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ABSTRACT

Prior work has demonstrated that multiple methods for link-based
classi�cation (LBC) can substantially improve accuracy when the

nodes of interest are interconnected. To date, however, very lit-

tle work has considered how methods for LBC could be applied

in domains that require continuous, rather than categorical, pre-

dictions. In addition, prior work with LBC has learned only one

predictive model to use for all nodes of a given type, but some

domains exhibit signi�cant node diversity that is not well-suited

to this approach. In response, we introduce fully heterogeneous
collective regression (FHCR), a new method that learns node-speci�c

models from data and uses these models to jointly predict continu-

ous outputs. We apply FHCR to a voting prediction task, and create

novel correlation-based links that outperform alternative methods.

In addition, we introduce multiple new methods for inferring con-

tinuous outputs that can incorporate link-based information, and

show that regression-speci�c methods based on Bayesian inference

outperform the naive approach of inserting regression into existing

LBC methods. Overall, we demonstrate the viability of the new

FHCR paradigm by producing results that are comparable or be�er

than those of previous link-unaware methods, yet are at least two

orders of magnitude faster.

1 INTRODUCTION

Increasingly, many important domains in the world can be viewed

as networks of linked nodes, such as people in online social net-

works orwebpages connected by hyperlinks. To leverage these links

for prediction and analysis tasks, Machine Learning researchers

have developed multiple techniques for link-based classi�cation

(LBC) [4, 5, 10, 12, 14, 16]. While LBC can substantially improve

prediction accuracy in some domains, current limitations greatly

restrict its applicability when used to evaluate heterogeneous do-

mains (e.g., when the collection of “nodes” under study are actually

drawn from multiple populations). Additionally, traditional LBC

predicts only categorical outputs, while link-based regression to

predict continuous outputs has been le� largely unexplored.

One such application that requires continuous outputs involves

elections. Predicting the voting outcome of national or regional

elections is a challenging yet important problem, and has great

implications for regional and international security. As just one

example, how well can the national outcome of an election be

predicted, given past voting history and some incomplete “day of

voting” results? A recent study by E�er et al. [3], using Swiss

referendum outcomes, reported high accuracy, even when only

5% of voting “regions” had reported results. �is study used a

matrix factorization approach to implicitly leverage the correlation

present between “nearby” regions. �ey did not, however, consider

formulating the regions as a network.

�is paper presents the �rst extension of LBC methods to node-

speci�c predictive models and continuous outputs, producing fully
heterogeneous collective regression (FHCR). To demonstrate the ef-

fectiveness of this approach, we apply it to the voting prediction

task of E�er et al. We show that our link-based approach can be

highly e�ective, even though the data initially contains no links.

Our contributions are as follows:

• We introduce a new paradigm, Fully Heterogeneous Collec-

tive Regression (FHCR), for predictions based on relational

data. �is new paradigm enables for the �rst time the appli-

cation of link-based inference algorithms to domains with

highly heterogeneous objects and continuous outputs.

• We introduce multiple new methods for inferring continu-

ous outputs, for both the initial “bootstrap” problem where

predictions must be made without links, and for the “collec-

tive” inference step where links are used. In both cases, we

demonstrate that novel applications of Bayesian inference

o�en lead to improved voting prediction accuracy, espe-

cially when relatively li�le information is known about a

particular vote. In addition, we show how this inference

can elegantly combine link-based information with infor-

mation about object features, yielding further accuracy

gains.

• We create novel methods for link creation based on histori-

cal correlations, and demonstrate that for voting prediction

they generally yield more accurate results than simpler

methods based on geographic proximity.

• We perform extensive evaluations of FHCR on the vot-

ing prediction task. By combining our new methods, we

achieve voting prediction results that are competitive with

or even improve upon those used by the prior study, but

execute 110-790 times faster than previous methods.

Below, Section 2 introduces relevant background on LBC and

Section 3 discusses work speci�cally related to FHCR. Section 4

explains the voting task of E�er et al. and explains why FHCR is

appropriate for this task. Section 5 gives an overview of FHCR and

explains the key steps needed to apply it to voting prediction. Sec-

tion 6 presents our experimental results, and Section 7 concludes.

2 BACKGROUND ON LBC

Assume we are given a graph G = (V ,E,X ,Y ,C) where V is a set

of nodes, E is a set of edges (links), each ®xi ∈ X is an a�ribute

vector for a node vi ∈ V , each Yi ∈ Y is a label variable for vi , and
C is the set of possible labels. We are also given a set of “known”

values YK
for nodes VK ⊂ V , so that YK = {yi |vi ∈ VK }. �en



a common link-based classi�cation (LBC) task is to infer YU , the

values of Yi for the remaining nodes VU
with “unknown” values

(VU = V \VK
).

For example, given a (partially-labeled) set of interlinked uni-

versity webpages, consider the task of predicting whether each

page belongs to a professor or a student. �e simplest (non-LBC)

approach would be to learn a model that predicts the label for page

v based solely on the a�ributes ofv , such as the presence or absence
of certain words. An LBC approach would instead combine these

“self a�ributes” with some relational features, which are based on

the labels of pages that link to v . For instance, it might construct a

relational feature such as “Count the number of v’s neighbors with
label Student.” However, this is challenging, because some labels

are unknown and must be estimated, typically with an iterative

process of collective inference [5], such as Gibbs sampling, belief

propagation, or ICA (Iterative Classi�cation Algorithm) [16].

For this paper, the most relevant collective inference approach is

ICA, a simple, popular, and e�ective algorithm [10, 12, 16]. ICA �rst

predicts a label for every node in VU
using only self a�ributes. It

then constructs additional relational features XR using the known

and predicted node labels (YK
and YU ), and re-predicts labels for

VU
using both self a�ributes and XR . �is process of feature com-

putation and prediction is repeated, e.g., until convergence.

3 RELATEDWORK

While there has been substantial prior work on collective classi�-
cation [4, 5, 10, 12, 14, 16], only a few exceptions have considered

collective regression [1, 9, 18]. Loglisci et al. [9] and Alodah &

Neville [1] both use aggregation functions like mean or median to

aggregate information from linked neighbors into relational fea-

tures that are then provided to a regression tree model for actual

prediction. Alodah & Neville predict total movie revenue using a

dataset from the IMDB database, while Loglisci et al. predict vari-

ous target values for eight small (less than 1000 nodes) social and

spatial datasets. For collective inference, Loglisci et al. essentially

use ICA where the classi�cation model is replaced with a regression

tree. Alodah & Neville use this approach as well, but also do M
rounds of gradient boosting, where subsequent rounds learn to

predict the amount of residual error that remains from previous

rounds. In contrast, Zhang et al.’s “NetCycle” [18] approach primar-

ily concerns classi�cation, again using ICA with relational features

created by aggregation. However, their paper includes one set of

experiments that perform collective regression instead of collective

classi�cation. �ey do so by replacing the classi�cation model with

support vector regression, without other modi�cations speci�c to

regression.

Our work with FHCR di�ers from the above works with col-

lective regression in two primary ways. First, we introduce and

use a “fully” heterogeneous approach, where every node has its

own regression model. �is allows us to leverage the historical

data of each region, accounting for regional di�erences. In con-

trast, the above methods use a single model for all nodes, with the

exception of NetCycle, whose “partially heterogeneous” approach

learns 2-4 di�erent models for the entire dataset (e.g., one model for

“authors”, another for “conferences”, etc.). Second, all of the above

approaches use a form of “ICA with regression,” where relational

features somehow aggregate the information about linked neigh-

bors, and then these features (together with a�ributes about each

node) are provided as input to a link-unaware regression model

(such as regression trees). We also consider this method (which we

call RegressICA), but our results show that instead constructing

a new approach that explicitly leverages the continuous nature

of the target values, and their linked neighbors, yields be�er re-

sults. In particular, our results later show that methods based on

Bayesian inference, using Gaussians to represent the learned condi-

tional distributions, lead to more accurate results while maintaining

computational tractability.

For work focused on classi�cation, rather than regression, there

have been a number of other studies that use “partially hetero-

geneous” approaches, similar to that used by NetCycle. For in-

stance, Neville and Jensen [15] studies link-based classi�cation for

a “movies” domain that includes movies, producers, and studios.

�ey learn di�erent models for each type of node (e.g., for movie,

producer, and studio), as opposed to the node-speci�c models that

we use for our “fully heterogeneous” approach. In contrast, some

other work (e.g., [7, 17]) in domains where there are multiple node

types (such as papers, authors, and conferences) still learns only a

single model (e.g., for papers), but the relational features are con-

structed based on “meta paths” that can traverse multiple types of

nodes. �us, this work also describes itself as “heterogeneous.”

Our particular task of voting prediction could potentially be

accomplished through methods based on “recommender systems”

and/or matrix factorization. For instance, Koren et al. [8] explores

the use of collaborative �ltering to generate user-speci�c movie

recommendations. Koren et al. shows how latent factorization

methods can be used to infer unintuitive relationships between

di�erent sets of factors to make more accurate predictions; E�er et

al. uses some such methods and we compare against them. Note,

however, that the domains motivating such methods typically have

very sparsely-labeled data, as a user is unlikely to, for instance, have

watched a majority of all �lms in the target domain. In contrast,

we have a dense set of historical voting records, which naturally

leads to a di�erent set of learning challenges.

4 TARGET PROBLEM & DISCUSSION

Because relational data is so commonplace, there are numerous

applications for which the FHCR paradigm could be useful for

making more accurate predictions. One of these applications is

the prediction of voting outcomes. For this task, continuous, node-

speci�c, and “online” results are desirable. First, continuous results

are desired because, while a referendum ultimately has a single

binary result (“passed” or “failed”), various stakeholders would

like to be able to predict with much greater �delity whether a

referendum will pass with strong support, weak support, or not

pass at all. Second, node-speci�c predictive models are desired

because the nodes under study are regions that exhibit signi�cant

diversity, such that using a single model for all regions would

substantially decrease accuracy. For FHCR, this approach is feasible

wherever we have extensive information about each node (region)

or small groups of nodes, as is truewith our historical voting records.

Finally, we would like online results, meaning that as the results

for more regions are reported (e.g., on the day of an election), we
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should be able to quickly make new, more precise predictions for

the remaining unreported regions.

In this paper we apply FHCR to predict voting outcomes on the

dataset used by E�er et al. [3]. �e dataset contains voting out-

comes for 281 Swiss national referendums over a period of 34 years.

As with E�er et al., we use �rst 231 votes for training and the �nal

50 votes for testing. Results are reported (as the proportion of “yes”

votes, between 0 and 1) for each of the 2352 regions (municipali-

ties) in Switzerland. Each region d is described by 25 “per-region”

demographic features xd (population, population density, language

spoken, location, etc.), while each vote n has 13 “per-vote” features

wn that are the recommendations (“for,” “against,” or no recommen-

dation) made by major political parties. Since online prediction is

desired, the task is to predict the “yes proportion,” on some test

vote, for every region, given the voting results for some number of

“known” regions (which are assumed to have already reported their

results, or to have high-quality estimates from surveying).

�e “vote” and “region” features can be used for prediction. How-

ever, to compensate for the varying popularity of di�erent votes,

E�er et al. mean-centers each training and test vote, using the true

national average for the training votes and the estimated national

average (computed using only the “known” regions) for the test

votes. �us, the possible values for prediction range from -1.0 to

1.0. We use this same approach.

E�er et al. used a four factor model to predict continuous outputs

for regional votes. �is model incorporated a bias term for each

vote, a regression term based on “region” features, a regression

term based on “vote” features, and a matrix factorization model

based o� of latent features and the set of votes. However, E�er et

al. did not use any LBC or collective regression. In particular, E�er

et al. does not treat the data as a graph or explicitly use links.

5 PREDICTIONWITH FHCR

FHCR follows a pa�ern similar to that of ICA as described in Sec-

tion 2: initial predictions are made using features, then a collective

inference procedure iteratively updates those predictions for each

region based on its relevant features and the predictions of linked
regions. �is section thus studies the following key questions re-

quired to make FHCR e�ective:

(1) How to “bootstrap” the initial predictions to provide a

baseline for our inference?

(2) How should links be computed, so as to connect the regions

into a useful graph?

(3) Given the initial predictions and informative links, how

can we perform e�ective collective inference?

5.1 Methods for “Bootstrap” Prediction

Before collective inference can be used for a particular test vote

n, we must compute a set of initial “bootstrap” predictions y
(0)
d for

each region d . �ese are computed using the vote and/or region

features, but without the use of links (see summary in Table 1).

Some methods used by E�er et al. are suitable for this task, so we

consider those �rst:

• LIN(v) - linear regression based only on the vote features. We

train each region’s model by comparing the 13 political party rec-

ommendationswm for each training votem to that region’s voting

Table 1: Summary of features and regression types used in various

“bootstrap” models.

Model Use vote feats? Use region feats? Combination Method

LIN(v) Yes No N/A

LIN(r) No Yes N/A

Joint(r,v) Yes Yes Alternating Least Squares

BayesD+Indpt(r,v) Yes Yes Approximate Bayesian Inference

BayesG+Indpt(r,v) Yes Yes Exact Bayesian Inference

JBG-Ensemble Yes Yes ALS and Bayesian Inference

outcome, yielding the following predictions for test vote n:

y
(0)
d = γ

T
d wn

where γd is a weight vector speci�c to region d .

• LIN(r) - regression based only on the region features. For test

vote n, we use a vote-speci�c model that takes xd (the 25 features

of region d) as input, with coe�cients βn learned using only the

“known” region results for vote n. �en for inference, y
(0)
d = β

T
n xd .

• Joint(r,v) - regression based on the region features and the vote

features. �is approach uses alternating least squares to learn a

joint model:

y
(0)
d = β

T
n xd + γ

T
d wn .

E�er et al. called this model LIN(r)+LIN(v).

Newmethods: Of the above methods, E�er et al. generally showed

that using both sets of features performed best. However, the linear

combination approach of Joint(r,v) is not necessarily optimal. In

response, we created three new bootstrap methods that combine

region and vote features in di�erent ways:

•BayesD+Indpt(r,v) -�is method performs Bayesian Inference

using conditional distributions for the vote and region features,

learned independently. First, we use Bayes rule to calculate the

probability that the prediction for a particular region,yd , is a certain
value y, given the region features xd and the vote featureswn :

P(yd = y |xd ,wn ) =
P(xd ,wn |yd = y) · P(yd = y)

P(xd ,wn )
∝ P(xd |yd = y) · P(wn |yd = y) · P(yd = y)

∝ P(yd = y |xd ) · P(yd = y |wn )
P(yd = y)

(1)

where the second line assumes conditional independence and the

third line re-applies Bayes rule to the �rst two terms.

To estimate P(yd = y |wn ), we apply the LIN(v) model to the

training data. �en, we generate a discrete histogram (we use 500

uniform-sized bins) based on the error between the true training

values and predictionsmadewith LIN(v), for all regions and training

votes. �is learns a single histogram for all regions, which can then

be applied during inference for a particular region (as P(yd = y |wn ))
by shi�ing the mean of the histogram to the value predicted by

LIN(v). P(yd = y |xd ) uses a similar same process but with LIN(r),

where learning uses all training votes but only the regions that

will be “known” during inference. Finally, the actual bootstrap

step �nds the most likely value of yd via Equation 1 and a discrete

estimate of the following integral:

y
(0)
d =

∫
1

−1
y · P(yd = y |xd ,wn )dy. (2)

• BayesG+Indpt(r,v) - this method also uses Bayesian Inference

to leverage the vote and region features, via Equation 1. However,
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by approximating the conditional probabilities as Gaussians, we

enable exact inference, instead of resorting to a discrete approx-
imation (hence, the “G” vice “D” in the name). In particular, we

substitute normal distributions for each probability, yielding the

following:

P(yd = y |xd ,wn ) ∝
N(βTn xd , σ̂ 2r ) · N(γTd wn , σ̂

2

v )
N(0, σ̂ 2pr ior )

.

In this equation, each mean is computed based on the results from

LIN(r) or LIN(v), or is known to be zero (due to mean-centering of

the data). �e variances (σ 2r , σ
2

v , and σ
2

pr ior ) can be estimated by

comparing predictions to actual values in the training data. With

this form, the most likely value for yd can be computed exactly,

because the product of two Gaussians f and д is also a Gaussian

[2, 6], with the following mean and variance:

µf д =
µf σ

2

д + µдσ
2

f

σ 2f + σ
2

д
and σ 2f д =

σ 2f σ
2

д

σ 2f + σ
2

д
(3)

• JBG-Ensemble - a combination of the previous two methods.

We average the predictions generated by the Joint(r,v) and the

BayesG+Indpt(r,v) models, potentially mitigating the impact of

outliers predicted by either model. Later results will show this can

be very e�ective, while remaining computationally tractable.

5.2 E�ective Link Generation

Target uses of FHCR may involve nodes, such as people in a social

network, for which links already exist or are obvious. In other cases,

as with our voting domain, there may be no explicit links, in which

case a key task is to construct informative links to connect the

nodes (i.e., regions), in a way that facilitates subsequent inference.

In our data, regions are identi�ed by latitude/longitude, and

thus one natural idea is to link all regions that are within a certain

distance, such as 5 kilometers. Distance can also be inverted and

scaled to produce link weights, so that “closer” regions have more

in�uence. Section 6 shows that both of these ideas can be e�ective.

For voting prediction, however, we hypothesized that linking

regions based on similar voting histories would prove even more

e�ective than links based on geographic proximity. �us, we exam-

ined the 231 training votes and computed the Pearson correlation

coe�cient between all pairs of regions. We then consider methods

based on linking, for each region, the k most-similar regions, or all

regions with a correlation greater than some threshold (e.g., 0.80).

5.3 Collective (Link-based) Regression

Regression techniques are well established, but collective regression

requires some kind of iterative procedure to allow the predicted and

known values to propagate throughout the links. In each case, the

initial predicted values (y
(0)
d ) are set via a bootstrap method from

Section 5.1. For inference, we �rst consider two baseline methods,

which are simple extensions of existing LBC methods to regression:

• RegressICA - �is method uses ICA, described in Section 2,

but with an underlying model of regression rather than classi�ca-

tion. Prediction for region d is based on d’s vote features and, as
a relational feature, the average predicted value for d’s neighbors.
For each iteration i (a�er bootstrap), predictions are computed as

y
(i)
d = f (wn ,

∑
j∈Ld y

(i−1)
j

|Ld | ) where f is a learned (linear) regression

model and Ld is the set of regions that link to region d . We use 10 it-

erations; more did not improve accuracy. When links are weighted,

the neighbor average is a weighted computation, but for ease of

explication we omit all such “link weight” details in this section.

• WeightedVec - Instead of using the neighbor average as a

feature for regression, this method uses the neighbor average as

its actual prediction. �us, y
(i)
d =

∑
j∈Ld y

(i−1)
j

|Ld | . �is method is analo-

gous to the “weighted vote relational neighbor” (WVRN) method

of Macskassy and Provost [11], but adapted for regression instead

of classi�cation.

New methods: We also created the following new methods for

collective inference:

• BayesD+Links - this method seeks to use Bayesian Inference to

estimate the most likely prediction for yd , given only the predicted

(and known) values of region d’s linked neighbors, yLd . �is can

be computed as follows:

P(yd = y |yLd ) =
P(yd = y) · P(yLd |yd = y)

P(yLd )
∝ P(yd = y) ·

∏
j ∈Ld

P(yj |yd = y)

where the last step assumes conditional independence of the neigh-

bors’ values given yd .
In general, estimating P(yj |yd = y) from the training data could

be a challenging task. However, we conjecture that for our purposes

this probability can be approximated as a function solely of the

di�erence between yj and yd .
1
�at idea yields

P(yd = y |yLd ) ∝ P(yd = y) ·
∏
j ∈Ld

ϕ(yj − yd ) (4)

whereϕ(x) is some arbitrary function. To approximateϕ(x), we �rst
calculate, for each regiond and training vote, the di�erence between

the mean-centered voting outcome for d and those of each of its

linked neighbors. We then add these values to a histogram (again

using 500 uniform-sized bins) to produce a discrete estimate of ϕ(x)
(shared across all regions). For inference, we can then compute the

most likely value of P(yd = y |yLd ) via an approximation of

y
(i)
d =

∫
1

−1
y · P(yd = y |y

(i−1)
Ld
)dy.

�is is similar to our previous use of Equation 2, but now predicting

with d’s neighbors instead of d’s features.

• BayesG+Links - �is method is similar to BayesD+Links, but

approximates the link-based conditional probabilities with Gaus-

sians, enabling exact inference via variants of Equation 3 (see [2]).

With this approach, Equation 4 becomes

P(yd = y |yLd ) ∝ N(0, σ̂
2

pr ior ) ·
∏
j ∈Ld
N(yj , σ̂ 2l inks )

�e �rst term is the prior, with assumed mean zero, and variance

estimated from the training data. �e link-basedGaussian for region

1
For example, we estimate that the likelihood of yj being 0.3 given yd is 0.25 is

approximately the same as the likelihood of yj being 0.4 given yd is 0.35. �is would

be approximately true if similar (linked) regions tend to vote in the same ways.
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j, which replaces ϕ(yj − yd ), uses a mean of yj (the predicted or

known value for j), and variance σ̂ 2l inks (based on ��ing ϕ(yj −yd )
to a Gaussian with the training votes).

�is method has the advantage of yielding much faster inference

than BayesD+Links (e.g., about 40 times faster in our experiments).

In addition, it avoids errors that result from discretization. However,

do the Gaussians actually represent the conditional probabilities

of Equation 4 in a way that is e�ective for inference? Section 6

evaluates their impact.

Incorporating features: �emethods discussed above (except for

RegressICA) have used only the “link” information for their infer-

ence. �e following new methods all seek to improve prediction

accuracy by also exploiting the vote and/or region features.

•WeightedVec+Delta - this method uses the WeightedVec

approach, but modi�ed to also leverage vote-based features. In

particular, we learn a region-speci�c “delta” correction, based on

the training error between each region’s true value and the value

predicted by WeightedVec, yielding

y
(i)
d =

∑
j ∈Ld y

(i−1)
j

|Ld |
+ fd (wn )

where fd uses the vote features for prediction. �is relates to the

residual learning of Alodah & Neville [1].

• BayesD+Indpt(r,v)+Links - while similar to BayesD+Links,

this method takes region and vote features into consideration in

addition to the links. Following a similar derivation as before yields

P(yd = y |xd ,wn ,yLd ) ∝
P (yd=y |xd )·P (yd=y |wn )·

∏
j∈Ld ϕ(yj−yd )

P (yd=y) (5)

where the three conditional probabilities can be estimated as previ-

ously discussed.

• BayesG+Indpt(r,v)+Links - this method uses the same ap-

proach as above, but approximates the probability distributions as

Gaussians. �erefore,

P(yd = y |xd ,wn ,yLd ) ∝
N(βTn xd , σ̂ 2

r )·N(γTd wn, σ̂ 2

v )·
∏

j∈Ld N(yj , σ̂
2

l inks )
N(0, σ̂ 2

pr ior )
(6)

• BayesG+Joint(r,v)+Links - this method uses an inference

strategy similar to BayesG+Indpt(r,v)+Links. Above, we assumed

conditional independence for the conditional probabilities associ-

ated with the region and the vote features. However, the region

and vote features may have interactions. �us, instead of using two

separate Gaussians for these features, we use one Gaussian based

on the Joint(r,v) implementation of the region and vote features.

Collapsing these two terms into one also causes the denominator

to cancel, yielding

P(yd = y |xd ,wn ,yLd ) ∝ N(βTn xd + γTd wn , σ̂
2

joint ) ·
∏

j ∈Ld N(yj , σ̂
2

l inks )

• BayesG+JGB-Ensemble+Links - this method is nearly iden-

tical to the previous method, except that the mean used for the

�rst Gaussian is computed based on the prediction from the JBG-

Ensemble bootstrap, with variance based on averaging the variance

of the two Gaussians arising from the two parts in the ensemble.

Table 2: Average RMSE a�er running only the bootstrap step, with

no collective inference. �e best result for each column is in bold.

Number of Known Regions, Nk
Bootstrap Method 1 5 10 50 100 500 1000 2116

LIN(v) 11.70 8.89 8.48 8.02 7.95 7.91 7.91 7.90

LIN(r) 12.89 9.20 8.44 7.03 6.62 6.16 6.08 6.03

Joint(r,v) 12.40 9.15 8.32 6.76 6.36 5.90 5.82 5.76

BayesD+Indpt(r,v) 11.89 8.52 7.88 6.83 6.54 6.21 6.16 6.46

BayesG+Indpt(r,v) 12.08 8.19 7.57 6.56 6.30 5.99 5.93 5.89

JBG-Ensemble 11.74 8.36 7.67 6.49 6.18 5.82 5.75 5.70

6 RESULTS

Below, we study how to use FHCR most e�ectively via appropriate

choices for bootstrap, link generation, and collective inference.

Our experiments replicate the experimental conditions used by

E�er et al., using the data and conditions described in Section 4. For

a given test vote, the task is to predict the “yes percentage” for each

region, given the results for some subset of regions (thus simulating

a prediction task with partial “day of voting” results); there are NK
such “known” regions. For each trial, these regions are selected by

�rst choosing a random “reveal order” for all 2352 regions. �e �rst

Nk regions are considered “known”, while the last 10% are reserved

as “evaluation regions.” Performance is evaluated by measuring

the “root mean squared error” (RMSE) over the evaluation regions,

averaged over 60 trials. Each trial uses the same reveal order for all

methods, and we used E�er et al.’s original code to produce results

with their methods.

6.1 Bootstrap

Table 2 shows the RMSE values vs. the number of known regions

(Nk ) as we vary the bootstrap method; lower values are be�er. In

general, error decreases as Nk increase for two reasons. First, meth-

ods that use the region features, such as LIN(r), use the known

values for the given test vote to learn their classi�er, and learn-

ing with more such results decreases error. However, error also

decreases for LIN(v), whose classi�er is learned solely from vote-

based features with 231 fully-observed training votes (and thus not

directly a�ected by Nk ), because the predicted mean for test vote n
is estimated from the Nk known regions (see Section 4). A larger

Nk produces a be�er estimate, which helps all models.

We �rst consider the three methods from E�er et al. (�rst three

rows of Table 2). When there are very few known regions (NK <

10), using only the vote features, with LIN(v), performs best. In

contrast, using only the region features has higher error, due to the

small number of regions available for training LIN(r), as discussed

above. LIN(r) improves rapidly as Nk increases, so that it outper-

forms LIN(v) for Nk ≥ 10. However, using both the region and vote

features, with Joint(r,v), performs even be�er, for Nk ≥ 10.

We next consider our three new bootstrap methods (last three

rows of Table 2), which all use some Bayesian inference to combine

the region and vote features. For all cases except Nk = 1, the Gauss-

ian approximation with exact inference (BayesG+Indpt(r,v)) yields

be�er RMSE than the discrete version (BayesD+Indpt(r,v)). More-

over, combining these predictions with those of Joint(r,v) (with

JBG-Ensemble) yields even lower error, when NK ≥ 50. Overall,

the last two rows of Table 2 show that our new methods combin-

ing the vote and region features with Bayesian inference succeed

in reducing the error, compared to the best previous alternatives,
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LIN(v) and Joint(r,v). �is demonstrates the general utility of

the Bayesian inference method for combining disparate sources of

information, as will be further demonstrated in Section 6.3.

6.2 Link Generation

Table 3 shows the results of collective inference, with di�erent link

generation methods. All cases use 10 iterations of RegressICA;

the next section considers di�erent collective inference strategies.

Based on the results of the prior section, we use JBG-Ensemble for

bootstrap, though results (not shown) using BayesG+Indpt(r,v)

instead yielded very similar results.

�e top section of Table 3 shows results with proximity-based

links, with distance thresholds of 5, 10, and 20 kilometers. Of these,

Prox-10km works best (except for Nk = 1), by striking a good

balance between having too many links (with a large threshold)

and having too few. Adding link weighting based on nearness (with

Prox-10km-Wt) does not consistently improve the performance.

�e second section of Table 3 shows results with links chosen by

correlation, e.g., linking all pairs of regions with a correlation of at

least 0.60 or 0.80. Pickingmany links with the lower threshold (Corr-

0.60) performs be�er when many regions are “known” (Nk > 500);

in this case, the high value of Nk reduces prediction uncertainty,

and averaging over many links is helpful. In contrast, the higher

threshold (Corr-0.80) performs be�er when Nk ≤ 500, indicating

that having a smaller number of strongly correlated links is more

e�ective. �e problem with this approach, for some cases, is that

using a high threshold causes some regions to have only a few

links. In response, the next two rows establish a minimum number

of links for each region. �is method links region d to all other

regions with correlation at least 0.80, or, if there are not enough such

regions to meet the minimum, to the top 10 or 20 most strongly

correlated regions. With this strategy, Corr-0.80-Min-10 almost

always improves over Corr-0.80 and Corr-0.60. For instance, for

Nk = 1000 the RMSE improves from 6.40 with Corr-0.80 to to 5.49.

Encouraged by the success of se�ing a minimum number of links,

the third section of Table 3 thus considers linking each region to

its top k = 10 or k = 100 correlated other regions. Using 10 links

for each region (Corr-10) almost always performs a li�le be�er

than the methods discussed above, and substantially be�er than

using 100 links (Corr-100). For instance, for Nk = 1000, Corr-10

has RMSE of 5.46, while Corr-100 has RMSE of 5.98. �e last two

rows of Table 3 show results where the links are weighted based

on the inter-region correlation values. While leading to marginal

improvements in some cases, we �nd that weighting links in this

case makes minimal di�erence overall. For Corr-10-Wt, this is

because there is li�le variation in the correlation values when only

10 links are chosen, so link weighting makes li�le di�erence. For

Corr-100-Wt, the di�erences (vs. Corr-100) are larger but still quite

small. Future work should consider whether a di�erent correlation

formula (instead of Pearson’s) might provide values more useful

for this task, and make the �nal results less sensitive to the number

of links chosen.

Overall, we �nd that we �nd that Corr-10-Wt is themost e�ective

general strategy. While Prox-10km (and sometimes Prox-5km)

performs best for Nk ≤ 10, Corr-10-Wt is still an e�ective strategy

for these values of Nk . �us, we chose Corr-10-Wt as our linking

strategy for the next sections.

Table 3: Average RMSE of various link generation strategies when

running RegressICA with the Ensemble bootstrap.

Number of Known Regions, Nk
Linking Method 1 5 10 50 100 500 1000 2116

Prox-20km 12.48 9.11 8.42 7.38 7.06 6.29 5.98 5.83

Prox-10km 11.84 8.52 7.85 6.77 6.47 5.97 5.80 5.65

Prox-5km 11.78 8.69 8.12 7.22 6.97 6.40 6.17 5.98

Prox-10km-Wt 11.81 8.53 7.87 6.79 6.49 5.97 5.79 5.60

Corr-0.80 12.21 9.01 8.29 7.15 6.88 6.51 6.40 6.30

Corr-0.60 13.85 10.02 9.16 7.90 7.64 6.50 5.98 5.70

Corr-0.80-Min-10 12.33 8.92 8.08 6.61 6.25 5.70 5.49 5.31

Corr-0.80-Min-20 12.45 8.99 8.15 6.67 6.32 5.79 5.56 5.32

Corr-10 12.20 8.87 8.08 6.64 6.24 5.66 5.46 5.29

Corr-100 14.09 10.29 9.39 8.07 7.79 6.58 5.98 5.63

Corr-10-Wt 12.20 8.87 8.08 6.64 6.24 5.65 5.46 5.28

Corr-100-Wt 14.06 10.25 9.35 8.00 7.72 6.54 5.94 5.60

6.3 Collective Inference

Table 4(a) shows results of varying the collective inference method,

using JBG-Ensemble for bootstrap and Corr-10-Wt for link genera-

tion. All methods use 10 iteration of collective inference.

RegressICA and WeightedVec can be considered “baseline”

methods for FHCR that are adapted from typical approaches to link-

based classi�cation. Since RegressICA uses features and links, it
performs be�er than WeightedVec (which use only links), except

for NK ≤ 5. Nonetheless, WeightedVec also obtains accuracy

close to that of RegressICA when Nk is very high; this is reminis-

cent of WVRN’s strong classi�cation performance, compared to

more complex methods, for more densely-labeled graphs [11].

�e second section of Table 4(a) compares the three “link only”

methods: WeightedVec, BayesD+Links, and BayesG+Links.
2

In every case, our use of Bayesian inference decreases the error

compared to the simple averaging approach of WeightedVec (by

0.03 to 0.19), and the Gaussian approximation with BayesG+Links

further reduces error compared to the discrete approximation with

BayesD+Links (by 0.01 to 0.10). In addition to reducing error,

inference with the Gaussians also executes about 40 times faster

than with the discrete version.

�e third section of Table 4(a) adds the use of vote and/or re-

gion features to the three “link-only” methods. With Weighted-

Vec+Delta, this consistently reduces the error, sometimes sub-

stantially (e.g., from 5.94 to 5.50 when Nk = 500). With the four

methods based on BayesD and BayesG, however, the results are

more muted. While adding feature information during inference

(with Indpt(r,v), Joint(r,v), or JBG-Ensemble) generally improves

accuracy compared to BayesD+Links and BayesG+Links, the error

improves by at most 0.23 and sometimes gets slightly worse. �us,

while adding feature information generally improves the collec-

tive inference, with the Bayesian inference it is surprising that this

addition is not more helpful. �e next section addresses this issue.

6.4 Improving Inference via Variance Scaling

�e previous section observed that incorporating the region and

vote features into our inference was bene�cial. However, the fea-

tures were signi�cantly less helpful for Bayesian inference than

they were for WeightedVec. We conjecture that this indicates

that the Bayesian methods are not balancing, as e�ectively, the

2
Note that these “link only” inference methods still use the feature information during

bootstrap.
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Table 4: RMSE for various collective inferencemethods, using JBG-

Ensemble bootstrap and Corr-10-Wt linking. Within each column,

we bold the best results. Part (a) of the table uses methods from

Section 5.3, while part (b) adds “variance scaling” (see Section 6.4).

Number of Known Regions, Nk
Inference Method 1 5 10 50 100 500 1000 2116

(a) Proposed FHCR methods (without variance scaling)

RegressICA 12.20 8.87 8.08 6.64 6.24 5.65 5.46 5.28

WeightedVec 12.07 8.84 8.14 6.98 6.63 5.94 5.62 5.33

BayesD+Links 11.90 8.59 7.95 6.91 6.59 5.91 5.59 5.30

BayesG+Links 11.87 8.57 7.94 6.87 6.52 5.81 5.52 5.27

WeightedVec+Delta 11.98 8.65 7.88 6.48 6.09 5.50 5.31 5.15

BayesD+Indpt(r,v)+Links 11.88 8.51 7.88 6.91 6.61 5.93 5.60 5.30

BayesG+Indpt(r,v)+Links 11.86 8.48 7.86 6.86 6.53 5.82 5.53 5.27

BayesG+Joint(r,v)+Links 11.88 8.60 7.94 6.74 6.36 5.69 5.44 5.22

BayesG+JGB-Ensemble+Links 11.80 8.46 7.81 6.64 6.31 5.78 5.59 5.59

(b) BayesG methods with addition of variance scaling

BayesG+Indpt(r,v)+Links 11.82 8.16 7.53 6.45 6.10 5.56 5.40 5.26

BayesG+Joint(r,v)+Links 11.80 8.55 7.86 6.51 6.11 5.48 5.30 5.20

BayesG+JGB-Ensemble+Links 11.69 8.33 7.64 6.44 6.13 5.64 5.53 5.59

link-based and the feature-based information. In addition, care-

ful comparison with Table 2 shows that, so far, the best results

with collective inference are actually worse than the best results

with just bootstrap, when NK ≤ 10 (for instance, for Nk = 5,

BayesG+JGB-Ensemble+Links has RMSE of 8.46, but “bootstrap-

only” BayesG+Indpt(r,v) obtains 8.19). �us, when there is more

prediction uncertainty (due to fewer “known” regions), the Bayesian

collective inference is sometimes doing more harm than good.

We conjecture that the problem with the Bayesian methods is

that they treat all linked neighbors as being equally “reliable” for

prediction. In order to improve our Bayesian inference, we must

somehow teach it to discriminate between certain and uncertain

values, “known” and “unknown” neighbor predictions. �is would

also allow a region’s features to have more weight when its linked

neighbors are less certain, which could help for the “small NK ”

scenario.

Fortunately, certain properties of our BayesG approach can en-

able us to introduce this “discrimination,” as we now describe. Equa-

tion 3 shows that, when combining two Gaussians, the Gaussian

with the smaller variance will have more impact on the resulting

mean. However, Equation 6 uses the same term, N(yj , σ̂ 2l inks ) for
each neighbor. In this term, the mean for each neighbor varies

(based on the predicted or known value yj ), but the variance is the
same, regardless of the certainty of yj . �is variance is learned

from the training data, where there are no prediction errors, and

thus is appropriate for a link to a “known” region. When linking to

a “predicted” region, however, this estimate likely underestimates

the true variance. �erefore, we propose to scale the variance used

for “unknown” regions as follows:

σ̂ 2l inksToUnknownReдions = KU · σ̂ 2l inks
where KU is a constant learned via cross-validation. In particular,

we evaluate the RMSE obtained via collective inference on the last

15 votes of the training data, using KU ∈ {2, 4, 8} and select the

KU that minimizes RMSE on this validation data. We then use that

KU for inference on the actual test data and report results. With

KU > 1, the larger variance will lessen the predictive in�uence of

regions with uncertain predictions.

Table 4(b) shows the results for three Bayesian inference variants

with the addition of this “variance scaling.” As desired, the use of

variance scaling leads to substantial error reductions in many cases.

For instance, BayesG+Indpt(r,v)+Links improves from 8.48 to 8.16,

for Nk = 5, which is the best for any method in Table 2 or Table 4.

Overall, this eliminates the situation where “bootstrap” only results

outperformed the best collective inference, and in general some

form of Bayesian inference with variance scaling now performs

best among the FHCR methods that we consider in Table 4, with

two slight exceptions at Nk = 100 and Nk = 2116.

6.5 Discussion and Comparison

Table 5 compares our best results (using Bayesian inference with

variance scaling) with the four methods that E�er et al. used for

their in-depth comparisons. �e �rst two methods are baselines:

BIAS, which simply uses the average of all “known” results as its

prediction, and the previously discussed LIN(v), which uses regres-

sion on the vote features. �e next two methods are those that E�er

founded performed best: MF+GP(r) and MF+GP(r)+LIN(v). Both

use matrix factorization (MF) combined with a Gaussian process

(GP) for the region features.

�e le� side of Table 5 reports per-region RMSE results as used

elsewhere in this paper, while the right side shows the national

“binary error rate.” To compute this metric, which E�er et al. also

considered, we �rst use the per-region predictions weighted by

region population to compute an overall “national” prediction; val-

ues greater than 0.5 yield a prediction of “pass” as the overall vote

outcome. �e error rate is then the fraction of votes that are incor-

rectly classi�ed as “pass” vs. “fail.” �e error rate slightly increases

when NK is very high; E�er et al. a�ributes this e�ect to weighting

the �nal prediction by each region’s population, as opposed to the

actual “day of voting” turnout, which is not a priori observable.
Overall, Table 5 shows that FHCR is highly e�ective at the vot-

ing prediction task. In particular, our new methods (and E�er’s)

consistently decrease the errors compared to the BIAS and LIN(v)

baselines. Moreover, when NK is smaller, one of our new FHCR

methods produces the best results, both for per-region RMSE and

the national error rate results. For per-region RMSE, our methods

are somewhat be�er than E�er’s (by 0.01-0.19), when Nk < 50,

while they produce competitive results (lagging by at most 0.41

RMSE) for larger values of Nk . Interestingly, our methods do even

be�er (relatively) on the national error rate results, suggesting that

they tend to do especially well on more populous regions (which

have a larger e�ect on the national outcome). In particular, while

the E�er methods perform best when NK ≥ 500, for all NK < 500,

our new BayesG+Indpt(r,v)+Links (with variance scaling) yields

the lowest national error of any method. For instance, when only

100 regions have “known” results, this method has an error rate of

just 0.87%, while the best E�er method has an error rate of 1.23%.

Even more signi�cantly, our new methods based on Bayesian

inference are much faster than E�er’s best methods. In partic-

ular, running on an Intel i7-4600M 2.90 GHz CPU, E�er et al.’s

MF+GP(r)+LIN(v) takes about 480 minutes to fully train and pro-

vide one trial of inference for one vote, while MF+GP(r) requires

3360 minutes.
3
In contrast, using our models based on BayesG,

including cross-validation for variance scaling, requires only 4.25

minutes, a speedup of 110-790 times vs. the E�er models. Note

3
For both our code and E�er et al.’s, the runtime is dominated by training the model,

while inference runs much more quickly. �e simpler MF+GP(r) took longer (vs.

MF+GP(r)+LIN(v)) because more learning iterations were required.
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Table 5: Comparison of the best results with FHCR (�rst three rows) vs. two baseline methods from Etter et al. (next two rows) and the best

results from Etter et al. (last two rows). On le�, we report average RMSE results for each region, as in the rest of the paper. On right, we show

binary error percentages, where goal is to predict the overall outcome (pass/fail) for each vote. Within each column, we bold the best result.

Per-region results (RMSE) National results (binary error percentage)

Number of Known Regions, Nk : 1 5 10 50 100 500 1000 2116 1 5 10 50 100 500 1000 2116

New FHCR methods based on BayesG (with variance scaling)

BayesG+Indpt(r,v)+Links 11.82 8.16 7.53 6.45 6.10 5.56 5.40 5.26 14.33 6.40 4.47 1.53 0.87 0.80 0.93 1.97

BayesG+Joint(r,v)+Links 11.80 8.55 7.86 6.51 6.11 5.48 5.30 5.20 14.70 7.87 5.63 2.20 1.27 1.17 1.20 1.97

BayesG+JGB-Ensemble+Links 11.69 8.33 7.64 6.44 6.13 5.64 5.53 5.59 14.40 7.03 4.87 1.60 1.03 1.33 1.30 2.33

Methods from Etter et al. [3]

BIAS 12.89 10.34 9.98 9.60 9.54 9.51 9.50 9.50 15.63 10.00 8.30 6.67 6.00 4.17 3.80 2.00

LIN(v) 11.70 8.89 8.48 8.02 7.95 7.91 7.91 7.90 14.47 8.50 5.90 2.33 1.97 1.33 1.43 1.93

MF+GP(r) 12.89 8.90 7.76 6.03 5.68 5.18 5.01 4.87 15.63 8.60 5.53 1.83 1.23 0.43 0.80 1.97

MF+GP(r)+LIN(v) 11.84 8.35 7.54 6.20 5.86 5.37 5.23 5.15 14.60 7.83 5.30 2.47 1.97 0.67 0.67 1.90

that this faster time is much more amenable to online and dynamic

analysis, as useful for “day of voting” predictions. �us, compared

to prior work, our new FHCR methods obtain comparable or bet-

ter accuracy, especially when relatively few regions have reported

results, while executing at least two orders of magnitude faster.

7 CONCLUSION

Link-based classi�cation (LBC) has been shown to substantially

improve accuracy in a variety of domains, but prior to this under-

taking had rarely been applied to continuous domains, and never to

heterogeneous domains where rich temporal/historical information

could potentially enable node-speci�c models. Our results show

that extending the LBC paradigm to fully heterogeneous collective
regression (FHCR) indeed addresses these limitations of LBC.

We have developed techniques that are e�cient and e�ective.

In particular, we introduced novel methods that combine feature-

based and link-based information using Bayesian inference. We

showed that these methods always outperformed extensions of

LBC methods like ICA, and almost always outperformed multi-

ple versions based on neighbor averaging (e.g., as with WVRN

[11]). Moreover, we demonstrated results that are comparable to

or slightly be�er than the previous link-unaware methods used by

E�er et al., especially when the results from only a small number

of regions are known — yet our methods are at least two orders of

magnitude faster. �is greatly facilitates online prediction of results,

for example for updated “day of voting” results, or for pre-voting re-

sult forecasting, where resources are available to extensively canvas

only a small fraction of voting regions.

Future work should consider further improvements to these

methods. For instance, we demonstrated that “variance scaling”

was highly e�ective at reducing error for our methods based on

Bayesian inference Future work should study further re�nements,

such as varying the e�ective variance used for each region based

on an estimated con�dence for its current prediction [13].

Some aspects of our proposed methods are speci�c to the voting

prediction task that we used, such as combining information from

two distinct feature sets (the “per vote” and “per region” features)

that required distinct learning strategies. Other domains where

FHCR could be useful may not have such feature diversity. However,

our methods using Bayesian inference to combine the information

from a varying number of linked neighbors, and to combine that

information with feature-based predictions, are applicable in other

se�ings, such as per-region sales prediction, weather forecasting,

crowd-sourcing predictions [18], and other time-varying social

phenomena. Future work should apply FHCR to these domains.
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