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ABSTRACT
Accurate real-time predictions for traffic congestion in a re-
gion and knowledge of its causes may allow implementa-
tion of effective dynamic control strategies. However, the
complex nature of congestion propagation and network-wide
spatio-temporal correlations make prediction challenging. To
facilitate this process, we define a novel dynamic state vari-
able corresponding to a zone with homogeneous and slowly
evolving traffic, called Macroscopic Congestion Level (MCL).
We hypothesize that future MCL is a function of the cur-
rent and past network states for the region-wide network,
defined by Origin-Destination (O-D) demand, link counts,
link travel times and observed MCL values. We leverage the
fact that transportation systems often generate graph-like
data either because physical movement is constrained to a
road network or due to the coordination of travel choices
made by various individuals. We construct a knowledge
graph and implement a Graph-CNN + LSTM model to make
real-time predictions. The model accuracy is tested against
several baselines: (i) 1-NN model, (ii) LSTM-only model
and (iii) Graph-CNN + LSTM model with no road network
related priors; on simulated data of home-work and work-
home trips on a simplified freeway network representing nine
counties in the SF Bay Area. Our results indicate improve-
ment in performance which may be attributed to better fea-
ture learning by Graph-CNN. Finally, we develop a Neural
Attention based framework to produce a spatio-temporal
saliency heatmap of input variables. Tests on a toy network
with hypothetical demand demonstrate the effectiveness of
the proposed framework for identifying the specific cause of
congestion.

1. INTRODUCTION
Traffic congestion is defined as a negative externality caused
by an imbalance in traffic demand and capacity which ad-
versely impacts users, facilities, and network performance
[30]. Congestion patterns are generally periodic which proves
useful for prediction algorithms [27]. However, congestion
prediction remains challenging since traffic may deviate from
regular patterns due to several factors such as inclement
weather, accidents among several others [34] [13]. More-
over, in oversaturated networks, the evolution of traffic is
highly chaotic with several hidden relationships. For exam-
ple, route choice is not straight forward in such a scenario
because rational drivers try to anticipate congestion prop-

agation and change their behavior accordingly, which may
even lead to worse overall conditions, especially during peak
congestion hours [1]. Further, it has been shown that even
small fluctuations in traffic demand patterns may lead to
large fluctuations in the resulting congestion impacts [5].
This motivates development of models which memorize im-
portant recurring traffic characteristics, yet accommodate
the possibility of both structured and unstructured devia-
tions detected from recent data. Moreover, for deploying
real-world dynamic control strategies, it is also important
to make accurate congestion predictions over a large enough
time horizon as well as identify the causes of congestion [32].
A possible solution to address these challenges is outlined in
this paper.

1.1 Key Contributions
The key contributions of this paper may be summarized as:

• Effectively representing the congestion state in a zone
for the purpose of modeling through a dynamic vari-
able called Macroscopic Congestion Level (MCL).

• Predicting MCL for the near future with the help of
signals received from a larger network that includes lo-
cations where traffic originates or passes through be-
fore arriving at a destination.

• Improving prediction accuracy of the proposed model
by storing important priors about spatial correlations
as knowledge graphs and implementing a Graph CNN
+ LSTM model.

• Potentially identifying the causes of congestion by for-
mulating a Neural Attention based framework and demon-
strating the capabilities of this framework through sim-
ple experiments conducted on hypothetical scenarios.

2. BACKGROUND
There exist two popular approaches for congestion predic-
tion - (i) modeling queue propagation induced by an active
bottleneck (LWR model) [21] or (ii) modeling the equilibrium
conditions induced by desired activity demands of individu-
als (ABM) [2]. In either case, there are challenges towards
getting a meaningful representation of network level conges-
tion patterns. For LWR models, the main challenges lie in
modeling boundary conditions during merging and diverg-
ing and accounting for heterogeneity in behavior of differ-
ent agents in the network [23]. For ABMs, the key chal-
lenge is the requirement of extensive individual level data to



Figure 1: Macroscopic Fundamental Diagram
(MFD)/Network Exit Function (NEF): It represents
the relationship between trip completion rate and accu-
mulation in a well-defined zone with steady state traffic.
Macroscopic Congestion Level (MCL), ξ(t), is defined as
the inverse of the slope of the point on the curve at time t.

substantially replicate population behavior. Usually, ABMs
aim to replicate traffic on typical days and are not sensi-
tive enough to deviations from recurrent conditions [37]. In
an attempt to alleviate the challenges posed by microscopic
analysis, [7] proposed a Macroscopic Fundamental Diagram
(MFD) which derives a relationship between aggregate traf-
fic characteristics in a well-defined zone with homogeneous
traffic conditions. It was further shown that these relation-
ships exist in real-world networks [12]. The key variables of
interest are accumulation, defined as the number of travel-
ling vehicles in a region, and trip completion rate, defined as
the frequency of completion of trips in a region (Figure 1).
The trip completion rate increases with an increase in traffic
demand as long as the accumulation is low and individuals
don’t face any delays. However, high accumulation leads to
congestion delays which in turn leads to reduction in trip
completion rate. An optimal control strategy should aim to
maintain near maximum possible trip completion rate for
long time periods and avoid periods of very high accumula-
tion, which may lead to gridlocks [7].

Congestion in a region may be predicted with the help of in-
puts such as Origin-Destination (O-D) demands, which en-
code critical high-level information like peak hour times, and
link counts/travel times, which encode critical low-level rela-
tionships like those between immediate geographical neigh-
borhoods in a traffic network. The congestion state in neigh-
boring regions may also help detect phenomenon such as
queue spillover [6]. In order to develop highly accurate
models which are both spatially and temporally deep, CNN-
LSTM frameworks, such as [28], have been suggested. A
common theme in CNN-LSTM frameworks for traffic pre-
diction is the use of images as the input data format. Un-
fortunately, several trivial pieces of prior information need
to be learned before the model can make predictions. This
may include information such as traffic movement being con-
strained on a physical road network or the fact that there is
a lagged dependence between traffic demand and resulting
congestion based on the travel time along a suitable net-
work path. A possible and relatively simple solution to en-
code such information is to represent the input data in a
structured format with the help of graphs. This ensures

that relative distances between nodes are calculated along
the existing physical network rather than the conventional
Euclidean distances.

The goal now is to extract features from this graphical input
since convolution and pooling operations for CNNs are only
defined on regular grids. Two possible approaches have been
proposed to extend CNNs to graphs. The first approach is
defining neural network architectures in the spatial domain
to learn from graphical data [9] [10] [19]. These architectures
are optimized for specialized tasks and are thus easy to train.
However, the operations do not involve convolutions or pool-
ing operations which are easily generalizable. The second
approach, which is also followed in this paper, is derived
from the Spectral Graph Theory [3] [8] [17]. As proposed by
[8], we consider a graph G = (V, E ,W ), where V is the set
of nodes (|V| = n), E is the set of edges and W ∈ Rn×n
is the weighted adjacency matrix encoding the connection
weight between any two vertices. The graph Laplacian may
be diagonalized using the Fourier basis U as L = UΛUT

where Λ = diag(λ0, ..., λn−1). Now, any input signal x may
be filtered by a graph g(θ) to produce the following output:

y = gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)UTx (1)

where, UTx is the Graph Fourier Transform.

Since operations in the Fourier basis are costly (O(n2) for
translation), [8] proposes a Chebychev polynomial approx-
imation for the function gθ(Λ). Pooling operations may be
performed based on agglomerative clustering by defining a
suitable neighborhood [3]. This allows coarsening of the
graph in the same vein as CNNs reduce the input data di-
mensionality. Such an architecture has recently been used
for traffic prediction by [20]. They propose a graphical struc-
ture assuming that traffic flow is a diffusion process where
transitions may occur due to random walks and see 12-15%
improvement over ARIMA baselines. In this research, prior
knowledge about route choice is used to define the graphical
structure which proves even more useful for modeling real-
world dynamics.

In traffic prediction literature, deep neural networks have of-
ten been criticized for being non-interpretable ”black-boxes”,
and thus unsuitable for real-world policy deployments [31]
[22]. In order to better understand a trained model which
may also help us identify the specific cause of congestion
at a given space and time, we propose a Neural Attention
based framework [29] [35]. A simple scheme described by [24]
for the purpose of deriving spatio-temporal saliency during
video captioning may be applied. The loss in information at
time t due to constrained input set corresponding to all fea-
tures except feature f is a proxy for the relative importance
of the given feature:

Lossf,t = DKL(p(Y (t)), q(Y (t))) (2)

where: Lossf,t is the information loss corresponding to fea-
ture f at time t
DKL is the KL-divergence between the two probability dis-
tributions
p & q are the probability distributions for producing classi-
fication output Y (t) from a trained model using all features
and all features except feature f respectively



In case the problem is a regression problem rather than a
classification problem, the KL-divergence loss function can
be replaced by an L2 loss based function.

The representation of congestion using aggregate character-
istics, the ability to incorporate graphical priors while mak-
ing predictions as well as the extension of Neural Atten-
tion based frameworks to interpret trained models makes
network level congestion prediction for dynamic controls an
achievable task.

3. MACROSCOPIC CONGESTION REPRE-
SENTATION AND PREDICTION

3.1 Mathematical Formulation Of Macroscopic
Congestion Level (MCL)

We first leverage the MFD to define a scoring function,
which is well suited for the purpose of modeling congestion
in a region of interest. Given a graph G = (V,A) repre-
senting the road network where A represents directed road
links approximated by straight line segments and V repre-
sents end points of road links, the area covered by the road
network is partitioned into Z zones/sub-regions in such a
way that traffic in each zone is homogeneous with steady
state conditions existing at any given time [16]. We assume
that each link is completely contained within a zone. Zone z
contains subset of links Az. Defining ni(t) as the number of
vehicles travelling on link i at time t (excluding parked vehi-
cles). Let Ai(t) and Li(t) represent the cumulative number
of vehicles who have arrived and left link i respectively by
time t. Therefore, we have ni(t) = Ai(t) − Li(t). Now, the
aggregate accumulation, nz(t), in zone z can be derived as
a function of ni(t):

nz(t) =
∑
i∈Az

ni(t) (3)

The total trip completion rate, T z(t), is defined as:

T z(t) =
∑
i∈Az

∂Li(t)

∂t
(4)

From [7], we know that the performance in terms of macro-
scopic congestion in zone z at time t may be measured as
a function of nz(t) and T z(t) only. We define Macroscopic
Congestion Level (MCL) in zone z, ξz(t), as:

ξz(t) =

{
0, T z(t) < τz& nz(t) < αz

nz(t)/T z(t), otherwise
(5)

where, τz is a threshold trip completion rate and αz is a
threshold accumulation below which analysis of macroscopic
congestion in the region is deemed uninteresting.

The value of ξz(t) is unstable when T z(t) and nz(t) both
have low values. These are situations where traffic demand
is very low and hence trip completion rate observed is also
low. We are typically not interested in modeling these sce-
narios very accurately. We may apply further smoothening
to the value of ξz(t) in order to avoid noise at low MCL
values.

Though exact measurements of ξz(t) would require arrival
and departure counts on all links in z, the assumption of

homogeneous loading in each partitioned zone means that
estimates can be made by sampling counts from a partition
of z’s links. This makes it possible to track MCL values even
when data from all links in a region is unavailable.

3.2 Network State Definition
Network state, X(t), at time t is defined as a vector of
Origin-Destination (O-D) demands, D(t), link counts, C(t),
and link travel times, TT (t). For the purpose of model-
ing macroscopic congestion in zone z, we may restrict the
O-D demand input to only those which have the destina-
tion zone z, since those demands are hypothesized to have
much higher correlation with the congestion generated in
zone z. This reduces the number of input O-D demand
variables from O(|Z|2) to O(|Z|). Similar heuristics may be
employed in order to reduce the dimensionality of vectors
C(t) and TT (t) also (for example, filtering out links which
are at a network distance greater than some threshold δ).
A possible data driven approach for dimensionality reduc-
tion after graph transformation of network state input may
be through graph sampling [4]. Therefore, we may define
Xz(t) as the input network state for the purpose of predict-
ing macroscopic congestion in zone z as1:

Xz(t) =


D.,z(t)
Cz(t)
TT z(t)
ξ(t)

 (6)

where:
D.,z(t) is the subset of O-D demands with destination zone
z
Cz(t) is a subset of link counts for predicting MCL in zone
z
TT z(t) is a subset of link travel times for predicting MCL
in zone z
ξ(t) is the vector of observed MCL values in all zones at
time t.

3.3 Graph Transformation
From the road network graph G = (V,A) and the defined

zones Z, we construct a weighted undirected graph G̃ =
(Ṽ, Ẽ ,W ). Two possible procedures are discussed for gener-

ation of G̃:

1. Shortest Path Based Weight
The idea here is to assign weights based on the shortest
path between zones along the road network graph.

• Each ṽ ∈ Ṽ represents the centroid of zone z ∈ Z

• The weight between nodes ṽα, ṽβ ∈ Ṽ represent-
ing zones zα, zβ ∈ Z is determined as the shortest
directed path length between nodes calculated on
the road network graph G using the links A

Wα,β = DSP,G(vα, vβ) (7)

where, DSP,G is the shortest path calculated on
graph G.

1Input state variables, especially O-D demand, may not al-
ways be accurate or completely observed. Sensitivity analy-
sis when input is noisy/incomplete/correlated is performed
in Appendix A



• An input signal x from observed network state
may be transformed into an input signal x̃ for G̃
as follows:

– The O-D demandDzα,zβ is distributed equally
as part of input signals for corresponding nodes
vα and vβ .

– Each link count Ci on link i is distributed
based on prior probabilities of origin/destination
zones of all trips observed on link i.

– Each link travel time TTi on link i is dis-
tributed based on prior probabilities of ori-
gin/destination zones of all trips observed on
link i.

Therefore the transformed input signal for node
vα for predicting macroscopic congestion in zone
z may be calculated as:

x̃zα(t) =

 Dzα,z(t)/2∑
i p(α|i)Ci(t)/2∑
i p(α|i)TTi(t)/2

 (8)

where, p(α|i) is the prior probability of an agent
observed on link i having O-D pair as either (z, zα)
or (zα, z).

2. Trajectory Clustering Based Weight
The idea here is to determine ”distances” between O-D
pairs based on the similarities in route choices distri-
bution corresponding to O-Ds.

• Each ṽ ∈ Ṽ represents pair of zones (zα, zβ) ∈ Z.

• The weight is determined as the K-L divergence
between the distribution of trips corresponding
to two O-D pairs over clusters of trajectories. We
follow the following steps:

(a) Trajectory clustering
The goal here is to cluster trajectories of vari-
ous trips executed based on similarities in the
routes chosen. We may implement any tra-
jectory clustering algorithm from existing lit-
erature such as partition and group approach,
a mixture of regression models or Dynamic
Time Warping (DTW) [18] [11] [26].

(b) O-D probability distribution over clusters
For each O-D pair (zα, zβ), we determine a
probability distribution ∆zα,zβ over derived
clusters as the proportion of trips with ori-
gin zα and destination zβ belonging to each
cluster.

(c) Weight as a function of relative entropy
Suppose nodes va, vb represent the pairs of
zones (zα, zβ) and (zγ , zδ) respectively. Then,

the weight between nodes va, vb ∈ Ṽ is calcu-
lated as:

Wab = DKL(∆zα,zβ ,∆zγ ,zδ ) (9)

where, DKL represents the K-L divergence
between two distributions.

• An input signal x from observed network state
may be transformed into an input signal x̃ for G̃
as follows:

– The O-D demand Dzα,zβ is assigned to node
va which represents O-D pair (zα, zβ)

– Each link count Ci on link i is distributed
based on prior probabilities of origin and des-
tination zones of all trips observed on link i.

– Each link travel time TTi on link i is dis-
tributed based on prior probabilities of origin
and destination zones of all trips observed on
link i.

Therefore the transformed input signal for node
va for predicting macroscopic congestion in zone
z may be calculated as:

x̃za(t) =

 Dzα,z(t)∑
i p(α, β|i)Ci(t)∑
i p(α, β|i)TTi(t)

 (10)

where, p(α, β|i) is the prior probability of an agent
observed on link i having O-D pair as (zα, z).

3.4 Model Formulation
The goal of the model is to predict future MCL values in
zone z as a function of current and past input signals x̃z

from observed network state on a particular instance of the
transformed graph g̃θ. We define the following model for
prediction:

[ξ̂z(t+ h+ p), .., ξ̂z(t+ h)] = f(g̃θ(L)x̃z(t), .., g̃θ(L)x̃z(t− p))
(11)

where:
ξ̂z(t) is the predicted MCL in zone z at time t
f is a function approximator (eg. Graph CNN-LSTM model)
h is the minimum dependency lag between MCL in a target
zone z and input state (a function of travel times from the
corresponding locations to zone z)
p is the maximum dependency persistence of input state on
MCL in zone z (a function of the demand pattern and the
output capacity of zone z).

3.5 Neural Attention Model
For the purpose of modeling attentions, we consider the se-
quence of prediction produced by the trained model in equa-
tion (11) as the ground truth prediction:

ξ̂z = [ξ̂z(t+ h+ p), ..., ξ̂z(t+ h)] (12)

Now, the attention weights are derived as described by [24].
When the input feature set is constrained, the unobserved
feature values are estimated through prior distributions based
on previously observed data. Next, the prediction vector is
re-evaluated based on this new feature instance. Let this
vector be ξ̃z. The loss due to a constrained input feature
set is calculated as the deviation (in L2 norm) between ξ̃z

and ξ̂z. The detailed procedure is described as follows.

Let the hidden state value calculated at time t when all in-
put feature information is available be hidt. Now, when the
input set is constrained such that only information about
feature f is available at lag l, we recalculate the hidden state
value at lag l by replacing the values corresponding to all
features f ′ 6= f by their corresponding prior estimates. As
a result, all hidden state values for lags 1 to (l− 1) also get
affected. We represent these modified hidden state values at

time t as h̃idt. Now, in case no information for any feature



Figure 2: (a) Simplified freeway network and (b) Full scale network - representing 9 counties of SF Bay Area. Each region is
partitioned into zones. Target zones for MCL prediction are highlighted in yellow.

is available at lag l, we recalculate the hidden state value by
replacing the values corresponding to all features by their
corresponding prior estimates. Once again, all hidden state
values for lags 1 to (l − 1) also get affected. We represent

these modified hidden state values at time t as ĥidt.

The loss value corresponding to feature f at lag l, Lossf,l,
can be calculated as follows:

ξ̂z1,f,l =

l−1∑
i=1

{WLSTMi ∗ ĥidt−h−i +BLSTMi}+

p∑
i=l

{WLSTMi ∗ hidt−h−i +BLSTMi}

ξ̂z2,f,l =

l∑
i=1

{WLSTMi ∗ h̃idt−h−i +BLSTMi}+

p∑
i=l+1

{WLSTMi ∗ hidt−h−i +BLSTMi}

Loss1,f,l = ||ξ̂z − ξ̂z1,f,l||2
Loss2,f,l = ||ξ̂z − ξ̂z2,f,l||2
Lossf,l = Loss1,f,l − Loss2,f,l (13)

where, WLSTMi and BLSTMi are weights and biases of the
LSTM model at lag i.

Finally, the spatio-temporal attention is calculated as the
proportion of total loss contributed to by feature f at lag l:

attf,l =


Lossf,l∑

k∈F
∑p
i=1 Lossk,i

,
∑
k∈F

∑p
i=1 Lossk,i 6= 0

1
p∗N ,

∑
k∈F

∑p
i=1 Lossk,i = 0

(14)

where:
F is the set of all input features
N is the dimensionality of the input feature set.

4. EXPERIMENTAL RESULTS

4.1 Model Prediction Accuracy
The prediction accuracy for the proposed model (see equa-
tion (11)) was tested on two networks described in Figure 2.
The first network (Figure 2(a)) comprises of 39 nodes and
54 links representing a simplified freeway network for nine
counties of San Francisco Bay Area. The entire region is
categorized into 54 zones such that a zone’s entire street net-
work is represented by a single link. This is done for the pur-
pose of convenience. The second network is a detailed road
network representing the nine counties of San Francisco Bay
Area, consisting of 352,012 nodes and 564,368 links. Here,
the area is partitioned into 1454 zones as per Metropolitan
Transportation Commission’s (MTC’s) Travel Model One2.
Only trips confined within the partitioned zones were con-
sidered for these experiments.

The congestion patterns were generated using an agent-based
activity demand model through a well-known open-source
traffic simulation software MATSim [15]. The process in-
volves first deriving typical desired activity chains (in this
case, home → work → work chains) of individuals in the
population and then determining equilibrium by maximiz-
ing individual utilities to come up with a set of possible
executed trajectories. Individuals gain utility by perform-
ing an activity at desired times and lose utility due to in-
creased travel times. Spatio-temporal distribution of home
and work locations and typical desired home/work activity
times were estimated demand using Census Transportation
Planning Products (CTPP) data for years 2006-2010 3. To
ensure variability in demand across days, the start time and
duration for both home-work trips and work-home trips were
sampled from Gaussian probability distributions. Based on
the mean and standard deviation of the probability distri-
bution from which these parameters are sampled, four sce-
narios were generated as described in Table 1. Simulations

2
https://github.com/BayAreaMetro/modeling-website/wiki/

TravelModel, https://mtc.maps.arcgis.com/home/item.html?id=
b85ba4d43f9843128d3542260d9a2f1f
3
http://ctpp.transportation.org/Pages/5-Year-Data.aspx

https://github.com/BayAreaMetro/modeling-website/wiki/TravelModel
https://github.com/BayAreaMetro/modeling-website/wiki/TravelModel
https://mtc.maps.arcgis.com/home/item.html?id=b85ba4d43f9843128d3542260d9a2f1f
https://mtc.maps.arcgis.com/home/item.html?id=b85ba4d43f9843128d3542260d9a2f1f
http://ctpp.transportation.org/Pages/5-Year-Data.aspx


Table 1: Table describing parameter set for Gaussian distri-
butions which determine the start time and duration of h-w
and w-h trips generated for testing proposed Graph CNN +
LSTM model

Scenario µst h-w µst w-h σst µd σd
1 8.5 17.5 1 1 0
2 8.5 17.5 2 1 0
3 8.5 17.5 1 1 1
4 8.5 17.5 2 1 1

µst, µd: Mean start time and duration
σst, σd: Stdev of start time and duration
h-w, w-h: Home-work and work-home trip

were performed for 1000 days and based on the simulation
results, the actual executed trajectories for each individual
were derived. These trajectories were then utilized to derive
accumulation and trip completion rates in the zones of in-
terest as well as input feature values (i.e. O-D demand, link
counts and link travel times). Therefore, the MCL values
in the target zones can now be predicted with the help of
derived input data.

As described in section 3.3, two implementations of the
Graph CNN + LSTM model were tested. For the short-
est path based weight model, the centroid of each zone in
Figure 2 represented the node ṽ. Shortest paths were cal-
culated between each pair of centroids using Djikstra’s al-
gorithm. In case the centroid did not lie on an existing
link, straight line paths (in Euclidean space) were assumed
from the centroid to its nearest link. As a result, we de-
rived a complete graph, G̃. For the freeway network (Figure
2(a)), shortest paths were calculated between each pair of
centroids. For the detailed network (Figure 2(b)), only the
k (= 2) nearest neighbors were connected by shortest paths
in order to conserve memory. For the trajectory clustering
based weight model, a sample of 565,000 trips were ana-
lyzed. Pairwise distances were calculated between the trips
using DTW distance. Then, clustering was performed us-
ing standard K-Means clustering with k = 100 clusters. The
number of clusters was motivated from a finding by [33] that
most real-world trips get clustered around a few routes. The
discrete O-D probability distribution of trips over these clus-
ters was determined with probability mass at cluster κ equal
to the ratio of trips contained in cluster κ and the total num-
ber of trips corresponding to the particular O-D. Finally, the
O-D adjacency matrix was calculated as the KL-divergence
between any two O-D probability distributions. Once again,
to limit memory consumption, only the “important” O-Ds
were included for graph creation. Thresholds of 50 trips per
O-D for the freeway network and 10 trips per O-D for the
detailed network were chosen. As a result, for the freeway
network, we filter out 2265 out of the possible 2916 O-D
pairs leaving 651 O-D pairs. For the detailed network, we
filter out 2,111,943 out of the possible 2,114,116 O-D pairs
leaving 2173 O-D pairs. We further consider the hypothesis
that, for real-world traffic data, a sparse representation of
the O-D adjacency matrix should encode most of the use-
ful information since most trips get clustered around a few
routes. Consequently, we derive a k-NN graph with k = 5
for the freeway network and k = 2 for the detailed network.

The proposed Graph CNN + LSTM model was implemented
to predict congestion in the highlighted zones (Zone 1, Zone
2 in Figure 2(a) and Zone 3 in Figure Figure 2(b)). The
performance of the proposed framework is tested against
four baseline models:

i 1-NN model :
The MCL in zone z at time t is predicted as the observed
MCL in the same zone at time (t − ∆) where, ∆ =
1440 mins (i.e. observed MCL value at the same time
on the previous day).

ξz(t+ ∆) = ξz(t) (15)

ii LSTM-only model :
The MCL in zone z at time t is predicted through an
LSTM model directly applied on the input network state
signals at times ((t− h), (t− h− 1), ..., (t− h− p)). The
values of h and p were determined by cross-validation.
It is defined by the following equation:

[ξz(t+ h+ p), ..., ξz(t+ h)] = f(xz(t), ..., xz(t− p))
(16)

iii k-NN Euclidean Weight Graph + LSTM model :
We derive the graph G̃ = (Ṽ, Ẽ ,W ) described in section
3.3 by assuming no knowledge of the road network. We
hypothesize that features that are in the neighborhood of
each other have similar observed values. Therefore, the
nodes ṽ represent the feature set F and the weights W
are determined as the mean Euclidean distance between
the observed values along two feature dimensions.

Wi,j =
∑
t

(Xi(t)−Xj(t))2

where, Xi and Xj represent the observed network state
value for dimensions i and j respectively.
Further, to make the graph sparse, we construct edges
only along the k nearest neighbors to each node ṽ as per
the adjacency matrix (k = 5). Here, it is essential to first
normalize the observed values along each dimension.

iv Holt-Winters model [14]:
A purely statistical exponential smoothening approach
for time series prediction using past values with daily
seasonality incorporated into the model.

The performance of each model for prediction of macroscopic
congestion in zone 1, zone 2 (Figure 2(a)) and zone 3 (Figure
2(b)) for the scenarios mentioned in Table 1 are displayed
in Table 2 4.

We observe that the prediction accuracy for the Graph CNN
+ LSTM models is better than the LSTM-only model which
in turn provides better prediction accuracy than the naive
models (i.e. 1-NN and Holt-Winters). The is possibly be-
cause naive models don’t learn any features from the net-
work state input which might be useful for making predic-
tions. Among the naive models, 1-NN performs better when
the amount of variation across days is low and Holt-Winters
performs better when the variation is high. The difference in
performance between deep learning models and naive models

4
An open source implementation of the algorithm on the sam-

ple scenarios is made available at https://github.com/sudatta0993/
Dynamic-Congestion-Prediction.

https://github.com/sudatta0993/Dynamic-Congestion-Prediction
https://github.com/sudatta0993/Dynamic-Congestion-Prediction


Table 2: Table describing the relative performance of 1-NN, LSTM-only, Graph CNN + LSTM (k-NN Euclidean Weights),
Graph CNN + LSTM (Shortest Path Weights) and Graph CNN + LSTM (k-NN Trajectory Clustering Weights) for the
prediction of ξz(t) in target zones highlighted in Figure 2(b) and demand scenarios described in Table 1

Sc. Target Zone 1-NN Holt Winters LSTM GCNN+LSTM
(k-NN Eu)

GCNN+LSTM
(SP)

GCNN+LSTM
(k-NN TC)

1 1 0.503 1.104 0.356 0.222 0.194 0.187
1 2 1.300 3.014 0.801 0.637 0.601 0.596
1 3 0.932 0.988 0.752 0.671 0.551 0.530
2 1 1.077 1.121 0.875 0.715 0.462 0.358
2 2 1.831 3.011 1.107 0.998 0.612 0.558
2 3 1.202 1.070 1.050 0.965 0.738 0.537
3 1 1.010 1.510 0.871 0.660 0.205 0.102
3 2 2.256 2.015 1.228 1.070 0.789 0.435
3 3 1.866 1.803 1.657 1.474 1.401 1.386
4 1 0.924 1.082 0.609 0.605 0.377 0.194
4 2 3.155 2.700 2.124 2.024 1.694 0.858
4 3 1.144 0.554 0.467 0.433 0.343 0.313

Sc.: Scenario index
GCNN+LSTM (k-NN Eu): Graph CNN + LSTM model with k-NN graph and Euclidean distance based weights
GCNN+LSTM (SP): Graph CNN + LSTM model with complete graph and shortest path based weights
GCNN+LSTM (k-NN TC): Graph CNN + LSTM model with k-NN graph and trajectory clustering based weights

generally grows with higher uncertainty in the demand start
times and travel duration (Except in the case of Scenario 4
for predicting congestion in Zone 3, where the Holt-Winters
model performs well). We may attribute the gain in perfor-
mance for the LSTM model over the naive models to better
learning of the temporal difference as a result of various in-
put signals observed at any time. We may attribute the
gain in performance for Graph-CNN+LSTM models over
the LSTM-only model to better feature learning by exploit-
ing the graphical nature of the input data.

We then compare the relative performance of different graph
adjacency structures for the Graph-CNN + LSTM mod-
els. We observe that the trajectory clustering based weights
slightly outperform the shortest path based weights which
in turn outperform the Euclidean distance based weights.
We expect better performance when the information about
the structure of the underlying road network is encoded into
the generated graph. Therefore the higher prediction accu-
racy for the shortest path weights and trajectory cluster-
ing weights over Euclidean weights is intuitive. The perfor-
mance gain for the trajectory clustering weights over the
shortest path weights may simply be attributed to more
road network information (i.e. executed routes of agents)
being encoded into the generated graph. It must however be
noted that the convergence time for the trajectory cluster-
ing based weighted graph was found to be around 2-3 times
higher on average than the shortest path based weighted
graph. This is because the number of nodes, |Ṽ|, is O(|Z|2)
for the trajectory clustering based weighted graph while the
corresponding value is O(|Z|) for the shortest path based

weighted graph, although the number of links, |Ẽ |, was en-
sured to be roughly the same.

4.2 Neural Attention Model Performance
Toy Network
We design a simple experiment for testing the Neural At-

Figure 3: A test network to analyze the Neural Atten-
tion Model framework to derive a spatio-temporal saliency
heatmap of input variables

Figure 4: Plot showing demand from the three zones Da,c(t)
(yellow), Db,c(t) (green) and Dd,c(t) (red) over time plotted
on the primary y-axis. On the secondary y-axis, the macro-
scopic congestion level, ξc(t), (blue) is plotted.



Figure 5: Spatio-temporal attention heatmap for prediction
during - (a) 6-8 AM, (b) 2-4 PM and (c) 8-10 PM; Variable
definitions: Index 0 = Zone a demand, Index 1 = Zone b
demand, Index 2 = Zone d demand, Index 3 = First differ-
ence of zone a demand, Index 4 = First difference of zone b
demand, Index 5 = First difference of zone d demand

tention based frameworks (Section 3.5). We define a toy
network (Figure 3) which contains four zones (a, b, c and
d). All traffic moves from zones a, b and d to zone c. We
assume existence of triangular Microscopic Fundamental di-
agram [21] and queue propagation using the LWR model
[25]. The demand patterns from each input zone and the
resulting congestion pattern from LWR model are displayed
in Figure 4. Due to symmetry, both shortest path graph and
trajectory clustering graph have the form W = C∗(11T−I),
where C is a constant. Therefore, there is no additional in-
formation obtained from the structure of the graph. As a
result, Graph CNN + LSTM and LSTM-only models pro-
duce similar results.

We make predictions at three time intervals - 6-8 AM, 2-4
PM and 8-10 PM. Intuitively, from Figure 4, we notice that
zone a demand is critical for making predictions between
6-8 AM, zone b demand is critical for making predictions
between 2-4 PM and zone d demand is critical for making
predictions between 8-10 PM. Therefore, we would expect
the Neural Attention framework to identify zone a demand,
zone b demand and zone d demand as most critical for pre-
dicting congestion score at 6-8 AM, 2-4 PM and 8-10 PM
respectively.

The Neural Attention output is displayed in Figure 5. For
predictions made at 6-8 AM, the only input variables which
impact the congestion values are variable indices 0 and 3
(i.e. zone a demand and its first difference values respec-
tively). This observation follows our intuition from Figure
4. For variable index 0, the relative importance for higher
lag values is higher whereas for variable index 3, the rela-
tive importance for higher lag values is lower. This occurs
since the congestion curve is concave in nature (Figure 4).
The analysis for predictions at 6-8 AM can be extended to
predictions at 2-4 PM and 8-10 PM with zone b and zone
d acting as the dominant input zones respectively. This il-
lustrates that the Neural Attention framework is capable of
extracting spatio-temporal saliency of inputs.

Table 3: Top four O-D demand attentions and the corre-
sponding percentage change in MCL value if the O-D is ab-
sent, while predicting MCL in Zone 2 between 10AM-12PM.

attO−D Relative Weight MCL % change if O-D absent
58.7 % 37.3 %
9.1 % 13.4 %
6.1 % 5.8 %
4.2 % 2.5 %

Simplified Freeway Network
Next, we would like to test the Neural Attention based
framework (see equation (14)) for predicting congestion in
Zone 2 in the freeway network described in Figure 2(a) and
demand scenario 1 described in Table 1. We are restricting
our analysis to only evaluate relative importance of all O-D
demands between 10AM-12PM with the destination zone as
Zone 2. While the ground truth contribution of each O-D
demand towards MCL is hard to evaluate, a proxy for the
same is the percentage change in MCL in case that par-
ticular O-D demand is absent. We expect O-D demands
from zones with high relative importance to impact MCL
the most.

Table 3 displays the top four contributing O-D demands (out
of the possible 54) towards MCL prediction as per the Neu-
ral Attention framework. The percentage change in MCL
in case of absence is also highest for these four O-Ds. We
can note that these O-D demands contribute 78.1% of the
total Neural Attention weights. The predicted order of im-
portance for these O-D demands is in accordance with the
order of percentage change in MCL values if the O-D de-
mand is absent. The zone which contributes the maximum
weight is Zone 2 itself. This is due to several short trips
within the zone during this time. One possible reason is
the presence of several tech companies in the region and
the preference of employees to live close to the work place5.
While the initial results for the attention framework look
promising, the authors acknowledge that their application
towards a dynamic control strategy would provide an even
more convincing argument for using them in practice.

5. CONCLUSION
Through this paper, we address the key challenge of mod-
eling congestion in a region as a dynamic state variable
and predicting future states in order to aid dynamic con-
trol strategies. An MFD based representation of congestion
state is shown to be the most convenient for this purpose.
Recent advances in the field of deep learning further allow us
to incorporate priors represented in the form of graphs for
making prediction which is shown to lead to significant ac-
curacy improvements. Finally, a framework for identifying
the relative spatio-temporal impact of various inputs is dis-
cussed which is shown to be useful for identifying the cause
of congestion at any given location and time. It remains
to be shown that these predictions and relative impacts can
be successfully incorporated into a dynamic control strategy
for reducing congestion impacts.

5see http://www.vitalsigns.mtc.ca.gov/

http://www.vitalsigns.mtc.ca.gov/


6. FUTURE WORK
• The techniques for predicting congestion in a single

target zone can be easily generalized to predicting con-
gestion across multiple zones and thus extracting network-
wide congestion predictions.

• The MCL states over time and corresponding con-
trols/actions to manage congestion can be represented
with the help of Markov Decision Process (MDP) which
would allow model-based Reinforcement Learning (RL)
techniques to derive optimal dynamic control policies.

• Graph sampling techniques such as those described in
[4] may allow memory efficient utilization of graphical
priors.
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APPENDIX
A. SENSITIVITY ANALYSIS
Among components of vector X(t) (see equation (6)), O-
D demands, D(t), are not directly observable in real-time.
Several data-driven techniques have been proposed to esti-
mate O-D demand in recent times [33] [36]. However, there
is a possibility of errors or missing data at certain times.
Another possibility is that of high correlation in O-D de-
mands across multiple days which favors naive models such
as the 1-NN model. We analyze the sensitivity of prediction
accuracy in these situations.

A.1 Effect Of Correlation In O-D Demand
Figure 4 describes the variation of O-D demand within a
day for the toy scenario. The triangular demand pattern is
characterized by two parameters - (i) start time of demand
and (ii) slope of demand. From past models for O-D demand
estimation assuming auto-regressive structures such as [38],
we define a simple AR-1 process governing parameter values:

stt+1,z = ρst,z ∗ stt,z + (1− ρst,z) ∗ µst,z + εst,z, εst,z ∼ N (0, σst,z)

slt+1,z = ρsl,z ∗ slt,z + (1− ρsl,z) ∗ µsl,z + εsl,z, εsl,z ∼ N (0, σsl,z)

where, ρst and ρsl are auto-correlation parameters for start
time and slope of demand respectively.

We compare the prediction accuracy of the 1-NN model and
the LSTM model for various (ρst, σst) pairs as well as (ρsl,
σsl) pairs. Higher value of ρ is hypothesized to favor the
baseline 1-NN model while higher value of σ is hypothesized
to favor the deep learning model.

In each plot in Figure 6, the parameter values governing the
demand generating process are plotted on the x and y axes
and an indicator of the better performing model is plotted



Figure 7: Impact of noise in O-D demand data on the pre-
diction accuracy of deep learning model

using a symbol (“+” signifies that deep learning model out-
performed 1-NN model and “o” signifies the opposite). The
area of the “blue” region signifies the relative superiority of
the deep learning model. We see that, when we set the value
of hyperparameter p as 24 hrs, the 1-NN model starts to out-
perform the deep learning model for a large set of scenarios.
This is because the deep learning model tries to predict too
far into the future and therefore has larger errors (see equa-
tion (11)). However, by reducing the value of parameter p to
2 hrs, we make the deep learning model more robust to high
correlations in OD demands. The optimal p can be chosen
by trading off robustness with the length of the prediction
horizon.

A.2 Effect Of Missing O-D demands
We re-evaluate the prediction accuracy for the toy network
and demand scenario (see Figures 3 and 4) with certain O-D
demands missing. The results are summarized in Table 4

Table 4: Root Mean Squared For deep learning model for
various scenarios with omitted variables and different pre-
diction times

Variables
Omitted

Prediction
Time 6-8 AM 2-4 PM 8-10 PM

None 6.274 3.359 5.281
Zone a demand 45.283 3.360 5.570
Zone b demand 6.723 42.457 5.345
Zone d demand 6.186 3.381 52.843

As per intuition from Figures 4 and 5, zone a demand is
critical for making predictions between 6-8 AM, zone b de-
mand is critical for making predictions between 2-4 PM and
zone d demand is critical for making predictions between
8-10 PM. In Table 4, we notice that the omission of critical
variables is catastrophic for prediction accuracy. In real-
world settings, we may first use the Neural Attention based
framework to determine any critical variables for prediction
at certain times of the day. In case data corresponding to
such a variable is missing, we may revert to other heuristics
for prediction.

A.3 Effect of Noisy O-D demand

We assume that O-D data in the toy scenario (Figures 3
and 4) is corrupted by noise. For simplicity, we assume that
(Noise/Signal) ratio is constant across all origin demands.
The results obtained are summarized in Figure 7. On the
x-axis, (Noise/Signal) is plotted on a log scale and on the
y-axis the RMSE value for deep learning model (blue) and
1-NN model (red) are plotted. The break-even point be-
tween the two models occurs when (Noise/Signal) is ap-
proximately equal to 4. This demonstrates the noise toler-
ance of the deep learning model.
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