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ABSTRACT
Recently there has been significant interest in low dimensional rep-
resentations of graphs that can then be exploited by machine learn-
ing and data mining techniques. The geometric relationships within
these learned representations should reflect those between nodes in
the original graph. Most work has concentrated on unsigned graphs,
which only model positive relationships. However, such techniques
can be inadequate for signed graphs, which model both positive and
negative relationships. In this work in progress paper, we present a
method - StEM (Signed neTwork Embedding Model) - for learning
representations of signed networks that achieves improved perfor-
mance on tasks such as visualization, node classification and signed
link prediction.
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1 INTRODUCTION
There are several biological [14, 39], social [12, 29], and technologi-
cal [6, 35] systems that can be expressed as graphs. In such systems
the individual actors or agents comprise the nodes and their rela-
tionships/interactions comprise the edges of the graph. Given the
ubiquity of data that can be represented as a graph, there has been
growing interest in developing data mining and machine learning
techniques that can operate on data that has been structured as a
graph or a network. (Note that the terms graph and network are
used interchangeably in this paper.)

Given the diversity of systems that can be decomposed into ac-
tors and their interactions, there are several graphical models that
can be applied. Unsigned networks are the most well-studied of
these models. In unsigned networks, all nodes are drawn from the
same overall set of objects and all edges denote the same type of
bi-directional relationship. The quintessential unsigned network is
the Online Social Network known as Facebook [13] where users
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are nodes and bidirectional friendship relationships are represented
by edges. Although the edges of an unsigned network can be as-
signed numeric weights to express the strength of the relationships
they represent, the edges all denote the same sort of relationship -
typically a positive one.

While many datasets can be adequately modeled as unsigned
networks, others requiremore nuance to be represented than simply
the existence of a relationship. In many systems agents can have
interactions with one another that can be deemed either positive or
negative [48] and these are better represented as a signed network.
In a signed network, nodes are drawn from a single set of objects,
but edges may be denoted as either positive - indicating a friendly
relationship - or negative - indicating an antagonistic relationship.

Graphs are becoming an increasingly popular way to model
structured data in order to perform machine learning and data min-
ing tasks. These tasks include link prediction [33], clustering [38],
node label classification [4], anomaly detection [2], visualization
[34], and recommendation [23, 32]. To perform machine learning
and data mining on graphs, we compute features of the nodes and
edges that constitute the graph. These computed features can then
be fed into techniques such as logistic regression and K-means
clustering to predict and analyze properties and structures of the
graphical data under consideration. However, this process of fea-
ture/representation engineering is a time-consuming and tedious
process that can require the input of a domain expert. Furthermore,
the features obtained during manual feature detection can be tightly
coupled to the downstream task and even the data itself.

Representation learning is an alternative to manual feature engi-
neering. In representation learning, instead of manually designing
features, we design a procedure that can learn features of the ob-
jects under study for a particular type of dataset. The methodology
of representation learning has yielded good results in domains such
as natural language processing [36].

Representation learning on graphs usually takes one of two ap-
proaches. The first involves factorizing a matrix encoding of the
graph. The second approach involves designing a neural embedding
model that solves an auxiliary task related to the observed topol-
ogy of the graph. Many unsigned graphs exhibit a property called
homophily whereby edges are formed between neighbours having
similar properties. Consequently, the representation learned for a
particular node should reside close in the vector space to the repre-
sentations of its neighbors. However, homophily in a signed graph
is primarily observed among positive neighbors [49]. Hence, if an
embedding technique designed for unsigned networks is applied to
a signed network, then nodes may be placed in close proximity with
its foes - this is undesirable. We first present a neural embedding
model for signed networks - StEM. We then compare this model
with another state of the art model called SiNE [52]. Comparisons
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aremade for graph visualization, node classification, and signed link
prediction tasks. Advantages include similar or better performance,
reduced training time and fewer hyper-parameters.

2 PROBLEM DEFINITION
In this section we provide the signed networks model first intro-
duced by Wang et al. [52] and Dong et al.[9]. We also draw from
Tang et al.’s [48] definition of a signed network.

Definition 2.1. Signed Network: A signed network G = (V, E)
is an ordered pair of sets, where V is the set of nodes and E ⊆
V ×V × {−1, 1} is the set of edges. Note that for every triple in E,
the last component represents the sign of the edge where -1 indicates
a negative edge and 1 indicates a positive edge. In addition, we let
E− = {(u,v) | (u,v, s) ∈ E and s = −1} be the set of negative edges
and likewise we let E+ = {(u,v) | (u,v, s) ∈ E and s = 1} be the set
of positive edges. We let | · | be the standard cardinality operator, and
as such as we let N = |V | be the number of nodes in G.

By considering a signed network as input, we formally define
the problem of feature/representation learning in signed networks
as follows.

Definition 2.2. Representation Learning in Signed Networks:
Given a signed network G = (V, E) and number of dimensions
d ∈ Z+, our task is to learn a function f : V → Rd , where d << N ,
such that the structural relationships contained in E are reflected in
the representations output by f .

Note that the function f can take many forms. In StEM, we let
f be the output of a hidden layer of a neural embedding model. We
define a neural embedding model below:

Definition 2.3. Neural Embedding Model: Given a set D of size
N indexed on [1,N ] and d ∈ Z+, a neural embedding model is a
neural network designed to learn a weight matrixW ∈ RN×d , where
d << N . InW ,Wn, : (thenth row of the matrixW ) is the representation
learned for item with index n. We can learnW by solving some sort
of auxiliary task using relationships observed in D.

Hence, our objective is to design a neural embedding model that
can be used to learn representations for signed networks. In the
following section, we describe our proposed approach: StEM.

3 DESCRIPTION OF PROPOSED METHOD
Drawing from the our insights on homophily, we would expect that
most properties of interest in a signed network would be related
to the separation of opposing subgroups in said signed network.
Consequently, a good representation learning method for signed
networks should result in these subgroups being well separated
from one another. Suppose, in addition, we also learn a decision
boundary for each node that separates the node’s friends from its
foes. Jointly learning these representations with associated deci-
sion boundaries would allow us learn representations that capture
global information related to the separation of opposing groups.
We suspect that the representations learned by such an approach
would be of higher quality than those representations learned by
using a distance based ranking approach that considers only local
information.

3.1 Mathematical Formulation
Recall that, in a signed network, we have two edge types: positive
and negative. Given a signed networkG = (V, E), we can formulate
the task of learning our representation function f ∗ as a maximum
likelihood problem as described below:

max
f ,θ

∏
(u,v,s)∈E

Pr (y = I{s=1} | u,v,θ , f ) (1)

where I is the indicator function, f : V → Rd is our representation
function that maps nodes to points in a d-dimensional vector space,
and θ is the set parameters of the probability function. By taking
logs and multiplying by −1, Equation (1) becomes:

min
f ,θ

∑
(u,v,s)∈E

−loд Pr (y = I{s=1} | u,v,θ , f ) (2)

To make (2) tractable, we need to impose restrictions on both the
forms of Pr and f . First, consider the form of Pr . Since the codomain
of Pr is [0, 1], we let Pr be the following:

Pr (x | u,v,θ , f ) =
{
σ (ζ (u,v ;θ , f )) x = 1
1 − σ (ζ (u,v ;θ , f )) x = 0

(3)

where σ is the logit function. Note that we introduce a function
ζ : V ×V → R that acts as a “measure" of relative similarity of
two nodes. We let ζ be a function of the following form:

ζ (u,v ;θ , f ) = φ(f (u); β)M2φ(f (v); β)T + b2 (4)

whereu,v ∈ V , f (u), f (v) ∈ Rd are feature (row) vectors foru and
v respectively,M2 ∈ Rd×d is a learnable matrix of weights,b2 ∈ R is
a learnable bias, φ : Rd → Rd is a parameterizable activation func-
tion, and β is a learnable parameter of φ. Note that b2,M2, and β ∈
θ , and that (4) may not be symmetric with respect to its arguments,
i.e φ(f (u); β)M2φ(f (v); β)T + b2 , φ(f (v); β)M2φ(f (u); β)T + b2.
Equation (4) captures the intuitions we expressed at the start of Sec-
tion 3. We interpretφ(f (u); β)M2 as computing a decision boundary
that is specific to u that allows us to separate u’s friends from u’s
foes. If u and v are friends, ζ (u,v ;θ , f ) should be positive, thereby
leading to Pr (x = 1 | u,v,θ , f ) > Pr (x = 0 | u,v,θ , f ). Likewise,
if u and v are enemies, ζ (u,v;θ , f ) should be negative, thereby
leading to Pr (x = 1 | u,v,θ , f ) < Pr (x = 0 | u,v,θ , f ). We let φ
be a single-channeled parameterized leaky rectified linear unit as
defined by He et al. [22]. Its definition is shown below:

φ(x[i]; β) = max(0,x[i]) + β min(0,x[i]) (5)

where x[i] is the ith component of vector x . When describing passes
through the neural network, we call this function PLeakyReLU (x , β).

With the structure of the probability function outlined, we can
now turn our attention to the form of the representation function
f . We define the structure of f : V → Rd as follows:

f (u) = (M1д(u)T + b1)T (6)

д(u) =Wu, : (7)
where u ∈ V , M1 ∈ Rd×2d , W ∈ RN×2d , and b1 ∈ R are all
learnable parameters. We letWu, : be the uth row of matrixW .

Given the above, we can design a feed-forward neural network
that accepts the indices of two nodes, u and v , and outputs the
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probability of a positive edge existing from u to v . We describe a
forward pass through the network as below. Note that we have
highlighted the learnable parameters of the model. From this point
on, we shall refer to the set of learnable parameters in our model
as Θ.

ru =Wu, : rv =Wv, :

xu = (M1r
T
u + b1)T xv = (M1r

T
v + b1)T

qu = PLeakyReLU (xu , β) qv = PLeakyReLU (xv , β)

z = quM2q
T
v + b2 p = σ (z)

Recall that our representation function is expressed in the above
forward pass. To extract the representation for a node u, we only
need to make a partial forward pass through the network as follows:

ru =Wu, :

xu = (M1r
T
u + b1)T

3.2 Training StEM
3.2.1 The Loss function. With the structure of our neural net-

work defined, we can now restate our objective in Equation (2) as a
loss function in terms of the output of our neural network. Note that
in the following, p denotes a paramaterizable function encoding
the structure of the neural embedding model described above, and
p(u,v ;Θ) is the application of neural network p with the parameter
list Θ to the edge from u to v to determine the probability of it
denoting a positive relationship; consequently, since we have only
two types of edges, 1−p(u,v ;Θ) is the probability of the edge from
u to v denoting a negative relationship.

L(E,p,Θ) =

− 1
|E |

∑
(u,v,s)∈E

I{s=1} log(p(u,v ;Θ))+(1−I{s=1}) log(1−p(u,v ;Θ))

(8)

To prevent overfitting, we apply standard L2 regularizations on the
parameters contained in Θ, to obtain:

L(E,p,Θ) =

− 1
|E |

∑
(u,v,s)∈E

I{s=1} log(p(u,v ;Θ))+(1−I{s=1}) log(1−p(u,v ;Θ))

+ λ
∑
θ ∈Θ

| |θ | |2 (9)

where 0 < λ << 1 is our regularization constant that controls the
degree of regularization we apply during training.

3.2.2 Initialization and Mini-batching. Prior to training the net-
work, we need to randomly generate values for its parameters.
During our development of StEM, we found that Xavier initial-
ization [15] worked well in practice forW ,M1,M2,b1, and b2. We
initialized β to 0.

As noted by Leskovec et al. [30], there can be an imbalance in the
number of positive edges versus the number of negative edges in a
signed network. Consequently, we used undersampling during each
epoch to ensure that we sampled equal numbers of positive and
negative edges to prevent the signal contributed by one edge type

drowning out the signal contributed by the edges of the opposite
type.

3.2.3 The Training Algorithm. There are several variants of sto-
chastic gradient [46] that can be used to train neural networks,
including ADAM [25], AdaDelta [55], and AdaGrad [11]. We em-
pirically tested these methods and found that our neural networks
encoding StEM converged faster using AdaGrad.

3.3 Complexity of StEM
Consider that we are learning vectors of size d . Making a single
pass through the network would have computational complexity
O(d3). Backpropagation would also incur a computational com-
plexity of O(d3). In addition, we would make both forward and
backward passes through the neural network element in a batch.
Since we undersample our edges then the size of each mini-batch is
E = min{|E+ |, |E− |}. Hence, a single epoch has complexity O(Ed3).
If we iterate for t epochs, then the computational complexity of
training our model is O(tEd3).

4 EXPERIMENTS
We learn graph representations for use in downstream machine
learning and data mining tasks. In this section, we describe the
experiments we conducted to examine the effectiveness of StEM in
learning useful representations for signed graphs.We consider three
tasks: visualization, node classification, and signed link prediction.

To benchmark our results, we compare representations learned
by StEM with representations learned by Wang et al.’s SiNE [52]. In
our experiments, we set the hyperparamters to the values indicated
by Wang et al. Note that several datasets used in our experiments
were complete graphs, i.e. every node in the graph is connected to
every other node. This would obviate the need to incorporate the
virtual node used by SiNE. For such datasets, we used SiNE/P0 and
indicate accordingly.

We implemented both StEM and SiNE in Python 3.6 using Py-
Torch 0.30 [40] and the standard scientific Python stack [18, 24,
41, 50]. Both our implementation of StEM and SiNE are publicly
available1.All experiments were run on a 2015 MacBook Pro with
a Core i5 processor and 8 GB of RAM. No GPUs were used in our
experiments.

4.1 Datasets and Data Processing
We used several datasets throughout our experiments. The Bit-
coinOtc and BitcoinAlpha [28], Epinions [30], Wiki-Rfa [54] and
Slashdot [30] datasets were downloaded from the SNAP 2 [31]
repository. The US Senate and House roll-call votes [53] dataset
were downloaded through the ICON 3 [8] repository. The Tribes
[43] dataset was reconstructed from tables presented by Doreian
and Mrvar [10].

While many of the datasets were structured as explicit signed
networks, Wiki-Rfa, Senate-104, House-102, House-103, House-104,
House-105, House-106, and House-107 were not originally encoded
as explicit signed networks. We transformed the Wiki-Rfa dataset
into a signed network by creating a positive edge between user u
1https://github.com/InzamamRahaman/StEMPublic
2snap.stanford.edu
3icon.colorado.edu

https://github.com/InzamamRahaman/StEMPublic
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Dataset N |E+ | |E− |
BitcoinOtc 5881 32029 (90%) 3563 (10%)
BitcoinAlpha 3783 22650 (96%) 1536 (4%)
Senate-104 103 4876 (46%) 5630 (54%)
Epinions 131828 717667 (85%) 123705 (15%)
Slashdot 77350 396378 (77%) 120197 (23%)
Wiki-Rfa 11368 144451 (78%) 41176 (22%)
Tribes 16 61 (50%) 61 (50%)
House-102 441 69338 (38%) 124702 (64%)
House-103 442 86302 (44%) 108620 (56%)
House-104 445 90410 (46%) 107170 (54%)
House-105 444 73034 (37%) 123658 (63%)
House-106 440 49588 (26%) 143572 (74%)
House-107 444 38362 (20%) 158330 (80%)

Table 1: Statistics for Signed Network Datasets Used In Experiments

and user v if u supported v’s request for adminship and creating a
negative edge if u opposed v’s request for adminship. We ignored
neutral votes.

The voting record datasets, i.e. House-# and Senate-104, can ini-
tially be conceived as a bipartite, heterogeneous signed network. In
our paper, we consider only homogeneous signed networks. Conse-
quently, the voting record datasets required more processing than
theWiki-Rfa datasets to transform them into signed networks. Each
voting dataset provided a matrix encoding every representatives’
support or rejection for each bill; moreover, the matrix also encoded
whether a representative abstained from voting on a bill. We trans-
formed this matrix into a complete signed network by constructing
an undirected complete graph. The sign for an edge between nodes
i and j is denoted as labeli j ; labeli j is computed as follows:

ui [a] =
{
vi [a] if vj [a] , 0
0 otherwise

uj [a] =
{
vj [a] if vi [a] , 0
0 otherwise

labeli j =

{
1 if H (ui ,uj ) ≤ δ

−1 otherwise

where vy [x] is the vote of senator y on bill x (either 1, 0, or -1),
and H is the hamming distance [20] between two vectors. For the
House-# datasets, we set δ = 0.5, and for the Senate-104 dataset we
set δ = 0.45. We summarize statistics for all datasets in Table 1

Aside from structuring the data as a signed network, StEM re-
quires no extra preprocessing of data. However, SiNE requires the
extraction of node triples from the dataset such that each triple
contains a positive edge and a negative edge. These triples are com-
puted from E. During some of our experiments, we train both StEM
and SiNE on a subgraph of the original signed network. In such
cases, the triples extracted for SiNE were extracted from the edges
contained in the subgraph of the original graph.

4.2 Data Visualization
A common task in exploratory data analysis is visualization. Using
visualization, we can develop insight into the underlying patterns
in the data under interrogation. In the case of visualizing graphical
data, a challenge arises in deciding how nodes ought to be projected

into a 2D space in relation to one another. This is the problem of
determining the graph layout [27].

One strategy is to project the nodes of a graph onto a high di-
mensional space and to then use manifold learning/dimensionality
reduction techniques such as MDS [5] and tSNE [34] [21] to project
this high dimensional space into a 2D space. Since we would ex-
pect related nodes to be close to one another in the feature spaces
learned by both StEM and SiNE(or SiNE/P0), we assert that these
learned representations can be used as the high dimensional in-
put into a dimensionality reduction technique for the purposes of
visualizing the global relationships between the nodes of signed
networks. Note that in a signed network dataset, we should see clus-
ters emerge when the data is projected onto a 2D space. The nodes
within these visibly identifiable clusters should be allies. During our
visualization experiments, we considered two datasets: Senate-104,
and Tribes.

When learning representations for data visualization, we con-
sumed all of the edges. Both methods were run for 50 epochs, with
a learning rate of 0.1, a regularization constant of 0.00055, and an
embedding dimension of 16. In the case of both SiNE and SiNE/P0,
we used the empirically set parameters outlined by Wang et al.[52].

As noted by Hage and Harray [19], there are three communities
within the Tribes dataset. Consequently, when the nodes represent-
ing these tribes are visualized inR2, we should see a clear separation
between these three groups. We ran both StEM and SiNE, applied
MDS to the resultant representations, and then plotted the results
in Figures 1 and 2. Each of the three groups identified by Hage and
Harray are color coded differently. Notice that both the represen-
tations StEM and SiNE facilitate the projection the data onto a R2
vector space well, thereby allowing us to discern between the three
opposing groups.

In Senate-104, there are two opposing groups of users: Repub-
licans and Democrats. Consequently, when visualized, we expect
that we should observe two conspicuous clusters of nodes. To visu-
alize Senate-104 we used the same hyperparameters used to visual-
ize the Tribes dataset; however, to visualize Senate-104, we used
tSNE instead of MDS, and SiNE/P0 instead of SiNE as Senate-104
is a complete graph. The visualizations produced using StEM and
SiNE/P0 are seen in Figures 3 and 4 respectively. While both StEM
SiNE/P0’s representations achieve a noticeable separation between
Republicans and Democrats, the separation achieved by StEM’s
representations is more pronounced. We attribute this to Equation
(4) encouraging linear separability between a node’s friends and
foes, which in turn lends itself to the linear separability of different
communities in the network.

In addition, we also considered the quality of the visualizations
produced as we vary the percentage of data available for training.
These visualizations are plotted in Figure 5. We considered three
random samples: 60% (first row), 80% (second row), and 100% (third
row) of the edges. The plots on the left are the representations
learned by StEM, and the plots on the right are the representations
learned by SiNE. Notice that with 60% of the data, StEM achieves a
good separation between Republicans and Democrats. In contrast,
SiNE/P0 required 100% of the available data to achieve a comparable
outcome. This may indicate that StEM might be more robust to
missing data than SiNE/P0.
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Figure 1: Representations Learned by StEM of Tribes dataset pro-
jected ontoR2 byMDS. Each color denotes a different subgroup iden-
tified by Hage and Harray [19]

Figure 2: Representations Learned by SiNE of Tribes dataset pro-
jected ontoR2 byMDS. Each color denotes a different subgroup iden-
tified by Hage and Harray [19]

Figure 3: Representations Learned by StEM of Senate-104 dataset
projected onto R2 by tSNE. Red dots are Republicans and blue dots
are Democrats.

Figure 4: Representations Learned by SiNE of Senate-104 dataset
projected onto R2 by tSNE. Red dots are Republicans and blue dots
are Democrats.



MLG2018, August 2018, London, UK Inzamam Rahaman and Patrick Hosein

Figure 5: Representations Learned by StEM (left) and SiNE (right) of
Senate-104 dataset projected ontoR2 by tSNE for Different Fractions
of the Dataset. (1): 60% of dataset; (2) : 80% of dataset; (3): 100% of
dataset. Red dots are Republicans and blue dots are Democrats.

Dataset\Method StEM SINE/P0 % improvement

House-102 0.977 (0.012) 0.868 (0.059) 12.6
House-103 0.984 (0.014) 0.909 (0.031) 7.5
House-104 0.982 (0.015) 0.883 (0.054) 11.2
House-105 0.980 (0.085) 0.849 (0.069) 15.4
House-106 0.964 (0.013) 0.528 (0.084) 82.6
House-107 0.977 (0.021) 0.731 (0.083) 24.6

Table 2:Mean (and StandardDeviation) ofMicro-F1 Scores Obtained
from 5-fold Cross Validation on Different Datasets

4.3 Node Classification
Similar to unsigned networks, the nodes of a signed network may
be assigned two or more mutually exclusive labels/classes. The task
of node classification is to use the network topology along with
a subset of nodes whose labels are known to predict the labels of
nodes for whom we lack labels [47]. Since the learned representa-
tions would capture information of the network topology, we can
train a classifier that takes these representations of their input.

For each dataset, we consumed the entire signed network toplogy
to train their representations. The representations learned for nodes
were then fed as input into a logistic regression classifier along
with a portion of the class labels. We used 5-fold cross validation on
our node-labels pairs and averaged their performance as measured
using both micro-F1 and macro-F1 scores. We report these results in
Tables 2 and 3 respectively. In addition, we also report the standard
deviation in the micro-F1 and macro-F1 scores for each case in
parenthesis. We trained both methods at a learning rate of 0.15 for
50 epochs to learn representations comprising 16 dimensions. Since
all of our datasets usable for node classification were complete
graphs, we used SiNE/P0 instead of SiNE.

As seen in both Tables 2 and 3, both the representations learned
by StEM and SiNE/P0 tend to perform well on node classification.

Dataset\Method StEM SINE/P0 % improvement

House-102 0.976 (0.013) 0.842 (0.077) 15.9
House-103 0.983 (0.014) 0.909 (0.032) 8.1
House-104 0.981 (0.016) 0.880 (0.054) 11.5
House-105 0.979 (0.008) 0.845 (0.070) 15.9
House-106 0.962 (0.014) 0.512 (0.090) 87.9
House-107 0.977 (0.070) 0.723 (0.086) 35.1

Table 3:Mean (and StandardDeviation) ofMacro-F1 ScoresObtained
from 5-fold Cross Validation on Different Datasets

Operation Output
Hadamard y[i] = xa [i] × xb [i]
L1 y[i] =| xa [i] − xb [i] |
L2 y[i] = (xa [i] − xb [i])2
Average y[i] = 0.5 × (xa [i] + xb [i])
Concatenation y = xa ⊕ xb

Table 4: BinaryOperations for Composing Edge Features fromNode
Features

That being said, StEM outperforms SiNE/P0 across all the datasets
we considered. Excluding the results on the House-106 dataset,
StEM’s representations performed an average of 14.6% and 17.3%
better as measured by Micro-F1 and Macro-F1 scores respectively.
Moreover, as can be seen by the low standard deviations we ob-
served, both StEM and SiNE learn representations that lend them-
selves to robust classifiers.

4.4 Signed Link Prediction
In signed link prediction, we are given a signed network with the
signs on several edges unobserved or missing and we would like to
use the available annotated edges to predict themissing annotations.
This can be formulated as a binary classification problem.

In Grover and Leskovec [17], representations for edges are com-
puted by composing their incident nodes using binary operations.
These edge representations are then used to train a logistic regres-
sion classifier that predicts whether an edge would form between
two arbitrary nodes. We adopted a similar workflow for signed link
prediction. The binary operations used are described in Table 4.

Given a signed network dataset, we partitioned the dataset’s
edges, E, into a training set and a testing set. The training set was
used to learn representations using StEM and SiNE. These repre-
sentations were then composed using a binary function from Table
4 to generate representations for the edges in E. Using the rep-
resentations for the edges in the training set, we trained logistic
regression classifiers to predict edge signs from edge representa-
tions. Due to the imbalance in signs in E, we used undersampling
when training the logistic regression classifiers. We then evaluated
the performance of the trained classifiers on the representations of
the edges in the testing set. For every dataset, we performed 5-fold
cross-validation using the above procedure. We report the results
in Table 5.

As seen in Table 5, StEM outperformed SiNE on all datasets.
For the BitcoinOtc, BitcoinAlpha, Slashdot, Epinions, and Wiki-Rfa
datasets, we observed an improvement of 18.3%, 20.8%, 10.0%, 24.7%,
and 13.8% respectively of StEM’s over SiNE. The concatenation
operator proved to be the best performer across nearly all datasets
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Op Method Dataset
(1) (2) (3) (4) (5)

a StEM 0.934 0.950 0.914 0.948 0.889
SiNE 0.805 0.787 0.733 0.858 0.781

b StEM 0.940 0.951 0.898 0.916 0.818
SiNE 0.671 0.675 0.591 0.718 0.624

c StEM 0.836 0.852 0.703 0.826 0.695
SiNE 0.784 0.761 0.668 0.779 0.680

d StEM 0.853 0.859 0.741 0.832 0.701
SiNE 0.773 0.757 0.665 0.771 0.668

e StEM 0.894 0.892 0.879 0.874 0.801
SiNE 0.721 0.652 0.658 0.647 0.711

Table 5:MeanAUC from 5-fold Cross Validation for Comparison be-
tween StEM and SiNE. Binary operators used: (a) Concatenation, (b)
Hadamard, (c) L1, (d) L2, (e) Average. Datasets Used: (1) BitcoinOtc,
(2) BitcoinAlpha, (3) Slashdot, (4) Epinions, (5) Wiki-Rfa

Dataset\Method StEM SINE % improvement

BitcoinOtc 1.57 37.43 95.8
BitcoinAlpha 1.12 17.41 93.6
Slashdot 41.47 97.92 57.7
Epinions 33.27 899.59 96.3
Wiki-Rfa 11.11 181.08 93.9

Table 6: Time Taken (ms) for Training for Different Datasets

for both StEM and SiNE. Hadamard was second best for StEM,
and the L1 operator was the second best for SiNE. We believe that
Hadamard composed representations performing better than the
L1 composed representations for StEM to be a result Equation
(4) effects on the representations learned by StEM. We believe
that Hadamard composed representations performing worse than
the L1 composed representations for SiNE to be a result of SiNE
explicitly aiming to ensure that a node’s friends are closer to it than
its enemies.

4.5 Runtime of StEM vs SiNE
Aside from accuracy, runtime is also an important consideration
when evaluating representation learning methods. We ran StEM
and SiNE on several datasets and recorded the the time taken to
train representations with 16 dimensions for 50 epochs. As seen in
Table 6, StEM takes substantially less time than SiNE, and achieved,
on average, an 87.5% faster runtimes. Note that we excluded the
time incurred in preprocessing the networks into triples for SiNE.

5 RELATEDWORK
There has been much interest in developing automated representa-
tion learning techniques on networks in the past decade. As noted
by by Goyal and Ferrara [16], many of these methods approach
the task of representation learning from the angle of matrix factor-
ization, random walk modeling, or deep learning. In factorization
methods such as LLE [45], Laplacian Eigenmaps [3], and Graph
Factorization [1], the relationships between nodes are encoded
in a matrix such as the adjacency matrix or Laplacian matrix. In
such methods, the matrix is then factorized while trying to solve

an optimization problem, thereby learning representations in the
process.

In random walk based approaches, we perform several random
walks through the network. These random walks are taken as en-
coding centrality, proximity, and structural information about the
graph that can be exploited to learn representations. Many of these
techniques draw inspiration from Milkolov et al.’s word2vec [36].
Notable techniques in this space are Perozzi et al.’s DeepWalk [42],
which pioneered modeling networks as linguistic objects for repre-
sentation learning, and Grover and Leskovec’s node2vec [17], which
advanced understanding of how different types randomwalks affect
the quality of the representation learned. Some techniques such
as Ribeiro et al.’s struct2vec [44] have considered more advanced
re-imaginings of a random walk. In particular, struct2vec uses a ran-
dom walk on a layered multi-graph to better capture information
related to the structural roles of nodes rather than their proximity
relationships.

Deep Learning based techniques, such as GCNs [26] and SDNE
[51] adapt representation learning techniques originally created for
other domains to the task of learning representations on networks.
GCNs and SDNE exploit convolutions and deep autoencoders re-
spectively.

Given common peculiarities of graphical structures, there has
also been interest in moving from representing nodes of a network
in Euclidean space and targeting representation spaces such as
Hyperbolic space [7, 37].

There has also been interest in learning representations for more
nuanced network types, such as Dong et al.’s metapath2vec [9],
and most relevantly to this paper, Wang et al.’s [52] SiNE. SiNE
addresses the problem of representing signed networks as a ranking
problem - the endpoints of positive edges should rank more highly
with respect to one another than the endpoints of negative edges
in terms of a learned similarity function.

6 DISCUSSION
In this paper, we present ongoing work on StEM, a method for
learning representations of nodes in signed networks. We have
shown preliminary results that StEM separates opposing groups in
networks well. In addition, we have produced experimental results
that indicate that StEM performs better than SiNE on both measures
of accuracy and runtime.

As we continue work on StEM, we plan to evaluate benchmark
against more recent work in addition to SiNE. Moreover, we plan to
using larger datasets to also demonstrate that the representations
learned by StEM are useful for community detection in signed
networks. We also plan to further investigate the effects of the
hyperparameters d and λ on StEM’s performance. In addition, we
plan to extend StEM to handle cases where extra node attribute
information is observed and available to inform the representations
learned.
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