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ABSTRACT
Graph sampling is a widely-used approach to address the scala-
bility issue when analyzing large-scale graphs. Several promising
cluster-preserving sampling algorithms have been proposed. How-
ever, once the clustering structure on a sampled graph is obtained,
we may still need a method to infer the clustering affiliations of
all other nodes in the original graph from the clustered nodes in
the sampled subgraph. In this paper, we present a new two-stage
clustering inference (TCI ) method to infer clustering affiliations
of all nodes in the original graph. TCI is composed of two stages:
1) initialization of clustering affiliations for unsampled nodes based
on computed neighborhood affiliation information; 2) label propa-
gation for the whole graph. Our experimental results demonstrate
that the proposed TCI method in conjunction with any considered
cluster-preserving sampling strategy is capable of inferring the clus-
tering affiliation of the population commendably, and it performs
better than the competing methods.
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1 INTRODUCTION
Graph, as a generic data structure, can be a good representation of
the complex relationships (namely, edges) among entities (namely,
nodes) of networks [5]. In a social network, for instance, nodes may
represent people and links may represent relationships (e.g., friend-
ships), interactions (e.g., emails transmitted, physical proximity), or
homogeneity (e.g., similar books purchased). Nowadays, in a wide
range of applications, “big” graphs are becoming prevalent. For in-
stance, Facebook has reported to have more than one billion active
users. With 8 bytes for user ID and 100 friends per user, storing the
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raw edges might take about 1 billion*100*8 bytes =800 GB. Analyz-
ing the clustering structure on such big graphs has become of great
importance in various application such as detecting ransomware
attacks and abnormal connection in social media.

Since contemporary graphsmight contain overwhelming amount
of nodes and edges and have obvious characteristics of “big” data,
how to effectively process these big graphs is very critical in prac-
tice and theory. One direction is to design more efficient and scal-
able clustering algorithms or make full use of parallelization or
distributed computing to speed up the process, but these existing
scalable methods are not always easily available and sometimes
impractical [15]. Another feasible solution that has received more
attention is to take a small sample on the graph and conduct the
traditional analysis on the sampled subgraph. Through sampling
a representative subgraph, clustering analysis can be performed
on the sampled graph to detect the inherent clustering structure
instead of the original graph (namely, population) [15, 17]. In this
work we address the underlying questions of the latter sampling-
based methodology.

In previous studies, several cluster-preserving sampling algo-
rithms [7, 11, 15–17, 23, 30] have been put forward. The sampling
quality is typically judged based on how well the sample helps to
capture the structural properties (e.g., clustering structure) [15, 29].
Especially, a real-world network often exhibits underlying clus-
tering structure that is not explicitly measurable. Such implicit
structure should be inferred for various applications (e.g., infer-
ring the community of drug users from samples). However, the
approaches proposed so far typically do not address this underlying
problem: how can we infer the clustering affiliations of all the nodes
in the original graph that were not sampled? The existing clustering
inference methods either have poor inferring quality [13] or are
too time-consuming [2, 19] for achieving this task. In this paper,
we focus on using the sampled graph to infer clustering affiliations
for the unsampled nodes of the original graph. We refer to this task
as population inference [13, 19].

Population inference has a different emphasis in comparison with
representative subgraph sampling [24]. The population inference
focuses on how a given sampled subgraph can be used best to
draw inferences about the larger population while representative
subgraph sampling concentrates on how best to construct represen-
tative subgraph samples. Note that the nodes in the sample are not
independent with respect to the unsampled nodes of the popula-
tion, which introduces a bias to learning and inference procedures,
thus the common practice that divides the nodes into training and
test sets is difficult. Sampled nodes with known labels can serve
two roles: one is to serve as training set, the other is to give the
background knowledge during clustering inference [14].
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Table 1: Basic notation & definitions

G The original graph
V The set of nodes within the graph
E The set of edges within the graph
N The number of nodes in V
M The number of edges in E
S The sampled subgraph of G
p The sample rate of nodes
Vs The set of nodes within the sample
Es The set of edges within the sample
ns The number of sampled nodes
ms The number of sampled edges
LabelV The set of clustering labels of nodes in V
LabelVs The set of clustering labels of nodes in Vs
LabelV (vi ) The clustering label of the ith node in V

In this work, we study how to infer the clustering affiliations
of unsampled nodes in the population by using the representative
sample. Our main contributions are as follows:
• Wepresent a new two-stage clustering inference (TCI ) method
to infer clustering affiliations of nodes in the original graph.
Basically, it is composed of two stages: 1) initialization of
clustering affiliations for unsampled nodes; 2) label propa-
gation for the whole graph in which the sample’s labels are
efficiently propagated to the unlabelled nodes. It provides
a feasible solution to infer the clustering structure of the
population.
• We provide empirical evidence from an extensive experimen-
tation on a variety of synthetic and real-world graphs demon-
strating that the proposed TCI method is capable of inferring
the clustering affiliation of the original graph commendably.
TCI performs better than the competingmethods. The results
are consistent for all considered cluster-preserving sampling
strategies.

The rest of the paper is organized as follows. In Section 2 we
introduce the problem statement of population inference and in
Section 3 we provide a brief overview of state-of-the-art methods.
In Section 4 we discuss the proposed two-stage clustering inference
(TCI ) method. In Section 5 we discuss its computational complexity.
In Section 6 we present and discuss the results of our empirical
study. We conclude this paper in Section 7.

2 PROBLEM STATEMENT
Assuming that a representative subgraph S is given which is sam-
pled from the original graphG , and the clustering labels LabelVs of
nodes in S are known explicitly1, our goal is to infer the clustering
affiliations for the nodes v where v ∈ V −Vs by using the sample S .
Formally, we define it as follows:

Definition 2.1. (Population inference). Given a partial labelled
graphG = (V ,E,LabelV )whereV is a finite set of nodes, E ⊆ V ×V
is a set of edges and LabelV ⊆ R+ is the set of clustering labels of
nodesV . HereR+ denotes the set of positive real numbers. Specially,
LabelV (vi ) ∈ LabelV is the clustering label of node vi ∈ V and
partial known label set LabelVs ⊆ LabelV for a subset of nodes
Vs ⊆ V in the sample S , the population inference is to infer the
1Note that the clustering labels of nodes in the sample can be obtained from the ground-
truth if known. Otherwise, they can be produced by executing a credible clustering
algorithm.

clustering labels of the unsampled node-set U = V − Vs of the
population.

Through the population inference, we can obtain the clustering
labels LabelV for all the nodes in the original graph. For any two
nodes vi , vj ∈ V , LabelV (vi ) = LabelV (vj ) if and only if vi and vj
are members of the same cluster.

3 RELATEDWORK
At present, there exist little work in the field of population in-
ference and some related researches are briefly summarized. [19]
studied how to expand a cluster from few given seed nodes. It is
assumed that a sample contains nodes from a single cluster and
they proposed expanding methods to grow the sample to include
all members of the single cluster, but it can not extend to handle
the clustering inference problem of multiple clusters. The kernel
spectral clustering (KSC) method was first proposed in [2] and
extended to network-structured data in [10] and [18]. It is based
on a weighted kernel PCA formulation and the model is built in a
primal-dual optimization framework. The model has a good out-of
sample extension property which allows for inferring clustering
affiliation for unseen nodes. KronEM [8] was proposed to infer
missing nodes and edges in graphs. It uses the EM model to esti-
mate the model parameters as well as infer missing nodes and edges
of the graph. However, it considers the link-prediction problem
where both edges and nodes are missing. In [13] three collective
inferencing schemes (i.e., iterative classification (IC), gibbs inference
(GI) and relaxation labeling (RL)) were devised to classify unlabelled
nodes in a graph if a subset of labelled nodes is given. Their results
demonstrated that RL model performs better than others. However,
they are too time-consuming to infer the clustering affiliations of
nodes in large-scale graphs. For more details about these collective
inferences, one may refer to [13].

4 TCI :TWO-STAGE CLUSTERING INFERENCE
As we discussed, the objective of the clustering inference is to
assign the clustering affiliations for all the unsampled nodes in the
population. However, existing clustering inference methods either
have poor inferring quality [13] or are too time-consuming [2, 19].
For this purpose, we propose a new two-stage clustering inference
(TCI ) method to label the unsampled nodes. The rationale is that
if samples are truly representative of clustering structure of the
larger population, the clustering structure on the sample should
generalize well to the nodes that are not sampled. That is, using a
subgraph S , we attempt to infer the clustering affiliation for all the
unsampled nodes v where v ∈ V −Vs . Since low-degree nodes are
not vital for inherent clustering structure, the clustering inference
method is composed of two stages: 1) initialization of clustering
affiliations for unsampled nodes; 2) label propagation for the whole
graph.

As Algorithm 1 shows, in the first stage, first we sort unlabelled
nodes in a descending order according to the ratio of their labelled
neighbors such that the label information of samples are sufficiently
utilized (line 1-3). Second for each unlabelled node from the sorted
queueU , its label is assigned to the label that has maximum occur-
rence among the neighbours for which clustering assignments are
known already. Then we remove it from the unlabelled setU and
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Algorithm 1 Inferring Clustering Affiliation from Samples
Require:

Graph: G = (V ,E);
Sampled subgraph: Gs = (Vs ,Es );
Clustering labels of the sampled nodes Vs : LabelVs

Ensure:
Clustering labels of V in G: LabelV .

1: Obtain the unsampled nodes:U ← V −Vs
2: ###{The coarse screening}
3: Sort the nodes of the node-set U according to the fraction of

the neighbours in Vs
4: ###{Handle connected components}
5: while no more nodes inU can be labelled do
6: for each node u ∈ U that pops up fromU do
7: ###{Set its label to the maximum occurring label among

the neighbours in Vs }
8: LabelV (u) ← arg max

LabelVs
[Count(LabelVs (ne))] s.t. ne ∈

Ns (u)
9: U ← U − u
10: Vs ← Vs ∪ u
11: end for
12: end while
13: ###{Handle isolated nodes}
14: if u ∈ U is a isolated node then
15: LabelV (u) ← single-node cluster
16: end if
17: ###{The fine adjustment}
18: Set the initial node labels: initial = LabelV
19: Set the fixed labels whose labels should not change: f ixed =

LabelVs
20: LabelV ← Label_Propagation(G, initial, fixed)
21: return LabelV

add the node into the labelled node-setVs until no more nodes inV
can be labelled (line 4-12). For the isolated nodes which are not con-
nected to the sample, they are designated into its own single-node
cluster (line 13-16).

In the second stage we utilize label propagation (LP) clustering
algorithm [22] to optimize the clustering structure for the original
graph. LP algorithm iteratively simulates a process in which each
node in the graph picks the most frequent label in its neighbours
in each iteration. In summary, the process of LP has five steps:
Step 1. Initialize the clustering labels LabelV of all nodes V in the

graph.
Step 2. Set t = 1;
Step 3. Arrange the nodes in the graph in a random order and set

it to V ;
Step 4. For each node v ∈ V chosen in that specific order, the

label function is defined as LabelV (v) = f (·). The function
f (·) returns the clustering label occurring with the highest
frequency among neighbours. Ties are broken randomly
and the order in which the nodes are updated is randomized
for each iteration;

Step 5. The process repeats until all the nodes reach a consensus.
Otherwise, set t = t + 1 and go to Step 3.

The advantages of LP algorithm include that (i) it does not need
a pre-defined objective function; (ii) its time complexity increases
quasilinearly with respect to the size of the graph, which will be
detailed described in next Section; (iii) it has the ability to set the
initial labels and also allows some labels to be fixed. Thus we set
the labeling results of the coarse stage to the initial labels (line 18),
and assign the clustering labels of the sampled nodes to fixed labels
whose labeling should not change during the iteration (line 19-20).
In this way, the TCI method is able to assign and infer the clustering
labels to the population effectively and accurately.

5 COMPUTATIONAL COMPLEXITY
The computational complexities of different components of the TCI
algorithm are analyzed as follows:
• In the first stage, firstly, the sorting operation aims to main-
tain the unsampled nodes in descending order based on the
fraction of the labelled neighbours inVs . The minimum time
required to perform this sorting isO((N −ns ) ∗ loд(N −ns ))
where N is the number of nodes in the original graph and
ns is the number of nodes in the sample. Secondly, the label
of each unsampled node needs to be assigned to the most
frequent label among its neighbours. Here we assume that
the average number of labelled neighbours of each node is
c , then the complexity of finding the most frequent label is
O(c ∗ (N − ns )).
• For the second stage, the time complexity of LP algorithm
increases quasilinearly with the size of the graph, that is,
O(M + N ) where M is the number of edges in the original
graph. Note that the number of edgesM should be much less
than N (N−1)

2 in real-world graphs, which are usually very
sparse.

Overall, the total time complexity of TCI is O(N ∗ loдN + M).
Thus the proposed TCI run in quasi-linear time such that it can be
employed to process large-scale graphs.

6 EXPERIMENTAL EVALUATION
We present a set of experiments to evaluate the inference quality of
the proposed TCI method. First we describe the experimental setup
for the evaluation. Then we conduct the experiments on benchmark
graphs and analyze the obtained results.

6.1 Experimental Setup
The experiments are carried out on a Linux server runing CentOS.
Each run employs a single core with 2.40GHz CPU and at most 32
GB main memory. We have implemented our TCI method in Python
2.7. For a fair comparison we also consider a diverse collection
of collective inferencing methods [13] which includes: iterative
classification (IC), gibbs inference (GI), relaxation labeling (RL).

In order to obtain the representative subgraph, we employ several
graph sampling algorithms including induced random edge (IRE) [1],
induced random vertex (IRV) [1], random walk (RW) [12], metrop-
olis subgraph (MS) [7], metropolized random walk (MRW) [4, 20],
XSN [15] and TLS2 sampling [28]. Note that XSN is a sampling
2Two variants of top-leader sampling algorithms (i.e., TLS-e and TLS-i ) to produce
representative samples and they are capable of retaining the clustering structure
effectively.
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algorithm that explicitly considers the clustering structure, and
the sample S is selected such that it maximizes the expansion fac-
tor X (S). For MS sampling, it produces samples to minimize the
difference of the basic property (here we use degree distribution)
between the sample and the original population. RW sampling can-
not work directly on graphs with multiple connected components
and easily get trapped in dense clusters. A variant of this approach
selects a node at random if the random walk does not discover new
nodes after a fixed number of iterations. In our experiments, we
use the threshold proposed in [11], which is 100 ∗ |V |.

6.2 Datasets
We present a series of experiments on widely used LFR [9] synthetic
graphs and real-world graphs. First, the LFR generator is employed
as synthetic benchmarks because it takes a given ground-truth
clustering as an input and assumes that both node degrees and
cluster sizes have power-law distributions. In LFR benchmarks,
a set of parameters needs to be given as necessary. The mixing
parameter µ is vital and reflects the average ratio of external degree
to total degree for each node. The larger µ is, the more indistinct the
clustering structure of the benchmark is. We generate a set of LFR
benchmarks in which µ ranges from 0.25 to 0.55 with the interval
of 0.1. The other configuration settings are outlined in Table 2.

Table 2: The parameters of the LFR benchmarks

Parameter Description Value
N The number of vertices 1000
D The average degree 25
maxD The maximum degree N /10
µ The mixing parameter [0.25: 0.10: 0.55]
e1 The degree distribution exponent -2
e2 The cluster size distribution exponent -1
minC The minimum cluster-size 50
maxC The maximum cluster-size N /10

Second, we further evaluate the clustering results on real-world
graphs in which the meta-data are available, and the meta-data
have been proved to be a good proxy for clustering structure in
other studies [26, 27]. They can roughly be classified in two groups:
small and large networks. The first five datasets including Karate,
Football, Dolphin, Polbooks and Polblogs networks are relatively
small3. The other graphs are from the Stanford Large Network
Dataset Collection4. They are relatively large and numerous graph
clustering algorithms [6, 21] are computationally costly for them.
The large-scale graphs all have the corresponding meta-data that
correlate to the clustering structure to serve as the underlying
ground-truth. Here only the top 5000 ground-truth clusters from
each network are used for evaluation since the quality metrics
degrade considerably after the top 5000.

6.3 Evaluation
In the present study, researchers have only considered the sample
quality with respect to basic properties [1] (e.g. degree, clustering
coefficient, shortest-path, k-core distributions). However, the basic
3They can be obtained in http://www-personal.umich.edu/~mejn/netdata/
4The graphs and the corresponding meta-data are complete and publicly available at
http://snap.stanford.edu/data

Table 3: Summary of real-world graphs used in the exper-
iments. Abbreviations are described as follows: N: number
of nodes; M: number of edges; C: number of clusters; #
comps: number of components; CC: the average clustering-
coefficient for all nodes;

Dataset N M C # comps Density CC
Karate 34 78 2 1 0.139 0.571
Football 115 613 12 1 0.094 0.403
Dolphin 62 159 2 2 0.084 0.259
Polbooks 105 441 2 1 0.081 0.487
Polblogs 1,224 16,718 3 1 0.022 0.320
LiveJournal 84,438 1,521,988 5000 1464 0.006 0.730
Friendster 220,015 4,031,793 5000 669 0.00017 0.442
Orkut 731,514 21,992,510 5000 42 0.00008 0.247
DBLP 93,432 335,520 5000 392 0.00009 0.708
Youtube 39,841 224,235 5000 639 0.0003 0.198

properties and the corresponding measures of representativeness
are inadequate for the new target: how well the clustering struc-
ture of the original graph can be recovered by the counterpart of
samples. Hence, we describe our methodology on how to evaluate
the clustering structure quantitatively.

6.3.1 Evaluation Methodology. First we sample a representative
subgraph sample S using any sampling strategy, and then execute
the clustering algorithm5 on the subgraph S . Using these clustering
assignments of nodes in S , we infer the clustering affiliations for
the remaining nodes U = V − Vs by multiple inference methods.
Analogously, we execute the same clustering algorithm on the
whole graph G and obtain the clustering assignments of nodes in
G. Afterwards, we obtain two sets of clustering assignments to the
nodes in V : one resulting from the inference method and the other
resulting from execution of the clustering algorithm on the whole
graph. Thus, for all the nodes V in the original graph, we evaluate
these two sets of clustering assignments using multiple metrics to
validate the methods’ effectiveness.

6.3.2 Evaluation Measurements. We now briefly depict the qual-
ity metrics we employ to assess how representative the sample
counterpart is with respect to the intrinsic clustering structure in
the large population.

δ-precison & δ-recall: In general, the recall and precision are
two main aspects of the clustering quality, each aspect needs to be
handled separately without losing both’s significance. Thus, firstly
we employ δ -precison and δ -recall proposed in [28, 29] to capture
clustering structure’s differences between the sampled counterpart
and the original graph. Higher value of δ -precision indicates that
the obtained clusters of S are more precisely representative of the
ground-truth clusters ofG while higher value of δ -recall means the
ground-truth clusters of G are more successfully covered by the
obtained clusters of S . Obviously, δ -precison and δ -recall should be
high if nodes grouped together in the clusters of sample are also

5Note that in order to obtain method-independent results, two scalable and credible
clustering algorithms including: Blondel [3] and Infomap [25] are utilized to produce the
ground-truth clusters. Here, experimental results using Blondel clustering are presented
while clustering results using Infomap algorithm [25] exhibit similar behaviors and do
not report in this experiment.

http://www-personal.umich.edu/~mejn/netdata/
http://snap.stanford.edu/data
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Table 4: Inferring clustering affiliations for LFR benchmarks
from the representative samples which are produced by dif-
ferent sampling algorithms at 20% sampling rate. Abbre-
viations are described as follows: δ-P: δ-precision; δ-R: δ-
recall; NMI : normalized mutual information; T: the time-
consumption of the sampling method.

Networks Sampling Quality scores of TCI
0.5-precision 0.5-recall NMI T (s)

LFR_1000 (u=0.25)

TLS-i 0.841 0.972 0.866 3.43
TLS-e 0.810 0.801 0.279 3.49
RW 0.396 0.814 0.176 1.13
MS 0.699 0.827 0.265 8.42
XSN 0.821 0.988 0.865 60.63
IRV 0.789 0.824 0.253 1.15
MRW 0.654 0.875 0.739 1.14

LFR_1000 (u=0.35)

TLS-i 0.744 0.920 0.833 3.624
TLS-e 0.522 0.819 0.207 4.061
RW 0.228 0.826 0.164 1.171
MS 0.662 0.887 0.797 8.588
XSN 0.659 0.822 0.232 61.360
IRV 0.670 0.840 0.196 1.208
MRW 0.536 0.871 0.717 1.381

LFR_1000 (u=0.45)

TLS-i 0.706 0.909 0.782 4.99
TLS-e 0.720 0.915 0.775 4.15
RW 0.113 0.815 0.125 1.16
MS 0.718 0.820 0.230 8.52
XSN 0.653 0.922 0.744 62.03
IRV 0.740 0.939 0.789 1.17
MRW 0.275 0.828 0.513 1.19

LFR_1000 (u=0.55)

TLS-i 0.056 0.823 0.102 5.10
TLS-e 0.139 0.815 0.113 4.54
RW 0.008 0.814 0.104 1.24
MS 0.429 0.840 0.168 8.45
XSN 0.017 0.824 0.091 58.38
IRV 0.353 0.848 0.110 1.21
MRW 0.125 0.825 0.112 1.14

grouped together in the clusters of original graph with high values
corresponding to better representativeness, and vice versa.

Normalized Mutual Information (NMI): It is built on the
Shannon entropy of information theory. Formally, the entropyH
of a clustering C is

H(C) = −
∑
C ∈C

P(C) ∗ log2 P(C),

where C is a cluster in C and P(C) = |C |/N and N is the size
of nodes. Analogously, for another clustering D, the conditional
entropyH(C|D) is defined as

H(C|D) =
∑
C ∈C

∑
D∈D

P(C,D) ∗ log2
P(C)

P(C,D)
,

whereC ∈ C,D ∈ D and the joint probability P(C,D) = |C
⋂

D |/N .
Then the mutual information I of C and D is defined as

I(C,D) = H(C) − H(C|D). (1)

Then, the NMI is obtained by dividing the mutual information by
the arithmetic average of the entropies of C and D

NMI(C,D) =
2 ∗ I(C,D)
H(C) +H(D)

. (2)

The NMI value ranges the interval [0, 1] and high value of NMI
means that high correlation between the two clusterings.

6.4 Inferring Clustering Affiliations from
Graph Samples

In the first experiment, in order to show that TCI method can effec-
tively infer the clustering structure of unsampled nodes from the
representative sample, we generated LFR benchmarks containing
1000 nodes with different mixing parameter µ. The larger µ is, the
more indistinct the clustering structure of the benchmark is. The
clustering inference results from the 20% sample of multiple sam-
pling strategies are shown in Table 4. Note that we only present
δ -precision and δ -recall in which (δ = 0.5) and these quality metrics
with varying purity thresholds δ exhibit similar behaviors.

From these empirical results, we can derive that the proposed
TCI method in conjunction with cluster-preserving sampling meth-
ods (e.g., XSN, TLS-e and TLS-i) performs well on inferring the
clustering structure of the population in most benchmark graphs.
Especially, the combination of TLS-i sampling and TCI inference
outperforms other combinations when the clustering structures
of graphs are distinct (i.e., µ ≤ 0.45). These results verify that (i)
TLS-i sampling produces the sampled subgraph which preserves
the inherent clustering structure well; and (ii) TCI inference method
provides a feasible solution to infer clustering affiliations of the
original graph.

6.5 Comparison of Inference Methods
In the second experiment, multiple inference methods [13], i.e., IC,
GI and RL, are employed to infer clustering affiliations for unsam-
pled nodes of the population. For large-scale graphs, we set the
sample rate to 20% which has proved to be sufficient to preserve the
topology structure [11, 15]. Meanwhile, for small graphs, we take
a relatively large sample rate (i.e., p = 0.5) to show the inference
quality from the samples. The inferring quality of the population is
further validated by three quality metrics, i.e., δ -precision, δ -recall,
NMI. Besides, we also record the execution time of each method.
Please note that these competing methods employed produce a
probability distribution over the possible clustering assignments
for each node. The node’s probability distribution represents the
strength of clustering affiliation for the specific node. For a fair
comparison, we take the one with the highest probability as its
clustering label.

The clustering inference results of the whole graph are shown
in Table 5. We can observe that the proposed TCI algorithm out-
performs competing methods in terms of clustering quality and
execution time. The overall conclusions can be drawn as follows:

• In general, the proposed TCI algorithm shows better cluster-
ing qualities in terms of δ -precision, δ -recall andNMI in these
real-world graphs. Note that the entries that are marked with
′−′ in the table corresponds to algorithms that execution
time exceeding 48 hours or returned out of memory errors.
• The proposed TCI algorithm is more efficient than the state-
of-the-art algorithms in small graphs. Moreover, for large
scale graph, we observe that only the proposed TCI algorithm
is able to run on all these large-scale networks, and the
execution time of competing algorithms are not reported in
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Table 5: Clustering metrics by each inference method on real-world graphs using the TLS-i sampling. Each row is a specific
graph with TLS-i sampling and each column is the inference algorithm employed. All results are the mean values over 10
repetitions on each graph. Note that for small graphs the sampling rate is set to p = 0.5 while for big graphs p = 0.2. Abbrevia-
tions are described as follows: δ-P: δ-precision; δ-R: δ-recall; NMI : normalized mutual information; T: the time consumption
of clustering inferring methods.
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the table because the source codes used for its computation
cannot handle the massive size of datasets6.

Thus empirical results demonstrate that TCI algorithm is capa-
ble of inferring the clustering structure and performs better than
state-of-the-art algorithms. Meanwhile, it runs much faster than
competing algorithms for large-scale graphs.

7 CONCLUSION
Clustering of large graphs is often computationally prohibitive.
Hence, (clustering-preserving) graph sampling typically is needed.
Although existing approaches for clustering with graph sampling
show promising results, till now there was no effective and effi-
cient approach proposed for inferring clustering assignments for
all the nodes of the whole original graph – existing clustering
inference methods either have poor inferring quality or are too
time-consuming.

Our paper bridges this gap – we proposed a two-stage clustering
inference algorithm to infer clustering affiliations for all the nodes of
the original graph based on sampled clustered graph. The proposed
TCI method takes advantages of the label propagation algorithm
which makes the sample’s label efficiently propagated to unlabelled
nodes. Empirical results demonstrated that with the sample size of
only 20% of the original graph, TCI algorithm in conjunction with
any cluster-preserving sampling strategy is capable of inferring the
clustering affiliation of the population commendably and performs
better than the competing methods in most cases. Additionally, TCI
has no parameters which makes it more stable in practice without
putting more effort in tuning parameters.
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