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ABSTRACT
Measuring relevance for two nodes is fundamental to social network

analysis, which has been proven to benefit many network analysis

tasks and applications such as link prediction, node classification,

community detection, search and recommendations. The majority

of existing relevance measurements focused on unsigned social net-

works (or networks with only positive links). However, social media

provides mechanisms that allow online users to specify negative

links in addition to positive ones. For example, Slashdot users can

create foe links; users in Epinions can establish distrust relations;

while users in Facebook and Twitter can block or unfriend others.

Thereby, social networks with both positive and negative links (or

signed social networks) have become ubiquitous in social media and

attracted increasing attention in recent years. On the one hand, it

is evident from recent studies that negative links have added value

in a number of analytical tasks. On the other hand, the availability

of negative links challenges existing relevance measurements de-

signed for unsigned networks. Hence, we need dedicated relevance

measurements for signed social networks. In this paper, we present

an initial and comprehensive investigation on signed relevance

measurements and design numerous relevance measurements for

signed social networks from both local and global perspectives.

Empirical experiments on four real-world signed social networks

demonstrate the importance of negative links in building signed rel-

evance measurements and their effects on social network analysis

tasks.
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1 INTRODUCTION
Traditionally network analysis has focused on unsigned networks.

However, many online social networking services provide mech-

anisms that allow users to create not only positive links, but also

negative relations. These social networks with both positive and

negative links are known as signed social networks, where the nega-

tive links that users give can denote their foes (e.g., Slashdot), those

they distrust (e.g., Epinions), or “unfriended” friends and blocked

users (e.g., Facebook and Twitter). It is due to this diverse set of

signed networks appearing in today’s social media that has lead to

their increased attention in the recent years; as well as the increased

availability due to the more and more popularity of online social

media [2, 15, 23, 43].

Relevance, which measures how relevant two nodes are in a

social network, is one of the keystones of social network analy-

sis. This has been shown by their usage in diverse social network

analysis tasks and applications such as link prediction [3, 45], node

classification [5], community detection [38], search and recommen-

dations [44]. The vast majority of existing node relevance mea-

surements have been designed for unsigned networks (or social

networks with only positive links) [1, 4]. However, the availability

of negative links in signed networks poses tremendous challenges

to unsigned relevance measurements. For instance, most unsigned

relevance measurements require all links to be positive [31]. Mean-

while, the fundamental principles and theories of signed networks

are substantially different from those of unsigned networks. For

example, some social theories such as balance theory [14] are only

applicable to signed networks, while social theories for unsigned

networks such as homophily may not be applicable to signed net-

works [37]. Therefore, relevancemeasurements for signed networks

need dedicated efforts since it cannot be executed by simply apply-

ing those for unsigned networks.

On the other hand, the existence of negative links also brings

about unprecedented opportunities in signed relevance measure-

ments. It is evident from recent research that negative links have

significant added value over positive links in various analytical

tasks. For example, a small number of negative links can signifi-

cantly improve positive link prediction [13, 22], and they can also

boost the performance of recommender systems [27, 40]. Thereby,

negative links could offer the potential to help us develop novel

relevance measurements for signed networks. There are a few very
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recent works in designing similarities for link prediction [17, 33].

However, a general and systematic investigation on signed rele-

vance measurements and their effects on signed network analysis

are still desired since it can greatly advance our understandings

about signed social networks.

In this paper, we perform the initial and comprehensive study

on the problem of measuring relevance on signed social networks.

Analogous to relevance research in unsigned networks, we aim to

investigate the following: (a) how to make use of both positive and

negative links in signed relevance measurements; and (b) what are

the effects of these measurements on signed network analysis. The

main contributions of the paper are summarized as follows:

• Design numerous relevance measurements for signed social

networks from both local and global perspectives;

• Investigate the connection signed relevance measurements

have with balance theory and signed network properties;

and

• Study the effects of signed relevance measurements with

four real-world datasets on two signed network analysis

tasks - sign prediction and tie strength prediction.

The rest of this paper is organized as follows. In Section 2, we

first formally define the problem of signed relevance. Then, in

Section 3, we review related work in relevance measurements and

signed networks. We describe the four signed network datasets

used in this paper, a preliminary analysis of the data, along with

some validation for balance theory in Section 4. Then, in Section 5,

we present numerous relevance measurements specific to signed

networks. In Section 6 we perform experiments for predicting link

signs and tie strength predictions when using the signed relevance

algorithms previously discussed in Section 5. Finally, conclusions

are given along with our future work in Section 7.

2 PROBLEM STATEMENT
A signed network G is composed of a set of N nodes (i.e., users)

U = {u1,u2, . . . ,uN }, a set of positive links E
+
and a set of negative

links E−. We represent signed links between users in an adjacency

matrix, A ∈ RN×N , where Ai j = 1 if ui has a positive link to

uj , −1 if ui creates a negative link to uj , and 0 when ui has no
link to uj . Furthermore, we can separate a signed network into

two networks, one containing only positive links and the other

with only negative links, which we can represent in the adjacency

matrices A+ ∈ RN×N and A− ∈ RN×N , respectively. We represent

a positive link from ui to uj with A+i j = 1 and A+i j = 0 otherwise.

Similarly, we represent a negative link from ui to uj with A−i j = 1

and A−i j = 0 otherwise.

We use R ∈ RN×N to denote the relevance score matrix, where

Ri j represents the relevance from user ui to user uj . Note that

signed relevance values are not necessarily symmetrical. In Table 1

we summarize the major notations used in this work, where di and
Ni denote degree and the set of neighbors of ui in an unsigned

network, respectively.

With the aforementioned notations and definitions, the problem

of signed relevance is formally defined as follows:

Given the signed network G = (U , E+, E−), we aim to develop a
measure f to infer relevance scores between all pairs of users (i.e.,
U ×U ).

Table 1: Notations.
Notations Descriptions

R Node relevance matrix

A Adjacency matrix

A+ (A−) Adjacency matrix of only positive (negative) links

|A | Absolute adjacency matrix

di Degree of node ui
Ni Set of neighbors for node ui
N in
i (N out

i ) Set of incoming (outgoing) neighbors for node ui
N +i (N

−
i ) Set of positive (negative) neighbors for node ui

si j Link sign between users ui and uj
Bl (Ul ) Matrix holding the number of l length paths having an

even (odd) number of negative links

Xi j the (i,j) entry of the matrix X

The signed relevance problem is different but related to two

signed network analysis tasks including sign prediction [22], and

signed tie strength prediction [19] as :

• Sign prediction is to develop a predictor to make use of the

signed network G to predict the sign of links whose sign

has been surpressed [22]. However, the signed relevance

problem is to infer a real valued relevance score (typically

in the range [−1, 1]) for all pairs of users.

• The signed tie strength prediction is defined to infer a strength

value in [−1, 1] for an existing link [19]. However, signed

node relevance seeks to define a signed relevance value for

all pairs of users.

Note that via relevance measurements, we can infer relevance

scores of all pairs of users; hence they can be naturally used for both

sign prediction and signed tie strength prediction. Actually, we eval-

uate the performance of various proposed relevance measurements

in this paper via these two tasks.

3 RELATEDWORK
Our work is related to node relevance measurements and signed

network analysis, therefore below we briefly overview them.

Node Relevance Measurements: Measuring node relevance

is fundamental to social network analysis. Most of existing node

relevance measurements have been developed for unsigned social

networks. According to the information used by a given measure-

ment we can roughly categorize them into local and global methods.

Local methods, commonly referred as structural equivalence [26],

use local neighborhood information. Representative local measure-

ments include common neighbors and its variants, Jaccard Index

[30] and its variants such as Sorensen Index [32], Adamic-Adar

Index [1], and Preferential Attachment Index [4]. Global methods

not only utilize the local neighborhoods but also propagate the

relevance information through the whole network. Representative

global measurements include Katz [18], SimRank [16], ASCOS and

ASCOS++ [7, 8], and random walk with restart (RWR) and its vari-

ants [39]. One recent work extends RWR for personalized ranking

in signed social networks [17] and a few recent works studied node

similarities for link prediction [33]. However, to the best of our

knowledge, this work is the initial and comprehensive study about

node relevance measurements in signed social networks.

Signed Network Analysis: With roots in social psychology [6,

14], signed network analysis has attracted increasing attention in
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Table 2: Statistics of four signed social networks.
Network # Users # Positive Links # Negative Links

Bitcoin-Alpha 3,784 22,651 1,556

Bitcoin-OTC 5,901 32,448 3,526

Slashdot 79,116 392,179 123,218

Epinions 131,828 717,667 123,705

recent years. However, the development of tasks of signed social

network analysis is highly imbalanced [36]. Some tasks have been

extensively studied such as social balance in signed networks [11,

46], link sign prediction [9, 22], and community detection [10, 21];

some tasks are still in the very early stages of development such as

signed network embedding [41] and negative link prediction [35];

while others have not been comprehensively investigated such as

node relevance measurements and signed network modeling. A

comprehensive overview about signed network analysis can be

found in [36].

4 DATA ANALYSIS
In this section, we will first introduce the datasets we will use for

this study and then perform preliminary analysis with them.

4.1 Datasets
In this work, we collect four signed network datasets to study

signed relevance measurements, i.e., Bitcoin-Alpha
1
, Bitcoin-OTC

2
,

Slashdot
3
and Epinions

4
. Below we describe more details about

these datasets.

The Bitcoin-Alpha network is a signed network we collected

from Bitcoin Alpha. Similarly we collected Bitcoin-OTC from Bit-

coin OTC. Both of these datasets were collected from publicly avail-

able data from their respective websites. The two Bitcoin sites are

open market websites that allow users to buy and sell things. Due

to the anonymity behind users’ Bitcoin accounts, users of these

websites form trust networks to prevent against scammers (e.g.,

fake users who are just attempting to have another user send them

bitcoins, but never deliver their end of the deal, which is usually the

delivery of some other monetary good). In addition to the signed

networks, users in both websites can specify scores in the range

[1,10] (or [-10,-1]) to indicate the positive (or negative) tie strength.

Note that negative links in both websites are visible to the public.

The Slashdot dataset was obtained from [20]. Slashdot focuses on

providing technology news since 1997. One of the unique features

is that since 2002 the website has allowed users to explicitly mark

other users as their friends (positive links) or foes (negative links).

Note that negative links in Slashdot are only visible to users who

login to the system.

We have also collected a dataset from the product review site

Epinions where users can establish trust (positive) and distrust

(negative) links. In addition, users can write reviews for items from

certain pre-defined categories. Note that negative links in Epinions

are totally invisible to the public, but in this dataset, negative links

were given by Epinions staff for research purposes.

1
http://www.btcalpha.com

2
https://www.bitcoin-otc.com

3
http://www.slashdot.org

4
http://www.epinions.com

Table 3: Reciprocal Links in Signed Social Networks.
Datasets Positive Links Negative Links

Bitcoin-Alpha 85.4% 18.0%

Bitcoin-OTC 83.8% 17.8%

Slashdot 30.7% 7.4%

Epinions 34.8% 3.8%

Some statistics are demonstrated in Table 2. We note from the

table that in all datasets, negative links are sparser than positive

links, thus negative links could have different properties from posi-

tive links. Meanwhile, previous studies suggest that balance theory

is helpful to explain social phenomena in signed networks [22].

Thus, in the following subsections, we study properties of negative

links analogous to positive links and validate balance theory in four

real-world signed networks.

4.2 Degree Distributions
As we know, the distributions of in- or out-degrees of positive links

in unsigned networks follow power-law distributions – most nodes

with small degrees while a few nodes with large degrees [4]. In

this subsection, we examine whether similar distributions can be

observed for positive and negative links in signed social networks.

For each user, we calculate the numbers of in- and out-degrees

for positive and negative links, separately. We observed that the

distributions of in- and out-degrees of positive and negative links

in four signed networks followed a power-law degree distributions.

For instance, a few nodes give a large number of negative links;

while many nodes only give few negative links.

4.3 Reciprocal Links in Signed Social Networks
Links in directed social networks can be generally categorized into

reciprocal (two-way) and parasocial (one-way) links [31]. Reciprocal

links among nodes in unsigned networks are usually treated as the

basis to create stable social ties and play an important role in the

formation and evolution of networks [24]. In this subsection, we

study reciprocal links in signed social networks.

For a pair of users (ui ,uj ), there are four types of reciprocal

links – (ui + uj ,uj + ui ), (ui + uj ,uj − ui ), (ui − uj ,uj − ui ) and
(ui − uj ,uj + ui ), where ui + uj (or ui − uj ) denotes that there is a
positive link (or a negative link) fromui touj . We analyzed our four

signed networks and found that among four types of reciprocal

links, there are few (ui +uj ,uj −ui ) and (ui −uj ,uj +ui ). Therefore,
our analysis on reciprocal links focuses on (ui + uj ,uj + ui ) and
(ui −uj ,uj −ui ). We calculate if ui has a positive link (or a negative
link) to uj , how likely uj also has a positive link (or a negative link)

to ui . The results on four signed networks are shown in Table 3.

From the table, we make some key observations. The percent

of reciprocal positive links is much higher than that of reciprocal

negative links in all four signed social networks. Though in all four

websites, positive links are always visible to the public, the percent

of reciprocal positive links in Bitcoin-Alpha and Bitcoin-OTC is

much higher than that in Slashdot and Epinions. Users in Bitcoin

Alpha and OTC exchange bitcoins with others; while users share

free content (news or reviews) with others in Slashdot and Epin-

ions. Thus, Bitcoin Alpha and OTC users need much stronger social
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ties for bitcoin trading in the online worlds than users in Slash-

dot and Epinions who consume online free content. The percent

of reciprocal negative links in Bitcoin-Alpha and Bitcoin-OTC is

much higher than that in Slashdot, where the percent of reciprocal

negative links in Slashdot is much higher than that in Epinions.

These four websites have different access controls to negative links.

In Bitcoin Alpha and OTC, negative links are totally visible to the

public; only users who login to the Slashdot can see negative links;

while negative links are totally private in Epinions. Exposing nega-

tive links may cause revenges that consequently could lead to more

reciprocal negative links [34].

4.4 Balance Theory in Signed Networks
Social theories such as homophily [28] play an important role in

building node relevance measurements for unsigned social net-

works [25]. In this subsection, we investigate one of the most fun-

damental social theories related to signed social networks, i.e., bal-

ance theory [6], that could be helpful in building node relevance

measurements in signed social networks.

Generally, balance theory is based on the intuition that “the

friend of my friend is my friend" and “the enemy of my enemy is

my friend" [6]. We adopt si j to denote the link sign between two

users ui and uj where si j = 1 (or si j = −1) if there is a positive (or
negative) link between ui and uj . Balance theory suggests that a

cycle is balanced if there are an even number of negative links, but

we typically only focus on triads (or 3-cycles) [22]. A triad of three

users (ui ,uj ,uk ) is balanced if si j = 1 and sjk = 1, then sik = 1; or

si j = −1 and sjk = −1, then sik = 1. Therefore, for a triad, there are

four possible sign combinations (+,+,+), (+,+,−), (+,−,−) and
(−,−,−), while only (+,+,+) and (+,−,−) are balanced. Note that
balance theory is only applicable to undirected signed network,

and thus we ignore the link directions when applying it to directed

signed networks following the discussions in [22]. We count each

of the four sign combinations and find that 92.0%, 91.5%, 94.5%

and 92.4% of triads in Bitcoin-Alpha, Bitcoin-OTC, Slashdot and

Epinions are balanced, respectively.

4.5 Discussions
We summarize the observations from the above preliminary data

analysis as – (1) properties of negative links could be different from

positive links, which makes signed social networks be distinct from

unsigned social networks; hence, though node relevance measure-

ments have been extensively studied, we still need dedicated efforts

to systematically investigate signed relevance measurements; and

(2) most of triads in signed social networks satisfy balance theory;

thus it can guide us to build advanced and novel signed relevance

measurements.

5 SIGNED RELEVANCE MEASUREMENTS
Node relevance measurements have been extensively studied in

unsigned networks. According to our preliminary data analysis

in the last section, the availability of negative links makes signed

networks unique in many aspects such as properties and balance

theory. In this section, analogous to unsigned networks, we develop

node relevance measurements for signed networks.

5.1 Definitions
Many node relevance measurements have been proposed for un-

signed networks. According to the information used, we can mostly

divide them to local and global measurements. Local measurements

only use local neighborhood information such as common neigh-

bors; while global measurements utilize the whole structural in-

formation such as the Katz relevance. Meanwhile, node relevance

measurements can be undirected and directed, corresponding to

undirected and directed networks. Note that we could use any

method that requires a directed network for an undirected network,

since undirected networks are simply directed networks where

each edge has both directions. In this work, we will group signed

relevance measurements as local and global methods.

With node relevancemeasurements for unsigned networks, there

are three strategies to design signed ones. The first is to only useA+

in the calculation of node relevance scores. This strategy completely

ignores the negative links and could result in over-estimation of

the impact of positive links [36]. The second strategy would be to

convert negative links in the signed network into positive links,

thus converting the signed network into an unsigned network. Such

a network can be represented by the matrix Ã where Ãi j = |Ai j |.

Ignoring signs of links not only overlooks the differences between

negative and positive links; but also eliminates the applicability of

balance theory to signed networks. Our third strategy is to take

advantage of negative links and balance theory to develop signed

relevance measurements based on unsigned methods. In the follow-

ing subsections, we will detail how to apply the third strategy to

representative unsigned node relevance measurements.

5.2 Local Methods
In this subsection, we build local signed relevance measurements

based on representative local methods for unsigned networks in-

cluding common neighbors and Jaccard Index [26, 29]. For each

unsigned measurement, we will first briefly introduce it, then detail

how to design the signed one and finally discuss its connection to

balance theory.

5.2.1 Common neighbors. UnsignedCommonneighbors (UCN):
If two nodes share a lot of common friends, they are likely to be

relevant to one another. Based on this intuition, UCN defines the

relevance score betweenui anduj as the number of common neigh-

bors, which is formally defined as:

Ri j = |Ni ∩ Nj |

where |x | denotes the size of the set x .
Signed Common neighbors (SCN): UCN cannot be directly

applied to include negative links. Therefore, we define SCN as

follows:

Ri j = ( |N+i ∩ N+j | + |N
−
i ∩ N−j |)

−( |N+i ∩ N−j | + |N
−
i ∩ N+j |)

We can interpret SCN as number of common neighbors ofui anduj
where they agree on the polarity of the sign (|N+i ∩N

+
j |+ |N

−
i ∩N

−
j |)

and then subtracting the number of neighbors that they disagree

on the sign (|N+i ∩ N−j | + |N
−
i ∩ N+j |).

Connection to Balance Theory: Ifui anduj agree with the majority

of the signs of their neighbors, i.e., ( |N+i ∩ N+j | + |N
−
i ∩ N−j |) >
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( |N+i ∩ N−j | + |N
−
i ∩ N+j |), then Ri j is positive which will lead to

more balanced triads. Otherwise, they have more disagreements on

the signs, i.e., ( |N+i ∩N
−
j |+ |N

−
i ∩N

+
j |) > ( |N+i ∩N

+
j |+ |N

−
i ∩N

−
j |),

then Ri j is negative, which will also result in more balanced triads.

Therefore, SCN aims to force more triads with ui and uj to be

balanced.

5.2.2 Jaccard Index. Unsigned Jaccard Index (UJI): UCN only

considers the number of common neighbors of ui and uj , but it
ignores the number of unique neighbors these two users have.

Therefore, UCN is likely to give users with large numbers of neigh-

bors high relevance scores. To mitigate such effect, UJI standardizes

the UCN scores by the number of unique neighbors the two users

have and defined as:

Ri j =
|Ni ∩ Nj |

|Ni ∪ Nj |

Signed Jaccard Index (SJI): Similar to how UJI is defined from

UCN, SJI is defined as SCN divided by the total number of unique

neighbors ui and uj have:

Ri j =
SCNi j

|N+i ∪ N−i ∪ N+j ∪ N−j |

Connection to Balance Theory: Similar to SCN, SJI targets to force

more triads to be balanced.

5.3 Global Methods
The global methods make use of not only the local neighborhoods,

but also allow for the propagation of relevance information to

pass through the whole network. Most of the global methods for

unsigned networks assume that two users ui and uj should have

high relevance if they have neighbors that have high relevance. In

this subsection, we detail how to design global signed relevance

measurements based on representative unsigned ones and then

connect them to balance theory.

5.3.1 Katz. Unsigned Katz (UK) : This method sums over the

collection of all paths from ui to uj and has an exponential decay

on the weight associated with the count of paths as the length

increases [18]:

Ri j =
∞∑
l=1

βl · |pathsli, j | =
∞∑
l=1

βl [Al
]i j (1)

where |pathsli, j | is the count of paths of length l fromui touj . Note

that we should have β < 1 so that longer paths will be assigned

less weight than shorter paths. This can be formulated recursively

to handle the counting of paths of varying length as follows:

Ri j =
β

di

N∑
k=1

AikRk j + δi j

Note that δi j is used to ensure that every node in the network

has a high relevance to themselves (i.e., “self-similarity”) and is

a diagonal term defined as δ = I. The relevance scores are also

normalized from each user ui based on their degree di .
Signed Katz (SK): Balance theory states that a k-cycle in a

signed social network is balanced if it contains an even number

of negative edges and unbalanced if it contains an odd number of

negative edges. With relevance scores from SK, we expect more

balanced k-cycles than unbalanced ones involving users ui and uj .
To achieve this, we would therefore need to choose the sign of the

node relevance Ri j to be either positive or negative, such that it

optimizes over all the cycles involving ui and uj (i.e., all the paths
between ui and uj ). We let Bl and Ul denote the matrices that hold

the number of paths with an even and odd number of negative

links in paths of length l , respectively. As done in UK, we also can

similarly allow the decay of importance on the longer paths. Our

formulation with its recurrence relation for the calculation of paths

of length l having an even or odd number of negative edges is the

following:

R =
γ∑
l=1

βl f (Bl ,Ul ) (2)

where

Bl = Bl−1A
+ + Ul−1A

−,

Ul = Bl−1A
− + Ul−1A

+,

B1 = A+, U1 = A−

and f (Bl ,Ul ) is a function to combine the counts of paths with

even and odd number of negative links. Next we will discuss the

inner working of SK. When counting paths of length 1 (i.e., a direct

edge connecting the two nodes), we set B1 to be A+ since having a

positive edge is trivially having an even number of negative links

in a path of length 1, and similarly reasoned for initializing U1 to

be A−. We assume that Bl−1 and Ul−1 represent the paths of length
l−1 having an even and odd number of negative edges, respectively,

between the path of nodes. Adding one positive link (A+) to a path

in Bl−1 or adding a negative link (A− ) to a path in Ul−1 will result
in a path of length l with an even number of negative links. This

then leads to the recursively definition of Bl = Bl−1A+ + Ul−1A−.
Similarly, we can obtain the definition of Ul = Bl−1A− + Ul−1A+.

Theorem 5.1. When we choose f (Bl ,Ul ) = (Bl − Ul ) and A ∈
RN×N , where Ai j = 1 if ui has a positive link to uj , −1 if ui creates
a negative link to uj , and 0 when ui has no link to uj , signed Katz in
Eq. 2 is equivalent to applying unsigned Katz in Eq. 1 on the signed
network adjacency matrix defined as A.

Proof. To prove the theorem, we only need to show that: Bl −
Ul = Al

. We use mathematical induction as follows:

Basis: Let l = 1, based on our definition of B1 and U1, we have

(B1 − U1) = (A+ − A−) = A1
.

Inductive Hypothesis: Suppose the theorem holds for l = k . In other

words, (Bk − Uk ) = Ak
.

Inductive Step: Let l = k + 1. Then our left side is (Bk+1 − Uk+1) =(
(BkA+ + UkA−) − (BkA− + UkA+)

)
= (Bk − Uk ) (A+ − A−) =

Ak (A) = Ak+1
, which completes the proof. □

Connection to Balance Theory: SK is built based on balance the-

ory. SCN and SJI are designed to force more balanced triads (or

3-cycles), while SK further pushes for more l-cycle to be balanced.

If the majority of paths between ui and uj (taking into account the

exponential decay based on path length) have an even number of
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negative links, according to balance theory, we should have a posi-

tive node relevance between them. Similarly, when having an odd

number of negative edges, we want to have a negative relevance.

Therefore, if we count the number of paths between ui and uj with
an even or odd number of negative edges, then we can subtract the

number with an odd number of negative links from the number of

paths having an even number of links, since this will give us the

optimal choice of sign betweenui anduj as mentioned above. More

specifically, if the resulting value is positive, the node relevance

between ui and uj is positive, otherwise negative.

5.3.2 Asymmetric Similarity Measure for Weighted Networks.
UnsignedAsymmetric SimilarityMeasure forWeightedNet-
works (UASCOS++): This method is an enrichment of the AS-

COS [7] (that itself is an improved variant of SimRank [16] to cor-

rectly include both even and odd length paths) to handle weighted

networks. The formulation of ASCOS is the following:

Ri j =



c
|N in

i |

∑
k ∈N in

i

Rk j i , j

1 i = j

Let Pi j =
Ai j
d ini

and we can rewrite the formulation as:

R = cP⊤R + (1 − c )I

It defines the node relevance as the summation of normalized

relevance from the incoming neighbors uk of ui to uj . The modi-

fications for ASCOS++ were performed to handle weights on the

edges and the formulation is shown below:

Ri j =



c
∑

k ∈N in
i

Aik∑
q∈Nin

i

Aiq
(1 − e−Aik )Rk j i , j

1 i = j

(3)

The adjustment is that they now normalize each of the edge

weights coming into i by the summation of all the incoming weights

into i . The term (1− e−Aik ) maps the weights to be close to 1 when

edge weights are large, and when the weights are small, it maps

them close to 0.

Signed ASCOS++ (SASCOS++): ASCOS++ has difficulties to

directly adapt to signed networks. Assume that a user ui has an
even number of incoming edges, where half the edges are positive,

while the other half are negative. Therefore, this would lead to an

undefined value as the summation over all incoming edges to ui∑
q∈N in

i
Aiq is zero.

Another issue with directly applying ASCOS++ (i.e., Eq. 3) is that

the resulting relevance scores could contradict with balance theory.

To ease our analysis in the following case, let κ =
∑
q∈N in

i
Aiq ,

λ = Aik
κ and µ = (1 − e−Aik ). If Aik = 1 and κ is negative, then

λ is negative and µ is positive. Thus, if Rk j is also positive, then

the product of these three terms (i.e., λ, µ,Rk j ) results in Ri j being
negative. Thus the resulting triad between users ui ,uk , and uj
would be (+, +, −) and does not follow balance theory. Similarity,

when Rk j is negative, the product is positive and the resulting triad
(+,−,+) is also not balanced.

Due to the fact using ASCOS++ with signed networks could

inherently disagree with balance theory, this motivates us to build

SASCOS++. We note that when using ASCOS++ with signed net-

works, µ is equal to approximately 0.63 and -1.72 when Aik is posi-

tive or negative, respectively. Thus, it is providing a stronger push

in the similarity (by roughly three times) when seeing a negative

link. Due to the imbalance of positive and negative links in signed

networks, we leave the µ term unchanged, but make a change to

the normalization (i.e., κ). The formulation for SASCOS++ is shown

below:

Ri j =



c
∑

k ∈N in
i

Aik∑
q∈Nin

i

|Aiq |
(1 − e−Aik )Rk j i , j

1 i = j

Connection to Balance Theory: It is easy to verify that SASCOS++

defines a signed relevance measurements aligning with balance

theory. In other words, it will push more balanced triads between

user relevance scores.

6 EXPERIMENTS
We can evaluate the quality of relevance measurements in two ways

– (1) explicitly applying them in signed network analysis tasks and

(2) implicitly using them to boost signed network analysis tasks. In

this work, we assess relevance measurements explicitly by applying

them in sign prediction and tie strength prediction. Note that since
the purpose of this paper is not to develop state-of-the-art sign predic-
tion and tie strength prediction algorithms; hence we do not compare
relevance measurements with existing sign prediction and tie strength
algorithms. However, to give context to the predictions, we include

a baseline to each task that predicts at random. As mentioned in

the last section, we can have three strategies to adapt unsigned

measurements for signed networks – (1) removing negative links;

(2) ignoring signs; and (3) building advanced signed versions based

on signed network properties and balance theory. In the following

subsections, given an unsigned measurement “X”, we use “X-R"

and “X-I" to denote the corresponding measurements applicable to

signed networks by removing negative links and ignoring signs,

respectively. For example, “UCN-R" and “UCN-I” denote the strate-

gies of adapting “UCN” to signed networks by removing negative

links and ignoring signs, separately. The first question we want

to answer is – which strategy leads to better measurements. We

have built numerous local and global measurements. The second

question is – how they perform in terms of different tasks.

For each of the parameterized measurements, we performed

cross validation for the parameter tuning for each of the tasks. Note

that we have filtered the Epinions and Slashdot datasets to being

15,108 and 16,070 users, 78,851 and 80,440 positive edges, 10,951

and 26,600 negative edges, respectively. Among measurements dis-

cussed in the last section, common neighbor (CN), Jaccard Index (JI),

and Katz (K) measurements are designed for undirected networks;

while ASCOS++ is for directed networks. As mentioned before di-

rected measurements can be naturally applied to undirected ones

by considering one undirected link as two directed links. Therefore,

we conduct experiments in the undirected setting.

6.1 Sign Prediction
For each dataset, we randomly choose 80% as training, and the

remaining as testing. We perform relevance measurements on the
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Table 4: Relevance performance in terms of sign prediction.
Measurements Bitcoin-Alpha Bitcoin-OTC Slashdot Epinions

UCN-R 0.500 0.523 0.520 0.520

UCN-I 0.501 0.497 0.508 0.508

SCN 0.671 0.716 0.549 0.629

UJI-R 0.499 0.524 0.513 0.522

UJI-I 0.497 0.489 0.503 0.512

SJI 0.669 0.725 0.550 0.630

UK-R 0.517 0.587 0.542 0.560

UK-I 0.488 0.482 0.498 0.538

SK 0.730 0.766 0.693 0.702

UASCOS++-R 0.530 0.603 0.554 0.573

UASCOS++-I 0.496 0.484 0.497 0.537

SASCOS++ 0.765 0.774 0.663 0.705

Table 5: Relevance performance in terms of tie strength pre-
diction.

Measurements Bitcoin-Alpha Bitcoin-OTC

UCN-R 0.286 0.324

UCN-I 0.291 0.332

SCN 0.277 0.308
UJI-R 0.286 0.324

UJI-I 0.291 0.332

SJI 0.277 0.308
UK-R 0.290 0.326

UK-I 0.295 0.333

SK 0.284 0.320

UASCOS++-R 0.292 0.328

UASCOS++-I 0.302 0.345

SASCOS++ 0.299 0.334

Random 0.648 0.664

training set to get the relevance scores for each pair of users. The

signed specific measurements can obtain a relevance score from

[−1, 1]; hence we directly use the sign of the relevance score to

indicate the sign of links. For “X-R" and “X-I", the relevance score

is in [0, 1]. From the training data, we search an optimal threshold,

and then if the relevance score is less than the threshold, we predict

a negative link and positive otherwise. Since positive and negative

links are usually imbalanced in real-world signed networks, we use

Area Under the receiver operating characteristics Curve (AUC) as

the metric to assess the performance of link sign prediction. We

note that the baseline of random guessing edge signs would result

in an AUC of 0.5.

The sign prediction comparison results are shown in Table 4. We

note that signed specific relevance measurements perform much

better than these that (1) remove negative links and (2) ignore signs.

These results suggest the importance of negative links in building

node relevance measurements for signed networks. Meanwhile,

global signed measurements consistently obtain better sign predic-

tion performance than local signed measurements. We note that

global methods consider long circles; while local methods only

consider triads. This observation is consistent with that in [9] –

long circles contain rich information in helping predict the signs of

links.

6.2 Tie Strength Prediction
We have only used the two Bitcoin datasets (Bitcoin-Alpha and

Bitcoin-OTC) for this task as they are the only two of the four

datasets that have a ground truth strength associated with each

edge in the network. Note that we have normalized the two datasets

to have their strength in the range [-1,1] to ensure easy mappings

from our presented relevance measurements to the tie strengths

associated with these datasets edges.

We directly use the relevance scores of signed specific measure-

ments as the predicted tie strength. While for “X-R” and “X-I", we

use the similar strategy as sign prediction for tie strength prediction

– we search an optimal threshold from the training data to map the

relevance scores to [-1,1]. We provide the entire binary network as

input and then attempt to predict the tie strength associated with

each edge of the network. Therefore, we use root-mean-square er-

ror (RMSE) as the metric to evaluate the performance of tie strength

prediction.

The tie strength prediction performance is demonstrated in Ta-

ble 5. The first observation is that the random tie strength prediction

of picking values uniformly in the range [-1,1] results in the worst

performance. Now, given the context of the random baseline per-

formance, we further discuss the results of the relevance measure-

ments. We note that most of the time, signed specific measurements

outperform these that (1) remove negative links or (2) ignore signs

for tie strength prediction. The overall best measurement in each

dataset was a signed specific measurement. This further supports

the importance of negative links in signed relevance measurements.

Meanwhile, local signed measurements obtain comparable or even

better performance than global signed measurements in tie strength

prediction. This observation is different from that of sign prediction.

To achieve better sign prediction performance, we only need to

predict the sign accurately. However, for tie strength prediction,

in addition to signs of links, we also need to predict the strength

of the relevance correctly. Thus, local information could be good

at predicting relevance strength. In fact, most existing tie strength

prediction algorithms for unsigned networks only use local infor-

mation [12, 42].

7 CONCLUSION
Relevance measurements have been extensively studied for un-

signed social networks. In recent years, signed network analysis

has attracted increasing attention. However, as a fundamental task,

relevance measurements are rather limited. In this paper, we offer

an initial and comprehensive study on signed relevance measure-

ments. We build multiple local and global measurements guided by

signed network properties and balance theory. We further study the

impact of signed relevance measurements on two signed network

analysis tasks, i.e., sign prediction and tie strength prediction. Ex-

perimental results demonstrate that dedicated efforts are necessary

to build signed relevance measurements with negative links. We

will further investigate the following directions. First, we would like

to study other social theories for signed networks and build novel

relevance measurements based on them. Second, we will study the

impact of signed relevance measurements on more signed network

analysis tasks.
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