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ABSTRACT
Real-world phenomena are often partially observed. This partial
observability leads to incomplete data. Acquiring more data is often
expensive, hard, or impossible. We present a feasibility study on
the limits of online learning to reduce incompleteness in network
data. In particular, we investigate the following problem: given a
network and limited resources to collect more data (i.e., a budget),
can an optimal strategy be learned for reducing the network’s in-
completeness? Reducing the incompleteness of a network can be
interpreted in different ways. For example, it could mean: observe
as many previously unobserved nodes as possible, or observe as
many new nodes with a certain property, or observe as many new
nodes and triangles, etc. Here, we focus on the first interpretation –
i.e., we use the given budget to increase the number of nodes in the
incomplete graph. Using one unit of the budget means querying
an oracle that has access to the fully observed network and getting
back full information about a single node’s neighbors (at the time
of query). We refer to this process as probing a node. Examples
of probing nodes include using APIs to get information about an
account, placing monitors on routers to get information about Inter-
net traffic flow, etc. We make no assumptions about the underlying
model generating the network data or how the incomplete network
was observed. Our findings on synthetic and real-world networks
showcase when learning is feasible, when it is not, and when one
should just use a heuristic (i.e., when learning is unnecessary or
redundant).
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1 INTRODUCTION
Networked representations of real-world phenomena are often in-
complete because the phenomena are partially observed. Acquiring
more data to improve sample quality is often expensive or difficult.
For example, very few institutions have access to the entire Twitter
data (a.k.a. the Twitter Firehose) and previous work has shown that
incompleteness in sampled social network data can add bias and
noise to their analysis [8, 10, 19]. Methods for improving sampled
data through repeated API access could be useful to practitioners
in these fields, but they are often limited by issues such as compu-
tational or financial resources, or limitations imposed by the APIs
themselves. We address the following problem: given an incomplete
network with no information about how it was observed and a bud-
get to query partially observed nodes, can one learn to sequentially
ask optimal queries relative to some objective? In particular, which
characteristics of a network could be useful to “guide” the online
querying? Our goal is to explore the feasibility of machine learning
in this problem setting.

Throughout this paper, we mainly consider the simplified sce-
nario where the objective is to maximize the number of previously
unobserved nodes discovered through querying. In principle, objec-
tive functions can be defined based onmore complicated topological
attributes (e.g., number of observed triangles or nodes with high
core numbers) or based on node or edge attributes (e.g., number of
nodes meeting certain demographic characteristics from a social
network).

Our learning method, Network Online Learning (NOL for short),
is an online regression model, which allows for interpretation and
analysis of the learned model parameters. NOL does not assume
knowledge of the underlying network structure, the overall size of
the network, or the sampling method used to collect the initial in-
complete network. Through experiments on various graph models,
we demonstrate when learning is feasible, when it is not, and when
it is unnecessary. We also report results on real-world networks,
which support our findings on the synthetic graphs.1

Problem definition. Given an incomplete network Ĝ0 = {V̂0, Ê0},
which is a partial observation of an underlying networkG = {V ,E},
learn a strategy that maximizes the number of unobserved nodes
u < V̂0 observed after b probes of the incomplete network. Probing
the network involves selecting a node and asking an oracle or an
API for all the neighbors of the selected node.

1We will use the terms graph and network interchangeably.
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To facilitate adaptability, we probe nodes sequentially. Specifi-
cally, in each iteration we probe one node, add all of its neighbors
to the observed network, and update the pool of partially observed
nodes available to be probed during the next iteration. Initially, all
nodes in the network are assumed to be partially observed, thus
we are agnostic to the underlying observation/sampling method.
At any iteration, there are three “classes” of nodes: fully observed
(probed), partially observed (unprobed but visible) and unobserved
(unprobed and invisible)2

Markov Decision Process Formulation. This sequential decision
learning task can be formulated as a Markov Decision Process
(MDP), where the state of the process at any time step is the partially
observed network, the action space is the set of partially observed
nodes available for probing, and the reward is a user-defined func-
tion (e.g., the increase in the number of observed nodes). The goal of
an MDP learning algorithm is to learn a mapping from states to ac-
tions such that an agent using this mapping will maximize expected
reward. The state-action space of this problem can be arbitrarily
large given that we make no assumptions about the underlying
network, thus our model will learn to generalize over states and
actions from experience. As we describe below,NOL learns a model
to predict the expected reward to be earned by probing a partially
observed node. This model is then used at each time step to decide
on the best action (i.e., which node to probe to observe as many new
nodes as possible). Therefore, our model can be viewed as a method
for (approximately) solving this MDP. We discuss the relationship
between NOL and reinforcement learning in Section 3.3.

Limitations of learning in complex networks. We study the afore-
mentioned problem to explore the limitations of learning in complex
networks, making as few assumptions about the partially observed
network as possible. We study the performance of a simple linear
regression model with interpretable features to understand which
conditions are conducive to learning to grow Ĝ via an API-like ac-
cess model and in which conditions we would be better off relying
on a simple heuristic method.

The “extremal” cases, fully random or regular networks on the
one hand, and networks with very heavy-tailed degree distributions
on the other, can be understood intuitively. In a fully random or
regular network, where the average degree of the network has a
characteristic scale and therefore the nodes are nearly equivalent
in terms of statistical and topological features, no learning method
or heuristic will perform better than any other. In a network with
a particular heavy-tailed degree distribution, it has been shown
that probing the highest degree node in the sample is optimal in
an online setting [3]. Our interest is in exploring all of the complex
networks that fall between these extremes and determining where
learning is worthwhile and where it is not. More generally, we aim
to develop a methodological framework for predicting when learn-
ing is possible based on properties of partially observed networks.

Contributions. Our contributions are as follows:

2Here we assume that the underlying network is static. However, our approach can be
extended to allow for repeated probing of nodes under any API access model, which is
useful when the underlying network is not static.

• We present a feasibility study for the task of increasing the
size of an incomplete network sequentially by gathering
more data.
• We present Network Online Learning, a flexible online linear
regression model within an explore vs. exploit framework
for learning to grow an incomplete network towards a given
objective (e.g., increasing the number of observed nodes).
• Our experiments show that in networks generated by the
Block Two-Level Erdös-Rényi (BTER) model [20], learning is
possible. Learning is not possible in Erdös-Rényi (ER) models
and learning is not necessary in Barabási-Albert (BA) models,
due to their heavy-tailed degree distributions.

The paper is organized as follows. We describe related work in
the next section. Sections 3 and 4 describe our proposed model and
experiments. We wrap-up in Section 5 by providing conclusion and
future work.

2 RELATEDWORK
Techniques for reducing the incompleteness of network data are of
interest to a variety of scientific communities, from social networks
in public health [9, 26] and economics [4], to mining of the World
Wide Web (WWW) [3, 6] and the Internet [25].

The problem discussed in this paper is different than the tradi-
tional network sampling problem, which aims to obtain the most
representative sample of a larger (possibly unbounded) network. In
our problem setting, we are given an incomplete (sampled) network;
we are not told how the network was observed (i.e., sampled); and
we have a specific goal guiding our exploration of the network,
defined by a chosen objective function. For a survey on traditional
network sampling, we refer the reader to [1].

To reduce incompleteness in a network, one can assume that
the network is being generated by a specific graph model, treat
the incomplete network as training data, and infer as much of the
network as possible by estimating maximum likelihood. This is the
approach taken in [14], where the problem of inferring missing
nodes and links in an incomplete network is addressed by assuming
the network is being generated by the Kronecker graph model [16]
and using Expectation Maximization to infer the missing parts
of the network. We do not assume a priori that the network is
being generated by a known graph model; instead we reduce the
network’s incompleteness by probing nodes and observing more
data. Specifically, we are learning a model that selects the “best”
node to probe in order to collect more real data via a query rather
than to infer nodes and links that may or may not actually exist.

Avrachenkov et al. [3] study the problem of maximally cover-
ing WWW networks by adaptively crawling and querying nodes.
They introduce the Maximum Expected Uncovered Degree (MEUD)
method and show that in some network topologies, the method re-
duces to maximum observed degree (equivalent to our High Degree
model; see Section 4).

Soundarjan et al. [21] propose an algorithm (MAXOUTPROBE),
which increases the observability of an incomplete network by
selecting nodes to probe based on functions that estimate the
true degree and clustering coefficient of each node in the incom-
plete network. This method was extended to online node querying
(MAXREACH) in [22]. MAXREACH relies on assumptions about
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Figure 1: The top row from left to right shows the (node) degree distribution, average (node) clustering coefficient per degree,
and frequency of connected component sizes for four real-world networks. The bottom row shows the same quantities, but for
three synthetic graph models: Erdös-Rényi (ER) [7], Barabási-Albert (BA) [2], and Block Two-Level Erdös-Rényi (BTER) [20].
Our learning model, NOL, is able to learn to increase network size on BTER and similar networks. We find that degree, clus-
tering coefficient, and size of the connected component are all relevant, as well as interpretable, features for learning.

the size of the underlying network and the method by which the
sample was collected to make their estimates.

Multi-armed bandit approaches are popular for reducing the in-
completeness of networks because they are a framework designed
to facilitate exploration vs. exploitation. Murai et al. [18] proposed a
method based on an ensemble of classifiers that are trained simulta-
neously. The classifier to follow is then probabilistically chosen by
a multi-armed bandit algorithm. Soundarajan et al. [23] proposed
a multi-armed bandit approach for edge probing (as opposed to
our node probing setting). [17] recently proposed a nonparametric
multi-armed bandit algorithm.

Active Exploration [13] and Selective Harvesting [18] are similar
problems, which require iteratively searching a network to discover
nodes with a particular (binary) attribute. Though our work can be
adopted for this purpose through the choice of the objective func-
tion, we are not confined to binary labels and can search for nodes
with continuous labels or nodes maximizing particular structural
features.

Our work is meant to address the general problem of adaptively
learning to query a network for an arbitrary objective function,
making as few assumptions as possible about the underlying net-
work or the way the initial incomplete network was observed. In
the following section, we describe a method for reducing the in-
completeness of partially observed networks using an online linear
regression model.

3 PROPOSED METHOD: NETWORK ONLINE
LEARNING (NOL)

Our model, called Network Online Learning (NOL), is a stochastic,
explore-exploit extension of the model described in Strehl and

Littman [24]. We assume that at every time step t = 0, 1, 2, . . .b,
where b is a budget of allowed probes, NOL has knowledge about
a partially observed network Ĝt = {V̂t , Êt } ⊂ G with Vt nodes,
Et edges, and the list of nodes which have been already probed,
denoted by Pt . If a node i has been probed at time t , all of its
neighbors are added to Ĝt . At every step, NOL expands Ĝt by
selecting a node j ∈ (V̂t − Pt ) to probe. We call the number of new
nodes added to the observed network in timestep t the reward for
that timestep and denote it by rt . The goal of NOL is to learn to
probe the nodes that give the maximum reward at t .

To decide the best node to probe at every timestep, NOL learns
to predict the true reward value of every node in Ĝt . We define a
feature vector ϕt (j) ∈ Rd to represent the knowledge available to
the model for node j ∈ Ĝt . One can include any information about
a node as a feature, but to accurately predict future values, we must
choose features which are relevant to the function we wish to learn.
Simultaneously, since the learning is to happen on-line, the features
must be feasible for on-line computation.

Given features Φt = {ϕt (1),ϕt (2), . . .} for all nodes in Ĝt , NOL
learns a function Vθ : Rd → R with parameter θ to predict the
expected reward to be earned by probing a node.

As an initial study, we explore the limits of learning a linear
function for this prediction task. Given parameter θ , the predicted
number of unobserved nodes attached to node j is estimated as
Vθ (ϕt (j)) = θTϕt (j) such that Vθ (ϕ(j)) should be equal to the
number of nodes added to the observed graph by probing the node j
(i.e., the reward of probing the node j at time t ).While learning,NOL
minimizes Ej [loss(Vθ (ϕt (j))−rt (j))], where rt (j) is the true value of
the reward function for node j at time t . NOL is an online learning
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method because initially the reward values are unknown and we
can only learn true values of rt (j) once node j is probed. Hence, we
learn Vθ (·) using online linear regression. Algorithm 1 presents
NOL. We describe the details of how we learn the parameters θ in
the next section.

3.1 Learning Parameters θ
As described above, at every time step t = 1, 2, . . . ,b, NOL probes
a node and receives a reward, rt ∈ R, corresponding to an input
vector ϕt ∈ Rd . ϕt is chosen based on the functionVθ learned using
the previous inputs and outputs {(ϕ1, r1), (ϕ2, r2), . . . , (ϕt−1, rt−1)}.
After observing ϕt and before observing rt , the learning algorithm
produces an output r̂t ∈ R (a prediction of E[rt |ϕt ]). Furthermore,
it provides an output r̂t (i) for any input vector ϕt (i) ∈ Rd . For our
method, r̂t (i) = θTt ϕt (i). After observing rt , one can calculate loss
at time t as square loss between prediction and actual rewards – i.e.,

losst =
(
rt − θTt ϕt

)2
. Then, the parameter θt is updated using pro-

jected stochastic gradient descent method. The unbiased estimation
of the gradient of the loss is ∇θt losst = −2

(
rt − θTt ϕt

)
ϕt . The pa-

rameter is updated towards this unbiased estimation in the gradient
direction with a fixed step size α – i.e., θt+1 = θt + α∇θt losst .

3.2 Exploration vs. Exploitation
The challenge for NOL is to learn adaptively as the network grows
in size through sequential probes. In each step, the algorithm must
select a node such that querying the node will yield high reward and
also be a “good" training example. When maximizing the reward
on each probe, NOL can exploit its current knowledge and select
the node that has the maximum predicted reward. However, from
statistical learning theory we know that exploring the observed
space to obtain a more diverse and representative set of training
examples can increase the generalizability of a learning algorithm
such as NOL. Therefore, we include a probability p with which we
select a node uniformly at random from the set of unprobed nodes
to probe. This can be thought of as a global random walk with jump
process; global because any node can be probed at any time step,
regardless of its local connections in the current network.3

Given that our network is growing sequentially, nodes that were
present in the initial network Ĝ0 will have more “complete" infor-
mation, since they have had more opportunity to be connected to
in the t − 1 probes before time t . This information could be positive
or negative. Positive information about node j corresponds to the
addition of new connections to j after t = 0, as well as connections
among j’s neighbors (see our discussion on features in next sec-
tion). The absence of any of this positive information is negative
information. That is, it could be that j has very few neighbors, but
it could also be that j connects to a neighborhood or community
that NOL has yet to discover. Therefore, to explore the possibility
of learning a better model using different information, NOL selects
the random node from V̂0−Pt to probe. This corresponds to a global
random walk with restart. If all nodes in V̂0 are exhausted, NOL
chooses any unprobed node in Ĝt at random.

3This process is equivalent to an ϵ -greedy algorithm from multi-armed bandit
literature.

Random jump exploration and epsilon greedy algorithms that try
to balance exploration and exploitation often employ schemes that
systematically lower the probability of taking a random action over
time [5, 15]. In many circumstances such schemes make perfect
sense: once the algorithm has had sufficient time to explore the
state space and learn the best actions to take, it no longer benefits
from the diversity of samples that is gained by random exploration
and so focuses on exploitation of the learned relationships instead.
However, this is not the case in our setting. The reason is that, as
described above, exploration in NOL serves two purposes: diversi-
fying samples, but also actually exploring and expanding the graph.
If the algorithm becomes completely myopic (meaning the value of
p goes to 0), then it runs the risk of reaching a local minimum in
the objective function such that it never probes a node with appar-
ently unimportant features that actually serves as a bridge to other
communities. The algorithm is intended to not only learn online,
but also to expand the network. Therefore, lowering the value of p
has limited utility in this setting. Experiments with lowering p on a
schedule confirm our argument above; because of space limitations
we do not present a systematic analysis of the impact of p here.

Algorithm 1Network on-line learning (NOL ) with random restart

Input: Ĝ0 (initial incomplete network), b (probing budget), p
(jump rate), and α (step-size for gradient descent)

Output: θ (parameters of the learning model), Ĝb (network after
b probes)

1: Initialize: θ0 (randomly or heuristically); P0 = ∅
2: repeat
3: Calculate feature vectors: ϕt (i), ∀ node i ∈ V̂t − Pt
4: Calculate estimated rewards:Vθt (ϕt (i)) = θTt ϕt (i)
5: Explore: With probability p, choose node ut ∈ Ĝ0 − Pt uni-

formly at random.
6: Exploit: With probability 1 − p, ut = arдmaxi

(
θTt ϕt (i)

)
,

where i ∈ V̂t − Pt
7: Probe node ut
8: Update the observed graph: Ĝt+1 = {Ĝt ∪ neighbors of ut }
9: Collect reward: rt = |Ĝt+1 | − |Ĝt |
10: Online losst =

(
rt −Vθt (ϕt (ut ))

)2
11: Compute on-line gradient:

∇θt losst = −2
(
rt −Vθt (ϕ(ut )

)
ϕt (ut )

12: Update parameters: θt+1 = θt + α∇θt losst
13: t ← t + 1
14: until t==b
15: return θb and Ĝb

3.3 Relationship with Reinforcement Learning
As shown in [24], online linear regression is directly related to
reinforcement learning. Our algorithm, NOL, can be thought of as
approximate Q-learning without discounting or eligibility traces.
We have experimented with both discounting and eligibility traces
without improvement in performance for our task. Given this, we
have elected to study the simpler model presented in this paper and
leave reinforcement learning as future work.
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4 EXPERIMENTS
We study the performance of our learning method in various net-
work datasets, including both synthetic and real world data. In this
section, we first describe the data we use to test our method, then
explain our experimental methodology and present results.

4.1 Data
We run experiments over a range of synthetic graphs, as well as
four real world datasets. This section briefly describes the data we
used for experimentation.

4.1.1 Synthetic Models. As discussed in the introduction, we
conjecture that the potential for learning in a complex network
is largely tied to the degree distribution of the network. Taking a
simplified view, degree distributions can be split into two broad
categories: homogeneous and heterogeneous (or heavy tailed).

At a high level, a homogeneous distribution is characterized
by a lack of hubs, meaning nodes with degree much higher than
the mean degree in the network. In such a distribution, nodes are
statistically equivalent in terms of degree, meaning that if one
chooses a node at random, they can be sure the degree of the node
will fall within a well-defined variance.

In contrast, no such assurance can be made in a heterogeneous
degree distribution: a node chosen at random could have any degree,
regardless of the average. We often say a homogeneous distribution
has a characteristic scale, meaning that no matter how large the
network gets, the variance of the degree distribution is still defined.
A heterogenous network, however, is without such a scale, and
in the limit of N → ∞ (where N is the number of nodes in the
graph), the variance (or second moment) of the degree distribution
diverges.

A second node characteristic, which we conjecture is important
for learning, is the clustering coefficient. The clustering coefficient
(more precisely, local clustering coefficient) is a measure of the
extent to which a node’s neighbors are connected to one another.
Since the clustering coefficient is real-valued, it is often more intu-
itive to study the average clustering by degree, which is what we
show in Figure 1.

To test the above conjectures on the limitations of learning in
complex networks, we study three synthetic network models:

(1) Erdős-Rényi4 (ER) [7]
• ER is a model, where each edge exists with probability p.
Networks generated by the ERmodel have a homogeneous
degree distribution (the exact distribution is Binomial, but
it is often approximated by Poisson). Parameters (GNP
version): N = 10000, p = 0.001.

(2) Barabási-Albert (BA) [2]
• The BA model generates networks through a growth and
preferential attachment process where each node entering
the network chooses a set of neighbors with probability
proportional to their relative degree. This process results
in a heterogeneous degree distribution, which in the infi-
nite limit follows a power law distribution with exponent
of 3. Parameters: N = 10000,m = 5,m0 = 5.m0 denotes

4We omit almost all results on ER models from the paper because all probing strategies
perform indistinguishably on networks generated by the ER model.

the the size of the initial connected network.m denotes
the number of existing nodes to which a new node con-
nects. This connection is probabilistic – i.e., proportional
to the degree of the existing nodes.

(3) Block Two-level Erdős-Rényi (BTER) [20]
• BTER is a flexible5 model that combines properties of the
ER and BA model. It consists of two phases: (i) construct
a set of disconnected communities made up of dense ER
networks, with the size distribution of the communities
following a heavy tailed distribution (i.e., a small number
of large communities and many more small communi-
ties) and (ii) connect the communities to one another to
achieve desired properties, such as a target value of global
clustering coefficient. Parameters: N = 10000, target max-
imum clustering coefficient = 0.95, target global clustering
coefficient = 0.15, target average degree ⟨k⟩ = 10.

4.1.2 Real-world Networks. Table 1 lists the real-world networks
used to test the performance of NOL.

Table 1: Basic Characterization of Real Networks
Name Type #Nodes #Edges #Triangles

DBLP Coauthorship 6.7k 17k 21.6k
Cora Citation 23k 89k 78.7
Caida Internet Router 26.5k 53.4k 36.3k
Enron Email Communication 36.7k 184k 727k

Figure 1 describes the degree, average clustering by degree, and
component size distributions of these real-world networks.

4.1.3 SamplingMethods. Ourmodel is defined as agnostic to the
network sampling technique that was used to collect (i.e., observe)
the initial incomplete graph, Ĝ0. For the sake of continuity, all of the
initial samples used in this paper were collected via node sampling
with induction. In this technique, a group of nodes are chosen at
random, then a subgraph is induced on those nodes (i.e., all of the
links between them are included in the sample). Our samples are
defined in terms of the proportion of the edges in the underlying
network. To generate such samples, we choose a sample of nodes
and induce a subgraph on them; if this subgraph has too many or
too few of the edges, we repeat with a larger or smaller subset of
nodes until we find an induced graph with an acceptable number
of edges.

We have separately verified our results using random walk with
jump sampling [1]. Due to space constraints, we do not include
those results here. They are similar to results with random node
sampling with induction.

4.2 Features
To accurately predict the number of unobserved nodes to which
a partially observed node is connected, we must choose features
which are relevant to this value without a priori knowledge of
the underlying statistical distributions of the networks we may
encounter. Simultaneously, the features we choose must be feasible
5We could have usedmany other random graphmodels (which are similarly flexible like
BTER) to generate networks for our experiments. We chose BTER out of convenience
because it allows us to easily specify target values for average degree and clustering
parameters directly.
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for on-line computation and update, and it is desirable for them to
be as interpretable as possible. In this paper, at each time step t , we
maintain the following features for every node i in the sample:

• d̂(i): the in-sample degree of node i , normalized by the max-
imum degree in the sample. We use this feature under the
assumption that the degree of a node in the sample is rele-
vant to its total degree. For instance, a node with high degree
in the sample may also have high degree in the real network.
Further, depending on the sampling model used to collect
the data, a node with low degree in the sample may be more
or less likely to have many unobserved connections.
• ĉc(i): the in-sample clustering coefficient of node i . The clus-
tering coefficient captures the involvement of a node in tri-
angles with its neighbors. Nodes which are involved in many
triangles may or may not be good choices for probing, de-
pending on the network characteristics and the extent to
which their neighborhood has already been probed.
• CompSize(i): the normalized size of the component to which
node i belongs. Using the size of node i’s connected compo-
nent can facilitate exploration and exploitation. A node in
the largest connected component may be important if there
is 1 large component and few smaller, whereas a node in a
smaller component may be more fruitful if there are many
components of similar size in the network.
• pn(i): the fraction of probed nodes to which node i is currently
connected. This feature indicates the extent to which the
neighborhood of node i has been explored. A value of 1
indicates that either a node is in a densely probed part of
the network, or that the node was observed as a connection
only once. That is, if j is probed at time t , at time t + 1 it will
only be connected to the nodes already probed at t , so this
feature will be set to 1.
• LostReward(i): the number of nodes that first connected to
node i by being probed. This feature is different than pm(i)
because it only counts nodes that were not connected to i
before they were probed (meaning pm(i) ≥ LostReward(i),).
Including this feature accounts for the fact that the order in
which nodes are probed can lower the total reward node i
yields when probed. Depending on network structure, this
feature being high may make node i a good choice since it
may be a hub (e.g., nodes that get probed connect to i with
high probability), or it may be a bad choice because we have
already learned most of its connections (e.g., it is in a densely
probed part of the network). In the following experiments,
the count is normalized by the maximum LostReward across
nodes.

4.3 Baseline Methods
We compare the performance of NOL with 4 baseline methods. See
Section 2 for a discussion of other possible methods.

• High Degree: Query the node with maximum observed de-
gree to probe in every step. This has been shown to optimal
in some heavy tailed networks [3].
• High degree with jump: The same as high degree, but with
probability p the node is chosen uniformly at random from
all partially observed nodes.

• LowDegree: Query the node with minimum observed degree
in every step.
• Random Degree: Query a node chosen uniformly at random
from all partially observed nodes.

We now describe our experiments in detail. Unless indicated
otherwise, all experiments are run over 5 realizations of a synthetic
network and 20 independent samples of each realization. Since
there is only one realization of each real world network, we only
run over 20 independent samples of those networks.

Our experiments aim to show 1) how network properties impact
the performance of NOL, 2) that it outperforms baseline methods
in settings where learning is possible, and approximates baselines
elsewhere, and 3) that it minimizes a notion of "loss" or "regret".
Furthermore, we want to begin to understand whether the fea-
ture weights stabilize and which features are most important to
predicting reward.

Next, we describe the metrics we use to study the performance
of NOL.

4.4 Performance Metrics
As described in Section 3, after each probe of the network, NOL
earns a reward, defined in this work as the number of previously
unobserved nodes included in the network after a probe. Formally,
the reward at time t is defined as

rt = |Vt+1 | − |Vt |
We study the performance of each method by showing the cumu-
lative reward, ĉr (T ), where T is a time step between 0, 1, 2, . . .b.
Formally,

ĉr (T ) =
T∑
t=1

rt

We also quantify the utility of decisions made by NOL. For this
purpose, we studyNOL’s prediction error. This quantifies the extent
to which our prediction,Vθt (ϕt (i)), differs from the true reward
value rt . Thus, we calculate

E(t) = Vθt (ϕt (i)) − rt
Next, we use these metrics to evaluate the performance of NOL

relative to the baseline methods.

4.5 When is learning possible?
4.5.1 Cumulative Reward. The goal of this study is to under-

stand when learning is possible with a simple interpretable model.
Towards this, we first analyze the performance of our method com-
pared to the baselines with respect to the reward function.

Figure 2 shows average cumulative reward ĉr (T ) over a budget
of thousands of probes on 6 different networks. The average and
standard deviation of ĉr (T ) are computed over experiments on 20 in-
dependent samples per network. For brevity, we omit ER networks,
noting that because all nodes are statistically equivalent in terms of
structural properties, every probing method performs equivalently
and learning does not provide any significant advantage.

On the opposite end of the spectrum, in networks generated
using the BA model (Figure 2a), High Degree outperforms our
learning method. This follows previous work showing that High
Degree results in optimal network covering in BA networks [3].
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Figure 2: Cumulative reward, cr (t), averaged over experiments on 20 independent samples of both synthetic (BA, BTER) and
real world networks. In the BA network (a), where probing the highest degree node is optimal, NOL learns the heuristic. NOL
outperforms the baseline methods in BTER networks (b), where the combination of heavy-tailed degree distribution and
relatively high clustering and modularity allows for discrimination. In some real networks (c, d, e), NOL either outperforms
or closely tracks the best baselines.

Although we do not outperform the high degree heuristic, we do
converge to it somewhat quickly (within hundreds of probes), in-
dicating that we are learning to probe using a strategy akin to the
heuristic.

Importantly, NOL is able to consistently outperform the base-
line methods in networks generated by the BTER model (Figure
2b), which combine properties of ER and BA networks. As shown
by the distributions in Figure 1, the BTER network has a heavy-
tailed degree distribution as well as high clustering and multiple
connected components. We conjecture that this richer and more
complex structure, which is indicative of networks observed in the
real-world, facilitates learning.

In our real-world networks, NOL was able to at least “learn the
heuristic" (as in the BA case) in every network. Considering again
Figure 1, we note that the networks in which we are able to learn
most effectively indeed have characteristics that align more closely
with the BTER networks than with BA or ER networks, and that
the performance of NOL on the Caida network, which is similar to
a BA model in that it has many hubs with relatively low clustering,
is similar to the performance on the BA network.

4.5.2 Prediction Error. We analyze the ability of our model to
learn over time by showing prediction error E(t), which was defined
in Section 4.4. We use the synthetic models to analyze and again
exclude the ER model’s results for brevity. Figure 3 shows these
results. The y-axis shows the cumulative prediction error, E(T ), as
a function of time, averaged over 20 independent samples of the
network, for different initial sample sizes (as percent of edges in
the network).

In both the BA and BTER models, the average prediction error
is lowest when the initial sample is large. This is intuitive because

a larger initial sample provides the model richer information from
which to learn. The shapes of the curves further indicate that over
time the prediction error stabilizes.
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Figure 3: Average cumulative prediction error of NOL.
Smaller initial samples result in larger prediction error, but
error stabilizes over probes regardless of initial sample size.

4.5.3 Feature Weight Analysis. To investigate the relative im-
portance of features in each network, we analyzed the value of
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feature weights learned by NOL over time. Recall that d̂(i) is the
in-sample degree of node i , normalized by the maximum degree in
the incomplete network; ĉc(i) is the in-sample clustering coefficient
of node i; CompSize(i) is the normalized size of the component to
which node i belongs; pn(i) is the fraction of probed nodes to which
node i is currently connected; and LostReward(i) is the (normal-
ized) number of nodes that have connections to node i , but were
observed through probing other nodes.

On ER networks, we found that CompSize(i) was consistently
assigned the largest weight. All of the feature values in experiments
on ER networks appeared to be stable across iterations. This stability
indicates that the model could not learn much after some initial
probing. On BA networks, the dominant feature was not d̂(i), but
rather LostReward(i). We speculate that this is due to LostReward
being related to degree in BA networks. The LostReward value of
a hub node will likely be relatively high since other probed nodes
by definition have higher likelihood of connecting to a hub. On
BTER networks,CompSize(i) and d̂(i)were almost always weighted
highest.

Experiments on the Caida network typically resulted in feature
weights that converged much faster than in other networks. We
speculate that this rapid convergence could be caused by NOL
reaching a local optimum and therefore not learning after a few
initial probes. For the remainder of the real-world networks, d̂(i),
CompSize(i), and LostReward(i)were almost always weighted posi-
tively (i.e., these features tended to correspondwith higher rewards),
whereas ĉc(i) and pn(i) were usually weighted negatively (i.e., cor-
responding to lower rewards). The negative weights for these last
two features indicate that NOL learns not to probe nodes if their
neighborhood has already been sufficiently explored.

5 CONCLUSION
We described the problem of learning to optimally query nodes
in an incomplete network to maximize the number of previously
unobserved nodes observed after b queries. Through experiments
on various synthetic and real-world networks, we demonstrated
when learning is feasible, when it is not, and when it is unnec-
essary. We used online regression over nodal features, observing
that (in this setting) learning is not feasible in Erdös-Rényi (ER)
networks because the relational dependencies are random, while in
Barabási-Albert (BA) networks, learning is not necessary, confirm-
ing previous observations that querying the highest degree node
is optimal in heavy-tail degree distributions produced by the BA
model. However, in Block Two-Level Erdös-Rényi (BTER) networks,
learning outperforms choosing nodes to probe based on heuristics.
We attribute this to a combination of the heterogeneous degree
distribution, the significant average node clustering, and the com-
ponent size distribution of BTER networks. Our experiments on
real-world networks show results similar to BTER networks.

Future work. We are investigating the following: (i) reinforce-
ment learning approaches that can better model delayed gratifi-
cation in the querying process; (ii) more complex nodal features
(using methods such as those in [11, 12]) that can help us better un-
derstand the limitations of learning (even though such features may
be less interpretable); (iii) experiments on more complex objective
functions such as increasing the observability of nodes which have

high core numbers or nodes which are from a certain demographic.
This last extension will allow us to compare with attributed active
exploration approaches [13, 18].
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