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ABSTRACT
Graphs are commonly used in semi-supervised learning to repre-

sent a manifold on which the data reside in a high-dimensional

ambient space. The graph can then be utilized in different ways,

typically via the Laplacian of the graph, in order to leverage associ-

ations among the unlabeled data to improve learning. One common

way to leverage the graph Laplacian is as a regularization term,

where models that would disagree with the graph are penalized.

More often the spectrum of the graph Laplacian is used to find

a lower dimensional embedding in which neighboring relations

encoded via the graph are preserved. Most manifold-based meth-

ods of semi-supervised learning depend upon geometric structure

in the ambient feature space in order to construct a graph whose

edges encode similarity that should be useful in selecting a model.

A critical assumption is that some standard measure of similarity

applied to the ambient space can be used to construct a graph that

is error-free or of low error, meaning that examples (i.e., vertices)

from distinct classes are not connected. However, this assumption

often precludes the use of such methods in noisy or complex feature

spaces, even though such spaces often arise in problems that can

most benefit from structure that might be uncovered within the

unlabeled data. This paper presents a method of graph construc-

tion for manifold-based semi-supervised learning that respects the

manifold assumptions underlying these methods and bounds the

error on the graph itself, which then permits bounds on the overall

generalization error of the learning algorithms without relying on

assumptions that do not hold in many modern problem domains.
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1 INTRODUCTION
In most applications that are likely to benefit from semi-supervised

learning [6], unlabeled data samples are plentiful, while there are

limits on the ability to obtain labeled data, or very significant costs

involved. The hope is that the unlabeled data can be leveraged in a

manner that reduces the sample complexity of the learning problem.

While there are many cases where semi-supervised learning has

been applied successfully, there are still many instances where its

application can lead to worse results than supervised learning alone.

Thus, understanding the conditions under which unlabeled data can

be used to confidently reduce error in machine learning remains a

significant problem in many application areas.

Many modern data analysis problems are high-dimensional, and

the dimensionality continues to grow as our ability to measure

phenomena increases in both scope and granularity. These high

dimensional spaces create new problems for data analysis due to

the curse of dimensionality [7]. However, it is often the case that

the degrees of freedom along which the data points vary are much

less than the input dimensionality. Manifold learning [15] takes

advantage of this phenomenon to find a low dimensional space that

allows for better understanding or utilization of the data, and it

plays a prominent role in many pattern recognition and machine

learning algorithms.

In particular, the manifold assumption plays a prominent role

in many semi-supervised machine learning algorithms. Most often

graphs are used to represent these manifolds. However, construct-

ing a graph that represents a good manifold is difficult in noisy

data representations, particularly if there is little labeled data to

focus the analysis. In this context, better methods of graph con-

struction are necessary in order to apply semi-supervised learning

more robustly. Moreover, more complete theoretical analyses that

include an analysis of the graph are required in order to ensure

that the usage of unlabeled data through the graph is not likely

to hurt the performance of the learning algorithms. This paper

presents a method of graph construction that respects the mani-

fold learning assumptions, while simultaneously providing error

bounds on the graph itself, which leads to overall error bounds on

many graph-based semi-supervised learning algorithms.

2 BACKGROUND
Graph-basedmethods of semi-supervised learning [23] typically use

a graph consisting of nodes that represent examples and edges that

are meant to indicate some kind of similarity that should preserved

or respected when choosing a final model in whatever hypothe-

sis space is being utilized. Traditionally, these graphs, which are

meant to encode the information that one hopes to leverage using

the unlabeled points, have been constructed without regard to the
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target learning problem (just as one would expect in a standard

unsupervised step). However, there are many applications where

use of the unlabeled data is hampered by the fact that there is no

known similarity metric that is guaranteed to have low error with

respect to the target learning problem. In fact, in many modern data

analysis problems, the target problem is a high-dimensional learn-

ing problem in which many of the features are of unknown utility.

Therefore, without utilizing information about the target problem,

it is impossible to use these features to construct an unsupervised

similarity metric that is guaranteed to have low error.

2.1 Graph construction
Many popular forms of semi-supervised learning rely on graph-

based methods for regularization or spectral dimensionality reduc-

tion. Some common forms of nonlinear dimensionality reduction

include Isomap [21], Locally-Linear Embedding (LLE) [17], Lapla-

cian Eigenmaps (LEM) [3], Diffusion Maps (DM) [16], Semidefinite

Embedding [22], etc. Amore comprehensive list can be found in [15].

A central construct in many of these methods is the graph Lapla-

cian. A graph is constructed to represent a manifold (or densely

populated region of interest in the ambient space), and the graph

Laplacian facilitates the discovery of a low-dimensional space that

is smooth with respect to this graph. In semi-supervised learning

the goal is to augment learning through the use of unlabeled sam-

ples, so the unlabeled data is used to find a low-dimensional space

on which learning via the labels can be more effective.

As emphasized in [10], normalized-output algorithms, such as

LLE, LEM, and DM, do not handle noise well, and should not be

applied arbitrarily, and there is a need for improvements that are

robust. The authors in [8] recognize the potential problem of hav-

ing data that resides on multiple manifolds and offer some meth-

ods for applying semi-supervised manifold learning in such cases.

However, while the methodology adds some robustness in such

multi-manifold cases, the manifold representation is made with-

out the use of the labels so that high levels of noise can still hide

the manifolds. Furthermore, it is quite possible that many of these

discoverable manifolds are not relevant to the target problem.

There is a general recognition that the labels can be used as con-

straints when building the graph, but in semi-supervised learning,

such an approach would touch only a small portion of the graph.

In [5], the authors allows labeled points to act as hubs, such that

addition of edges that link to labeled points are given priority. In

[24], a low-rank representation is used where the coefficients be-

tween labeled points are zero when they belong to different classes.

In [9], a dissimilarity measure is used to alter the graph. However,

the method either requires ground truth dissimilarity, in which

the only parts of the graph that are affected are those for which

labels are available, or dissimilarity based on some domain specific

features that are manually constructed to enforce disparity.

Recent work intended to leverage the target problem (i.e., the

labels) to influence the graph construction [5, 20, 24] recognize

the fact that there may be multiple manifolds, some of which are

not ideal for discrimination in the target learning problem or that

finding a manifold in noisy data requires additional information.

However, none of these previous methods can supply an error-

bound on the graph itself. While it might at first seem that providing

an error bound on the graph is straightforward, there are other

more subtle aspects to constructing the graph that turn out to be

vitally important in manifold learning. When constructing a graph

to represent a manifold, it is important to make sure that the graph

respects a local notion of similarity, both in terms of respecting

the notion of a geodesic distance that matters in the graph, and in

terms of respecting the fact that for most learning problems there

are subclasses within any class, and even if these subclasses lie in

close proximity to each other in the ambient feature space (which

is not guaranteed at all), if one attempts to treat them equally in a

graph it may make it impossible to find a manifold that is good for

learning (i.e., that results in a model that generalizes well).

Graphs are often used to encode a manifold for use in such al-

gorithms. This paper explores a form of graph construction based

on Kleinberg’s Stochastic Discrimination algorithm. We provide

error bounds on the learning algorithm that include bounds on the

graph, and we demonstrate the ability of this method to substan-

tially improve performance on a very challenging semi-supervised

learning task in a noisy application.

3 STOCHASTIC DISCRIMINATION
Stochastic Discrimination (SD) [11, 12, 14] is an ensemble method

of classifier construction, in which so-called weak classifiers are

combined to make a higher-level model. SD differs in significant

ways from standard methods of combining classifiers. Most notably,

it is well known for its ability to support complex models without

overfitting.

Selection of the weak learners is guided very strictly by three

overarching principles: generalization, uniformity, and enrichment.
In order for a model to have the ability to generalize, weak models

must cover enough space to capture points outside of the training

data. In other words, the weak models must apply to test points,

such that standard generalization assumptions apply. A weak model

must also have at least some discriminatory power, even if its error

rate is close to fifty percent. Thus, an enriched model is one that

contains a greater fraction of the labeled points from one class than

from the other class. This does not simply mean that it has more

of one class than the other; rather it means that the percentage

of all points of class 1 covered by the weak model is greater than

the percentage of all class 2 points that it covers. The amount of

enrichment that one requires a new weak learner to have can be set

using a parameter, β , that defines the minimum difference between

the coverage percentages of the two classes. Finally, the algorithm

seeks to ensure uniformity of coverage of points. This uniformity is

class-specific, such that we won’t add a new model to the ensemble

even if it is enriched, unless the average coverage of points of each

class is less than the average coverage for that class so far (plus

some constant λ).
The following definitions are taken from [14]:

Definition 3.1. Enrichment: A subset of the feature space (i.e., a

weak classfier)M of F is said to be enriched with respect to classes

C1 and C2 if

in f {|Pr (M |C1) − Pr (M |C2)| |M ∈ M} > 0

Definition 3.2. Uniformity: A subset of the feature space (i.e.,

a weak classfier) M of F is said to be uniform with respect to

classesC1 andC2 if for every point, p, in eitherC1 orC2, and every
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nonempty subset ofM of the formMx,y , PrF (p ∈ M |M ∈ Mx,y )

is equal to x if p is a member ofC1, and is equal toy if p is a member

of C2.

The idea is to generate an ensemble model consisting of a wide

variety of subsets of the feature space, such that those subsets

(classifiers) cover points evenly, cover enough space to provide gen-

eralization ability, and cover a disproportionate number of points

from one class, C1, or the other, C2.

To turn these ensembles into classifiers, a new test point is eval-

uated based on the subsets that cover it, as well as those that do

not. Each subset contributes the following score to the point:

X(C1,C2)(p, S) =

(
1S (p) − Pr (S |C2)

Pr (S |C1) − Pr (S |C2)

)
, (1)

where 1S is the indicator function of the set S . In other words

1S (p) 7→ 1 for points p ∈ S , and 1S 7→ 0 for points p < S .
Then, points are classified using the following sum:

Y t
(C1,C2)

=

(∑t
k=1 X

k
(C1,C2)

)
t

, (2)

where t is the number of classifiers.

It is possible in this fashion to cause points of class C1 to have a

mean of 1.0 and points of class C2 to have a mean of 0. New points

can then be classified as belonging to class C1 when Y t
(C1,C2)

>

0.5. By the Central Limit Theorem, as t approaches infinity, the
variance of the probability density function of points of class C1

and the variance of the probability density function of points of

class C2 both approach zero. This fact helps explain the resistance

to overfitting as the number of weak classifiers is increased.

The SD algorithm as described in [13, 14] can be implemented

in a variety of ways. In particular, the performance is heavily de-

pendent upon how the stream of weak classifiers is generated and

which classifiers are retained. One significant choice we make in

our implementation is that we grow weak classifiers around neigh-

boring points rather than choosing the expansion points at random.

Themotivation for this is the fact that wewant to use SD to generate

a psuedometric that is both target-based and local-proximity-based.

This is because manifold learning is based on the assumption that

geodesic proximity should relate to smooth changes in the feature

space.

4 GRAPH CONSTRUCTION USING SD
The characteristics we want to require in our graph construction

approach are resistance to overfitting, since we won’t have much

labeled data, and lack of correlation between ensemble members

to ensure a globally applicable psuedometric. Among ensemble

classification methods, there are two prominent approaches that

have both of these properties. The first, is the well-known AdaBoost

algorithm [18, 19]. The second is Stochastic Discrimination [11,

13, 14]. AdaBoost ensures that ensemble-members’ errors are not

correlated by adding more weight in the next round to examples

on which the current ensemble makes mistakes or is unsure. While

AdaBoost modifies the training set from the example point of view,

SD modifies it from the feature point of view. Thus, SD is a natural

fit for what we want to do, while AdaBoost is not.

As in the more general random subspace method used in [20],

we can use Stochastic Discrimination to generate a task-relevant

psuedometric. Kleinberg discusses the point that weak classifiers

generated via SD are not classifiers in the traditional sense of the

word. Similarly, we don’t want classifiers in the traditional sense of

the word either. Just as SD depends on the weak learners being error

prone, we do too. In other words, if each SD learner was highly

accurate, we would likely be joining together many points that,

while sharing the same class, are not close in the sense of where

they lie on the manifold that we want to discover.

Owing to the over-fitting resistance of SD, we are able to benefit

from additionalweak classifiers as they help lower the overall bound
on the generalization error without any real risk of hurting perfor-

mance. In addition, because the weak classifiers are error prone,

we can obtain a fine-grained pseudometric simply by using the

scores (Equation 1) generated by the weak classifiers covering any

given two points. This pseudometric captures local proximity due

to the way we create our stream of classifiers, and any bound on the

generalization error that applies to the SD algorithm applies to our

graph edges as well, with a sufficient number of weak classifiers

and a sufficient number of unlabeled points.

The graph construction algorithm is shown in Algorithm 1.

Algorithm 1 SD Graph Construction

Input: data {(xi ,yi )}
l
i=1, {xi }

n
i=l+1}, numNeiдhbors := k ,

numWeakClassi f iers := c , β , λ,minPoints := q
Train SD classifier: SD(c, β , λ,q)
for u = 1 to n do

for v = 1 to n do

wu,v =
∑c
i=1

{
1Si (u)−Pr (Si |C2)

Pr (Si |C1)−Pr (Si |C2)
, if 1Si (u) = 1Si (v)

0, otherwise

end for
end for
Retain k nearest neighbors; create Laplacian matrix L(u,v)

5 THEORETICAL ANALYSIS
The framework described in this section can be considered to rely

on the notion of compatibility, χ , as described in [1, 2]. The notion

of compatibility is based on finding a model that has a low unlabeled
error rate. In the case of a graph regularizer, this can indicate that

the function being learned agrees with the graph and would not

label two connected nodes with different class labels. Of course,

if the graph incorrectly connects examples from different classes,

then the target function itself does not have an unlabeled error rate

of zero, even if some hypotheses do.

In [1], various sample complexity bounds are provided. In some

cases an assumption is made that the target function’s unlabeled

error rate is low (essentially zero), and in other cases the bounds

depend on the unlabeled error of c∗, the true target function. For
example, Theorem 2.3.2 provides a sample complexity bound in the

realizable case (c∗ ∈ C) that depends upon the unlabeled error of

the target, c∗. A graph constructed over noisy samples is likely to

have many "errors." Therefore, the first assumption is too simplistic

for many real-world situations. Using unlabeled data alone, the
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target function’s unlabeled error cannot be bounded at all, since it

is entirely possible that similarity in the ambient feature space does

not reflect similarity in terms of the target concept at all. In other

words, the number of mistakes in the notion of compatibility itself

(the graph) cannot be bound while ignoring all information con-

cerning the target concept. Although labeled and unlabeled error

are of different types, it should still be possible to use supervised-

learning bounds on generalization error to provide a bound on the

unlabeled error rate of c∗, meaning that use of label information

in the construction of the graph can bound this error with respect

to the target, allowing bounds to be applied to the overall sample

complexity.

We will use the definition of a notion of compatibility given in

Definition 2.2.1 from [1], which we restate here, in slightly modified

form, for completeness.

Definition 5.1. Anotion of compatibility is a function χ : C×X 7→

[0, 1] where we define χ (f ,D) = Ex∼D [χ (f ,x)]. Given a sample S ,
we define χ (f , S) to be the empirical average of χ over the sample.

C is the hypothesis space from which the hypothesis, f , is cho-
sen, and X is the instance space, from which the distribution, D, is
drawn. For our purposes, we will actually assume that χ (f ,D) =
Ex∼D [χ (f ,xi ,x j )], so we are looking at the expectation over pairs

of examples (edges in the graph). Note that the unlabeled error rate
is simply a measure of incompatibility between a hypothesis, f ,
and the distribution, D; i.e. 1 − χ (f ,D), or 1 − χ (f , S), for a given
sample.

Now, consider Theorem 2.3.2 from [1], which we restate verbatim

here for completeness.

Theorem 5.2. If c∗ ∈ C and errunl (c∗) = t , thenmu unlabeled
examples andml labeled examples are sufficient to learn to error ϵ
with probability 1 − δ , for

mu =
2

ϵ 2

[
ln |C | + ln 4

δ

]
andml =

1

ϵ

[
ln |CD,X(t + 2ϵ)| + ln

2

δ

]
.

In particular, with probability at least 1− δ , the f ∈ C that optimizes
ˆerrunl (f ) subject to ˆerr (f ) = 0 has err (f ) ≤ ϵ .
Alternatively, given the above number of unlabeled examplesmu ,

for any number of labeled examplesml , with probability at least 1−δ ,
the f ∈ C that optimizes ˆerrunl (f ) subject to ˆerr (f ) = 0 has

err (f ) ≤ 1

ml

[
ln |CD,X(errunl (C

∗) + 2ϵ)| + ln 2

δ

]
.

Next, we need the following definition from [13]:

Definition 5.3. Anm-class supervised learning problem presented

as two finite sequencesE = (E1,E2, . . . ,Em ) andT = (T1,T2, . . . ,Tm )

of classes in a finite feature space (intuitively, all examples and the

training examples, respectively), is said to be solvable if there exists

a collection M of subsets of the feature space such that T is M-

representative of E, and such that M is T-enriched and T-uniform.

Note that enrichment and uniformity are as defined above.

Now, consider Theorem 1 from [13], which we also restate es-

sentially verbatim here for completeness.

Theorem 5.4. There exists an algorithm A with the following
property: given any solvable problem, E, T, in supervised learning,
ifM is a collection of subsets of the feature space, such that T isM-
representative of E, and ifM is T-enriched and T-uniform, then given

any desired upper bound u on the error rate, A will output, within
time proporational to 1

u and inversely proportional to the square of
e(T,M) (the T-enrichment degree ofM), a classifier whose expected
error rate on E is less than u.

The algorithm A builds classifiers by sampling, with replacement,
from the set M, and then combining the "weak classifiers" in the
resulting samples. We reduce n-class problems to n-many two-class
problems; given a training pair (T1,T2) for any such two-class problem,
a sample S of size t produces the classifier which assigns any given
example q to class 1 if

1

t

∑
S ∈S

1S (q) − Pr (S |T2)

Pr (S |T1) − Pr (S |T2)
> 0.5, (3)

(where 1S (q) is the indicator function of the set S).

Note that the phraseM-representative in the above theorem, just

means that the set of all examples, Ei , of class i is indistinguishable
from the set of training examples, Ti , for that class when using the

sets inM.

Now, we can combine the two theorems, by building a Stochastic

Discrimination graph using Algorithm 1, such that vertices concur

with the SD classifier, which allows us to bound the error on edges;

i.e. the unlabeled error rate. If we can use Theorem 5.4 to impose

an unlabeled error rate on our semi-supervised algorithm, then the

unlabeled error rate, t , of the target function in Theorem 5.2 can be

defined, and thus we can bound the generalization error in terms of

the number of unlabeled examplesmu and the number of labeled

examplesml . Note that we are considering this in the context of

binary classification for simplicity.

Theorem 5.5. If c∗ ∈ C and we define errunl (c∗) to be 1− χ (f , S),
where χ (f , S) = Ex∼S [χ (f ,xi ,x j )] and S represents pairs of samples
defined by a graph constructed using Stochastic Discrimination with
expected error < t , then errunl (c∗) ≤ 2t − 2t2 and mu unlabeled
examples andml labeled examples are sufficient to learn to error ϵ
with probability 1 − δ , for

mu =
2

ϵ 2

[
ln |C |+ln 4

δ

]
andml =

1

ϵ

[
ln |CD,X(2t−2t

2+2ϵ)|+ln 2

δ

]
.

In particular, with probability at least 1− δ , the f ∈ C that optimizes
ˆerrunl (f ) subject to ˆerr (f ) = 0 has err (f ) ≤ ϵ .

Proof. Recall that we defined the unlabeled error rate, errunl (c∗),
over pairs of samples, and that these pairs were selected (joined)

according to the SD algorithm with expected error < t , which
is possible by Theorem 5.4 from [13]. Then, in the binary case,

errunl (c∗) depends on the number of pairs having only one vertex

misclassified, since if both vertices are misclassified, then it does

not increase errunl (c∗). Therefore, it follows that if the error on the

individual vertices is < t , then the error on the pairs is errunl (c∗) ≤
(1 − t)t + t(1 − t) = 2t − 2t2. The remainder of the proof follows

directly from Theorom 5.2 from [1]. □

6 EXPERIMENTAL RESULTS
The Brain-Computer Interface (BCI) problem described in [6] is

a particularly challenging problem for semi-supervised learning

algorithms. It represents the type of noisy, high-dimensional prob-

lem that modern machine learning is being asked to solve more
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and more frequently. The task is to discriminate between electroen-

cephalography (EEG) recordings in which a human subject was

concentrating on moving their right or left hand. The supervised

baseline obtained using an SVM in [6] had an error rate of 34.31%

and an AUC score of 71.17%.

The experiments in Table 1 were conducted using the Laplacian

Regularized Least Squares (LapRLS) algorithm described in [4]. The

algorithm uses the Laplacian matrix of a graph constructed using

(k = 6) nearest neighbors. The results use the 12 data splits from

the benchmark set in [6], where the LapRLS performed the best

out of all methods in the benchmark. We see that our approach can

improve even these results. The SD-LapRLS was built with β = 0.05,

λ = 5, and using 1000 weak classifiers. The difference between the

standard and SD algorithms lies only in the graph construction

method, where the second result with the standard LapRLS uses

cosine similarity to compute neighbors.

7 DISCUSSION
In this paper, we have begun to explore methods for constructing

overall error bounds on semi-supervisedmanifold learningmethods.

Graph construction methods that utilize the labeled data while

respecting the manifold assumption have the potential to make

such methods much more broadly applicable, especially in noisy

or complex data domains. This number of variations possible in

the implementation of the Stochastic Gradient descent provide

flexibility to choose a method that is catered to graph construction

for manifold representation, but there are also still many areas to

explore in optimizing such a graph construction method. Ideally,

more theoretical analysis can be developed to help guide such

implementation choices.
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Table 1: Average error of Laplacian RLS classifiers on BCI data.

Model Building Condtions Average Error AUC

Standard LapRLS* 0.3136 0.7483

Standard LapRLS 0.3244 0.7431

SD-LapRLS 0.2750 0.7894

*LapRLS results in [6], obtained using model selection, a

normalized graph Laplacian, and an RBF base kernel; which was the best

result among all 11 semi-supervised algorithms tested in the benchmark.
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