do so much.

Figure 1: Probability of choosing Product A as a function of
investment diA for different values of αi .

Consider a consumer i whose choice response probability dis-

tribution depends only on his inherent bias αi . That is, we assume

that consumer i does not receive any marketing and we are not

taking into account any social bias influencing his decision. The

probability that consumer i chooses Product A, then, can be com-

puted from (5) by settingmi
A =m

i
B = 0 and assuming that either

there are no neighbors or setting θi j = 0 for each. Now consider

the following marketing responses:

mi
A =

1

1 + |αi |

[
2

1 + e5+ |αi |−d iA
−

2

1 + e5+ |αi |

]
, (15)

mi
B =

1

1 + |αi |

[
2

1 + e5+ |αi |−d iB
−

2

1 + e5+ |αi |

]
,

which are sigmoid functions shifted and scaled by the inherent

bias αi . Sigmoid functions express the Weber-Fechner law which

can model perceived utility of a Product resulting from varying

degrees of exposure [5]. In general, the effect of inherent bias on the

marketing strength will depend on the product in favor of which

the consumer is biased. However, for now, to keep things simple

and get the ball rolling, let us assume that the only difference is

the expenditure diA or diB . Figure 1 shows the resulting probability

of choosing A as a function of investment diA, for different values
of the inherent bias αi , again assuming no social biases. Recall

that αi > 0 indicates a bias in favor of A, αi < 0 in favor of B.
Incorporating the marketing response functions, the direct bias on

consumer i is now

θi = αi +
1

1 + |αi |

2

1 + e5+ |αi |−d iA
−

1

1 + |αi |

2

1 + e5+ |αi |−d iB

= αi +
1

1 + |αi |

[
2

1 + e5+ |αi |−d iA
−

2

1 + e5+ |αi |−d iB

]
.

3.3 Optimization of Marketing Allocation
Wenow consider the heart ofAMarketing Game, optimizing the sets

of consumers that Companies A and B target for marketing using

the optimization criterion of total bias (14) discussed in Section 3.1.
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Figure 2: A cycle with consumer l indicated for conditioning,
and two units of marketing applied to consumers i1 and i2
by Company A.

To provide a template for the kinds of questions one can address

within the framework of this model, and motivate further research

into this problem, we focus our analysis on an optimal allocation for

a single Company under the assumption of uniform social biases

on a cycle of N consumers, for example as illustrated in Figure

2. Optimal allocations will be considered with respect to the true
direct and social bias parameters {θi ,θi j } on the network, implicitly

assuming perfect estimation.

As shown in the following proposition, if there are no direct

biases on the network, consumers are equally likely to choose

Products A and B.

Proposition 3.1. Let G be a cycle network with uniform social
biases. Then for each consumer k , the bias of k is µk = 0.

Proof. One can compute beliefs on a cycle using Conditioning

[22], [24], a variant of BP that operates by opening up a cyclic

network at a set of nodes constituting a loop cutset, a subset of

nodes whose removal eliminates all cycles from the network, then

performing standard acyclic BP on the opened network for each
configuration of the loop cutset nodes. Then, the beliefs computed

under different hypotheses of the loop cutset nodes are summed

together to get overall beliefs (9). See Figure 2 for an illustration.

Opening up the cycle at a node l and using (11), (10), and (12), one

can show that the belief at consumer k , conditioned on xl = A is

Z
(xl=A)
k =



CN
θ +C

l−k
θ SN−l+kθ +CN−l+k

θ Sl−kθ + SNθ
CN
θ −C

l−k
θ SN−l+kθ −CN−l+k

θ Sl−kθ + SNθ


,

and likewise, that the belief at consumer k conditioned on xl = B is

Z
(xl=B )
k =



CN
θ −C

l−k
θ SN−l+kθ −CN−l+k

θ Sl−kθ + SNθ
CN
θ +C

l−k
θ SN−l+kθ +CN−l+k

θ Sl−kθ + SNθ


.

From this we can compute the belief for consumer k as

Zk = Z
(xl=A)
k + Z

(xl=B )
k

=



CN
θ + S

N
θ

CN
θ + S

N
θ


,

and using (13), we see that µk = 0. □

We now consider the case that a single unit of marketing allo-

cation is placed at a consumer i on the cycle. As we will see, the

beliefs, and therefore bias, at a consumer k will be a function of the

distance between i and k . Let ∆ki and ∆̄ki be the distances between

consumers i and k going either way around the cycle.

Proposition 3.2. LetG be a cycle network with uniform social bi-
ases, and suppose i is the consumer receiving the single unit marketing
allocation from Company A. Then, the bias of consumer k is

µk =

SmA

[
C
∆ki
θ S

∆̄ki
θ +C

∆̄ki
θ S

∆ki
θ

]

CmA

[
CN
θ + S

N
θ

] .

Proof. We again using the idea of Conditioning to compute

beliefs on the cycle. While the node l at which one opens up the

cycle need not coincide with the consumer i receiving a marketing

allocation, it does simplify the calculation. Doing this, one can show

that conditioned on xi = A, the belief at consumer k is

Z
(xi=A)
k = emA



CN
θ +C

∆ki
θ S

∆̄ki
θ +C

∆̄ki
θ S

∆ki
θ + S

N
θ

CN
θ −C

∆ki
θ S

∆̄ki
θ −C

∆̄ki
θ S

∆ki
θ + S

N
θ


,

and likewise, that the belief at consumer k conditioned on xi = B is

Z
(xi=B )
k = e−mA



CN
θ −C

∆ki
θ S

∆̄ki
θ −C

∆̄ki
θ S

∆ki
θ + S

N
θ

CN
θ +C

∆ki
θ S

∆̄ki
θ +C

∆̄ki
θ S

∆ki
θ + S

N
θ


.

The conclusion is attained by adding Z
(xi=A)
k and Z

(xi=B )
k . □

Figure 3 (a) shows the probability that consumers choose Product

A as a function of their location on a cycle for a given placement

of marketing allocation. Using (15) for the marketing response,

Figure 3 (b) shows the total bias of the network as a function of

dollar denominated investment. While we assume uniform social

biases in the derivations of this section, extension to non-uniform

social biases is straightforward, for example by replacing C
∆ji
θ with∏j−1

k=1
Cθk,k+1

. In Figure 3 (c) we show a pattern of non-uniform

social biases that decrease linearly in both directions from a given

site, and in (d) we look at total bias as a function investment when

the single unit marketing allocation is placed at the consumer with

largest or smallest social biases, for different inherent biases of

this consumer. The takeaway from (d) is that at lower levels of

investment, it is better for a Company to target consumers who

are loyal to their Product, while at higher levels of investment, it

may be better to target consumers who are biased towards another

Product but in a region of the network with large social biases.

Noting how rapidly the probabilities in Figure 3 (a) decrease as

a function of the distance from the single marketing allocation,

a natural question is whether, for a given amount of marketing

investment, it is better to distribute the marketing among multiple

consumers. We now address the question of allocating two units of

marketing on a cycle. To further economize notation, we define

λ(i, j )
∆
= C

∆ji
θ S

∆̄ji
θ +C

∆̄ji
θ S

∆ji
θ .

Using this notation we now address the optimal allocation of two

units of marketing given a fixed investment in each.
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(a) (b) (c) (d)

Figure 3: (a) and (b) assume uniform social biases, and respectively show: the probability of choosing A for each consumer on
the cycle, and the total bias as a function of dollar denominated investment; (c) non-uniform social biases, and (d) total bias
as a function of investment for different inherent biases at two different consumer locations, with the social biases of (c).

Proposition 3.3. Assume a cycle with no inherent biases and
uniform social biases. Then, the optimal placement of two units of
marketing,mi1

A andmi2
A , is at evenly spaced consumers on the cycle.

Proof. Let ∆i2i1 and ∆̄i2i1 be the distances between consumers i1

and i2 going either way around the cycle. Likewise ∆ki1 and ∆̄ki1
for the distances between consumers i1 and k ; and ∆ki2 and ∆̄ki2 for

consumers i2 and k . The total bias on the cycle with respective

allocation strengthsmi1
A andmi2

A at consumers i1 and i2 is

∑
k

µk =
∑
k

Cmi
2

A
Smi

1

A
λ(i2,k ) +Cmi

1

A
Smi

2

A
λ(i1,k )

Cmi
1

A
Cmi

2

A
λ(i1, i1) + Smi

1

A
Smi

2

A
λ(i1, i2)

. (16)

Note that for a given allocationmi1
A andmi2

A , the denominator

D (i1, i2,m
i1
A ,m

i2
A )

∆
= Cmi

1

A
Cmi

2

A
λ(i1, i1) + Smi

1

A
Smi

2

A
λ(i1, i2)

is constant for all consumers k on the cycle. As for the numerator,

note that∑
k

Cmi
2

A
Smi

1

A
λ(i2,k ) +Cmi

1

A
Smi

2

A
λ(i1,k )

=
∑
k

Cmi
2

A
Smi

1

A
λ(i2,k ) +

∑
k

Cmi
1

A
Smi

2

A
λ(i1,k )

= Cmi
2

A
Smi

1

A



∑
k

C
∆̄ki

2

θ S
∆ki

2

θ +
∑
k

C
∆ki

2

θ S
∆̄ki

2

θ



+ Cmi
1

A
Smi

2

A



∑
k

C
∆̄ki

1

θ S
∆ki

1

θ +
∑
k

C
∆ki

1

θ S
∆̄ki

1

θ



= Cmi
2

A
Smi

1

A



N∑
d=0

Cdθ S
N−d
θ +

N∑
d=0

CN−d
θ Sdθ



+ Cmi
1

A
Smi

2

A



N∑
d=0

Cdθ S
N−d
θ +

N∑
d=0

CN−d
θ Sdθ


∆
= N (mi1

A ,m
i2
A )

is constant for all i1 and i2, depending only on the marketing

strengthsmi1
A andmi2

A . Thus the total bias (16) is∑
k

µk =
N (mi1

A ,m
i2
A )

D (i1, i2,m
i1
A ,m

i2
A )
.

It is straightforward to show that D (i1, i2,m
i1
A ,m

i2
A ) is minimized

at ∆i2i1 = N /2, or in other words, when i1 and i2 are evenly spaced

along the cycle. □

Extrapolating from these results, we conjecture that Proposition

3.3 can be extended to the case of a fixed investment distribution

among k units of allocation, in that the optimal placement of the k
units would be equally placed around the cycle. Such a conclusion

would seem to agree with recent criticism of the so-called influ-

entials hypothesis [30], in that it is better to distribute marketing

throughout the network.

In Figure 4 we assume uniform social biases, a fixed investment

d = d1

A + d
2

A among two allocations, and consider the total bias

as a function of the investment d1

A in the first allocation at site

i1 = 0, for different placements of the second allocation i2. That
is, we consider the distribution of marketing investment in terms

of both the locations of the consumers within the network and

the monetary expenditure for each consumer. In (a), where d =
10, we can see that for all candidate placements of the second

allocation, if the investment by Company A is skewed towards

either allocation, Company A will fail to achieve the total bias

that is possible with a more equitable distribution of its marketing

investment. Furthermore, as shown in the above proposition, for

any distribution of the marketing investment d between i1 and i2,
total bias is maximized with i1 and i2 evenly spaced around the

cycle. The maximum possible total bias is achieved with i1 and i2
evenly spaced around the cycle, with an equitable distribution of

the total marketing investment.

On the other hand, in (b), where d = 8, for any placement i2 of

the second allocation, distributing the budget evenly actually results

in the smallest possible total bias. That is, when the budget is small,

it is better to distribute resources unevenly. Making the budget

d even smaller results in even more skewed resource allocations,

such that if the budget is small enough, total bias is maximized by

allocating the entire resource budget to i1. Nevertheless, Proposition
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(a) (b)

Figure 4: Total bias as a function of dollar investment d1 in consumer i1 = 0 for different locations i2 of the second allocation,
with total dollar investment (a) d = d1 + d2 = 10; (b) d = d1 + d2 = 8.

3.3 still holds, that for any distribution d1

A, d
2

A of resources, evenly

spaced i1 and i2 is optimal. Note by comparing (a) and (b) that

when the budget is smaller (d = 8), the optimal d1

A is different from

the optimal d1

A when the budget is larger (d = 10). That is, it is

not simply a matter of allocating a certain amount to consumer i1
and the remainder to the second allocation. With regards to the

influentials hypothesis, and criticism thereof, whether it is better to

distribute resources throughout the network or concentrate them on

a small number of consumers depends upon the marketing budget.

And the only way to determine whether it is “small” or “large” is to

run the analysis in the particular scenario. It is a strength of this

model that it provides a framework for doing such analysis.

4 CONCLUDING REMARKS
In this paper we have introduced a model for consumer decision-

making on a social network that builds upon the rigorous founda-

tion of randomutility theory and its extension to socially-contingent

decision-making. In particular, we have included the marketer
within the parametrization of random consumer choice, and have

proposed amarketing response characterizing the applied bias result-
ing from appropriately denominated units of investment. We have

illustrated the ability of our model to address questions relevant

to the strategic distribution of marketing resources. Extensions

of this approach to markets with more than two alternatives is

straightforward. As a final note, one can use the derivations of

the previous section to show that if Companies A and B each get

a single unit of marketing allocation of equal strength, the Nash

equilibria, between Companies A and B, consist of allocating to the

same consumer, or two antipodally located consumers.
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