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ABSTRACT
Diffusion-based classifiers such as those relying on the Personalized

PageRank and the Heat kernel, enjoy remarkable classification ac-

curacy at modest computational requirements. Their performance

however is affected by the extent to which the chosen diffusion cap-

tures a typically unknown label propagationmechanism, that can be

specific to the underlying graph, and potentially different for each

class. The present work introduces a disciplined, data-efficient ap-

proach to learning class-specific diffusion functions adapted to the un-
derlying network topology. The novel learning approach leverages

the notion of “landing probabilities” of class-specific random walks,

which can be computed efficiently, thereby ensuring scalability to

large graphs. This is supported by rigorous analysis of the proper-

ties of the model as well as the proposed algorithms. Classification

tests on real networks demonstrate that adapting the diffusion func-

tion to the given graph and observed labels, significantly improves

the performance over fixed diffusions; reaching—and many times

surpassing—the classification accuracy of computationally heavier

state-of-the-art competing methods, that rely on node embeddings

and deep neural networks.
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1 INTRODUCTION
The task of classifying nodes of a graph arises frequently in sev-

eral applications on real-world networks, such as the ones derived

from social interactions and biological dependencies. Graph-based

semi-supervised learning (SSL) methods tackle this task building

on the premise that the true labels are distributed “smoothly” with

respect to the underlying network, which then motivates leverag-

ing the network structure to increase the classification accuracy

[11]. Graph-based SSL has been pursued by various intertwined

methods, including iterative label propagation [6, 24, 41], kernels on

graphs [29], manifold regularization [5], graph partitioning [19, 38],

transductive learning [37], competitive infection models [34], and
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bootstrapped label propagation [10]. SSL based on graph filters was

discussed in [35], and further developed in [12] for bridge monitor-

ing. Recently, approaches based on node-embeddings [18, 32, 40], as

well as deep-learning architectures [2, 20] have gained popularity,

and were reported to have state-of-the-art performance.

Many of the aforementionedmethods are challenged by computa-

tional complexity and scalability issues that limit their applicability

to large-scale networks. Random-walk-based diffusions present an

efficient and effective alternative. Methods of this family diffuse

probabilistically the known labels through the graph, thereby rank-

ing nodes according to weighted sums of variable-length landing

probabilities. Celebrated representatives include those based on the

Personalized PageRank and the Heat Kernel that were found to

perform remarkably well in certain application domains [21], and

have been nicely linked to particular network models [3, 22, 23].

However, the effectiveness of diffusion-based classifiers can vary

considerably depending on whether the chosen diffusion conforms

with the latent label propagation mechanism that might be, (i) par-

ticular to the target application or underlying network topology;

and, (ii) different for each class.

The present contribution alleviates these shortcomings andmarke-

dly improves the performance of random-walk-based classifiers

by adapting the diffusion functions to both the network and the

observed labels. The resulting novel classifier relies on the notion

of landing probabilities of short-length random walks rooted at the

observed nodes of each class. The small number of these landing

probabilities can be extracted efficiently with a small number of

sparse matrix-vector products, thus ensuring applicability to large-

scale networks. Theoretical analysis establishes that short random

walks are in most cases sufficient for reliable classification. We test

our methods in terms of multiclass and multilabel classification

accuracy, and confirm that it can achieve results competitive to

state-of-the-art methods, while also being considerably faster.

The rest of the paper is organized as follows. Section 2 introduces

random-walk based diffusions. Our novel approach along with

relevant analytical results are the subjects of Section 3. Section 4

places our work in the context of related methods. Finally, Section 5

presents experiments, while Section 6 concludes the paper and

discusses future directions.

Notation. Bold lower-case letters denote column vectors (e.g., v);
bold upper-case letters denote matrices (e.g., Q). Vectors qj and qTi
denote the jth column and the ith row of Q, respectively; whereas
Qi j (or sometimes for clarity [Q]i j ) denotes the ijth entry of Q.
Vector eK denotes theK th

canonical column vector; and ∥·∥ denotes

the Euclidean norm, unless stated otherwise. Calligraphic upper-

case letters denote sets (e.g.,U,V); and finally, symbol := is used

in definition statements.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2 PROBLEM STATEMENT AND MODELING
Consider a graph G := {V, E}, whereV is the set of N nodes, and

E the set of edges. Connectivity is captured by the weight matrix

W having entriesWi j > 0 if (i, j) ∈ E. Associated with each node

i ∈ V there is a discrete label yi ∈ Y. In SSL classification over

graphs, a subset L ⊂ V of nodes has available labels yL , and the

goal is to infer the labels of the unlabeled set U := V \ L. Given a

measure of influence, a node most influenced by labeled nodes of a

certain class is deemed to also belong to the same class. Thus, label-

propagation on graphs boils down to quantifying the influence of

L on U, see, e.g. [11, 24, 39]. An intuitive yet simple measure of

node-to-node influence relies on the notion of random walks on

graphs.

A simple random walk on a graph is a discrete-time Markov

chain with state space the set of nodes, and transition probabilities

[H]i j := Pr{Xk = i |Xk−1
= j} =Wi j/dj = [WD−1]i j

where Xk ∈ V denotes the position of the random walker (state)

at the k th step; dj :=
∑
k ∈Nj Wk j is the degree of node j; and,

Nj its neighborhood. Since we consider undirected graphs the

steady-state distribution of {Xk } always exists if it is connected,
and non-bipartite. It is given by the dominant right eigenvector of

the column-stochastic transition probability matrix H := WD−1
,

where D := diag (d1,d2, . . . ,dN ) [26]. The steady-state distribution

π can be shown to have entries

πi := lim

k→∞

∑
j ∈V

Pr{Xk = i |X0 = j} Pr{X0 = j} =
di

2|E |

that are clearly not dependent on the initial “seeding” distribution

Pr{X0}; and π is thus unsuitable for measuring influence among

nodes. Instead, for graph-based SSL, we will utilize the k−step
landing probability per node i given by

p
(k )
i :=

∑
j ∈V

Pr{Xk = i |X0 = j} Pr{X0 = j} (1)

that in vector form p(k) := [p
(k )
1
. . . p

(k )
N ]T satisfies p(k) = Hkp(0),

where p
(0)

i := Pr{X0 = i}. In words, p
(k )
i is the probability that a

random walker with initial distribution p(0) is located at node i

after k steps. Therefore, p
(k)
i is a valid measure of the influence that

p(0) has on any node inV .

The landing probabilities per class c ∈ Y are (cf. (1))

p(k )c = Hkvc (2)

where for Lc := {i ∈ L : yi = c}, we select as vc the normalized

class-indicator vector with i−th entry

[vc ]i =
{

1/|Lc |, i ∈ Lc
0, else

(3)

acts as initial distribution. Using (2), we model diffusions per class

c over the graph driven by {p(k )c }Kk=1
as

fc (θ ) =
K∑
k=1

θkp
(k )
c = P(K )

c θ (4)

where P(K )
c :=

[
p(1)c · · · p(K )

c

]
, and θk denotes the importance

assigned to the k th hop neighborhood. By constraining θ ∈ SK ,

where SK
:= {x ∈ RK : x ≥ 0, 1Tx = 1} is the K−dimensional

probability simplex, fc (θ ) becomes a valid nodal probability mass

function (pmf) for class c .
Given θ and upon obtaining {fc (θ )}c ∈Y , our diffusion-based

classifiers will predict labels overU as

ŷi (θ ) := arg max

c ∈Y
[fc (θ )]i (5)

where [fc (θ )]i is the ith entry of fc (θ ).
The upshot of (4) is a unifying form of superimposed diffusions

allowing even tunable simplex weights, taking up to K steps per

class to come up with an influence metric for the semi-supervised

classifier (5) over graphs. Next, we outline two notable members

of the family of diffusion-based classifiers that can be viewed as

special cases of (4).

2.1 Personalized PageRank Classifier
Inspired by its celebrated network centrality metric [9], the Per-

sonalized PageRank (PPR) algorithm has well-documented merits

for label propagation; see, e.g. [27]. PPR is a special case of (4) cor-

responding to θPPR = (1 − α)
[
α ,α2, . . . ,αK

]T
, where 0 < α < 1,

and 1 − α can be interpreted as the “restart” probability of random

walks with restarts.

The PPR-based classifier relies on (cf. (4))

fc (θPPR) = (1 − α)
K∑
k=0

αkp(k )c (6)

satisfying asymptotically in the number of random walk steps

lim

K→∞
fc (θPPR) = (1 − α)(I − αH)−1vc

which implies that fc (θPPR) approximates the solution of a linear

system. Indeed, as shown in [3], PPR amounts to solving a weighted

regularized least-squares problem overV; see also [22] for a PPR

interpretation as an approximate geometric discriminant function

defined in the space of landing probabilities.

2.2 Heat Kernel Classifier
The heat kernel (HK) is another popular diffusion that has recently

been employed for SSL [29] and community detection on graphs

[21]. HK is also a special case of (4) withθHK = e−t
[
t , t

2

2
, . . . , t

K

K !

]T
,

yielding class distributions (cf. (4))

fc (θHK) = e−t
K∑
k=0

tk

k!

p(k )c . (7)

Furthermore, it can be readily shown that

lim

K→∞
fc (θHK) = e−t (I−H)vc

allowing HK to be interpreted as an approximation of a heat dif-

fusion process, where heat is flowing from Lc to the rest of the

graph; and fc (θHK) is a snapshot of the temperature after time t has
elapsed. HK provably yields low conductance communities, while

also converging faster to its asymptotic closed-form expression

than PPR [15].
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3 ADAPTIVE DIFFUSIONS
Besides the unifying view of (4), the main contribution here is on

efficiently designing fc (θc ) in (4), by learning the corresponding

θc per class. Thus, unlike PPR and HK, the methods introduced

here can afford class-specific label propagation that is adaptive to
the graph structure, and also adaptive to the labeled nodes; see Fig.

1 for a high-level illustration of the proposed adaptive diffusion

framework.

Consider for generality a goodness-of-fit loss ℓ(·), and a regular-

izer R(·) promoting e.g., smoothness over the graph. Using these,

the sought class distribution will be

ˆfc = arg min

f ∈RN
ℓ(yLc , f) + λR(f) (8)

where λ tunes the degree of regularization, and

[yLc ]i =

{
1, i ∈ Lc
0, else

is the indicator vector of the nodes belonging to class c . Using our

diffusion model in (4), the N−dimensional optimization problem

(8) reduces to solving for the K−dimensional vector (K ≪ N )

ˆθc = arg min

θ ∈SK
ℓ(yLc , fc (θ )) + λR(fc (θ )). (9)

Although many choices of ℓ(·) may be of interest, we will focus for

simplicity on the quadratic loss, namely

ℓ(yLc , f) :=
∑
i ∈L

1

di
([ȳLc ]i − fi )

2

= (ȳLc − f)TD†

L
(ȳLc − f) (10)

where ȳLc := (1/|L|) yLc is the class indicator vector after nor-

malization to avoid overfitting and numerical instabilities, and

D†

L
= diag(d(−1)

L
) with entries

[d(−1)

L
]i =

{
1/di , i ∈ L

0, else

.

For a smoothness-promoting regularization, we will employ the

following (normalized) Laplacian-based metric

R(f) =
1

2

∑
i ∈V

∑
j ∈Ni

(
fi
di

−
fj

dj

)
2

= fTD−1LD−1f . (11)

Intuitively speaking, (10) favors vectors f having non-zero (|1/|L|)

values on nodes that are known to belong to class c , and zero

values on nodes that are known to belong to other classes (L \Lc ),

while (11) promotes similarity of the entries of f that correspond to
neighboring nodes. In (10) and (11), each entry fi is normalized by

d
− 1

2

i and d−1

i respectively. This normalization counterbalances the

tendency of random walks to concentrate on high-degree nodes,

thus placing equal importance to all nodes.

Substituting (10) and (11) into (9), and recalling from (4) that

fc (θ ) = P(K )
c θ , yields the convex quadratic program

ˆθc = arg min

θ ∈SK
θTAcθ + θ

Tbc (12)

Adapting
Diffusions

Label
Prediction

P
(K)
r

P
(K)
g

θr

θg

Figure 1: High-level illustration of adaptive diffusions. The
nodes belong to two classes (red and green). The per-class
diffusions are learned by exploiting the landing probabil-
ity spaces produced by random walks rooted at the sample
nodes (second layer: up for red; down for green).

with bc and Ac given by

bc = −
2

|L|
(P(K )
c )TD†

L
yLc (13)

Ac = (P(K )
c )TD†

L
P(K )
c + λ(P(K )

c )TD−1LD−1P(K )
c (14)

= (P(K )
c )T

[(
D†

L
+ λD−1

)
P(K )
c − λD−1HP(K )

c

]
= (P(K )

c )T
(
D†

L
P(K )
c + λD−1P̃(K )

c

)
(15)

where

HP(K )
c =

[
Hp(1)c Hp(2)c · · · Hp(K )

c

]
=

[
p(2)c p(3)c · · · p(K+1)

c

]
is a “shifted” version of P(K )

c , where each p(k)c is advanced by one

step, and

P̃(K )
c :=

[
p̃(1)c p̃(2)c · · · p̃(K )

c

]
with p̃(i)c := p(i)c − p(i+1)

c containing the “differential” landing prob-

abilities. The complexity of “naively” finding the K × K matrix Ac
(and thus also bc ) is O(K2N ) for computing the first summand,

and O(|E|K) for the second summand in (14), after leveraging the

sparsity of L, which means |E | ≪ N 2
. But since columns of P̃(K )

c
are obtained as differences of consecutive columns of P(K )

c , this

load of O(|E|K) is saved. In a nutshell, the solver in (12)-(15) that

we term adaptive-diffusion (AdaDIF), incurs complexity of order

O(K2N ).

3.1 Limiting behavior and computational
complexity

In this section, we offer further insights on the model (4), along

with complexity analysis of the parametric solution in (12). To start,

the next proposition establishes the limiting behavior of AdaDIF as

the regularization parameter grows; for the proof see [7].
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Figure 2: Illustration of K = 20 landing probability coeffi-
cients for PPR with α = 0.9, HK with t = 10, and AdaDIF.

Proposition 3.1. If the second largest eigenvalue of H has multi-
plicity 1, then for K sufficiently large but finite, the solution to (12) as
λ → ∞ satisfies

ˆθc = eK , ∀ Lc ⊆ V . (16)

Our experience with solving (12) reveal that the sufficiently large

K required for (16) to hold, can be as small as 10
2
. As λ → ∞, the

effect of the loss in (10) vanishes. According to Proposition 1, this

causes AdaDIF to boost smoothness by concentrating the simplex

weights (entries of
ˆθc ) on landing probabilities of the late steps (k

close to K ). If on the other extreme, smoothness-over-the-graph is

not promoted (cf. λ = 0), the sole objective of AdaDIF is to construct

diffusions that best fit the available labeled data. Since short-length

randomwalks from a given node typically lead to nodes of the same

class, while longer walks to other classes, AdaDIF with λ = 0 tends

to leverage only a few landing probabilities of early steps (k close

to 1). For moderate values of λ, AdaDIF effectively adapts per-class

diffusions by balancing the emphasis on initial versus final landing

probabilities.

Fig. 2 depicts an example of how AdaDIF places weights {θk }
K
k=1

on landing probabilities after a maximum ofK = 20 steps, generated

from few samples belonging to one of 7 classes of the Cora citation

network. Note that the learnt coefficients may follow radically

different patterns than those dictated by standard non-adaptive
diffusions such as PPR or HK. It is worth noting that the simplex

constraint induces sparsity of the solution in (12), thus ‘pushing’

{θk } entries to zero.

The computational core of the proposed method is to build the

landing probability matrix P(K )
c , whose columns are computed fast

using power iterations leveraging the sparsity of H (cf. (2)). This

endows AdaDIF with high computational efficiency, especially for

smallK . Specifically, since for solving (12) adaDIF incurs complexity

O(K2N ) per class, ifK < |E |/N , this becomes O(|E|K); and for |Y|

classes, the overall complexity of AdaDIF is O(|Y||E |K), which is

in the same order as that of non-adaptive diffusions such as PPR

and HK. For larger K however, an additional O(K2N ) is required

per class, mainly to obtain Ac in (15).

Overall, if O(KN ) memory requirements are met, the runtime

of AdaDIF scales linearly with |E |, provided that K remains small.

Thankfully, small values of K are usually sufficient to achieve high

learning performance. As will be shown in the next section, this

observation is in par with the analytical properties of diffusion

based classifiers, where it turns out that K large does not improve

classification accuracy.

3.2 On the choice of K
Here we elaborate on how the selection of K influences the clas-

sification task at hand. As expected, the effect of K is intimately

linked to the topology of the underlying graph, the labeled nodes,

and their properties. For simplicity, we will focus on binary clas-

sification with the two classes denoted by “ + ” and “ − .” Central

to our subsequent analysis is a concrete measure of the effect an

extra landing probability vector p(k)c can have on the outcome of a

diffusion-based classifier. Intuitively, this effect is diminishing as

the number of steps K grows, as both random walks eventually

converge to the same stationary distribution. Motivated by this, we

introduce next the γ -distinguishability threshold.

Definition 3.2 (γ -distinguishability threshold). Let p+ and p− de-

note respectively the seed vectors for nodes of class “ + ” and “−, ”

initializing the landing probability vectors in matrices Xc := P(K )
c ,

and X̌c :=
[
p(1)c · · · p(K−1)

c p(K+1)
c

]
, where c ∈ {+,−}. With y :=

X+θ −X−θ and y̌ := X̌+θ − X̌−θ , the γ -distinguishability threshold
of the diffusion-based classifier is the smallest integer Kγ satisfying

∥y − y̌∥ ≤ γ .

The following theorem establishes an upper bound on Kγ ex-

pressed in terms of fundamental quantities of the graph, as well as

basic properties of the labeled nodes per class; see [7] for a proof.

Theorem 3.3. For any diffusion-based classifier with coefficients
θ constrained to a probability simplex of appropriate dimensions, the
γ -distinguishability threshold is upper-bounded as

Kγ ≤
1

µ ′
log

[
2

√
dmax

γ

(√
1

dmin− |L− |
+
√

1

dmin+ |L+ |

)]
where dmin+ := mini ∈L+ di , dmin− := minj ∈L−

dj , dmax :=

maxi ∈V di and µ ′ := min{µ2, 2 − µN } where {µn }Nn=1
denote the

eigenvalues of the normalized graph Laplacian in ascending order.

The γ -distinguishability threshold can guide the choice of the

dimension K of the landing probability space. Indeed, using class-

specific landing probability steps K ≥ Kγ , does not help distin-

guishing between the corresponding classes, in the sense that the

classifier output is not perturbed by more than γ . Intuitively, the in-
formation contained in the landing probabilities Kγ + 1,Kγ + 2, . . .

is essentially the same for both classes and thus, using them as

features unnecessarily increases the overall complexity of the clas-

sifier, and also “opens the door" to curse of dimensionality related

concerns.

Theorem 3.3 makes no assumptions on the diffusion coefficients,

so long they belong to a probability simplex. Of course, specify-

ing the diffusion function can specialize and further tighten the

corresponding γ -distinguishability threshold. Conveniently, our ex-

periments suggest that K ∈ [10, 20] is usually sufficient to achieve
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high performance for most real graphs. Nevertheless, longer ran-

domwalks may be necessary in e.g., graphs with small µ ′, especially
when the number of labeled nodes is scarce. To deal with such chal-

lenges, the ensuing modification of AdaDIF that scales linearly with

K is nicely motivated.

3.3 Dictionary of diffusions
The present section deals with a modified version of AdaDIF, where

the number of parameters (dimension of θ ) is restricted to D < K ,
meaning the “degrees of freedom” of each class-specific distribution

are fewer than the number of landing probabilities. Specifically,

consider (cf. (4))

fc (θ ) =
K∑
k=1

ak (θ )p
(k )
c = P(K )

c a(θ )

where ak (θ ) :=
∑D
d=1

θdCkd , and C :=
[
c1 · · · cD

]
∈ RK×D

is

a dictionary of D coefficient vectors, the ith forming the column

ci ∈ SK
. Since a(θ ) = Cθ , it follows that

fc (θ ) = P(K )
c Cθ =

D∑
d=1

θd f
(d )
c

where f (d )c :=
∑K
k=1

Ckdp
(k )
c is the d th diffusion.

To find the optimal θ , the optimization problem in (12) is solved

with

bc = −
2

|L|
(F∆c )

TD†

L
yLc (17)

Ac = (F∆c )
TD†

L
F∆c + λ(F

∆
c )

TD−1LD−1F∆c (18)

where F∆c := [f (1)c · · · f (D)
c ] effectively replaces P(K )

c as the basis

of the space on which each fc is constructed. The description of

AdaDIF in dictionary mode is given as a special case of Algorithm 1,

together with the subroutine in Algorithm 3 for memory-efficient

generation of F∆c .
The motivation behind this dictionary-based variant of AdaDIF

is two-fold. First, it leverages the properties of a judiciously selected

basis of known diffusions, e.g. by constructingC =
[
θPPR,θHK, . . .

]
.

In that sense, our approach is related to multi-kernel methods, e.g.

[1], although significantly more scalable than the latter. Second, the

complexity of AdaDIF in dictionary mode is O(|E|(K + D)), where
D can be arbitrarily smaller than K , leading to complexity that is

linear with respect to both K and |E |.

3.4 Unconstrained diffusions
Thus far, the diffusion coefficients θ have been constrained on the

K−dimensional probability simplex SK
, resulting in sparse solu-

tions
ˆθc , as well as fc ( ˆθc ) ∈ SN

. The latter also allows each fc (θ )
to be interpreted as a pmf overV . Nevertheless, the simplex con-

straint imposes a limitation to the model: landing probabilities may

only have non-negative contribution on the resulting class distribu-

tion. Upon relaxing this non-negativity constraint, (12) simplifies

to

ˆθc = arg min

θ ∈RK
1Tθ=1

θTAcθ + θ
Tbc (19)

Algorithm 1 Adaptive Diffusions

Input: Adjacency matrix:W, Labeled nodes: {yi }i ∈L
parameters: Regularization parameter: λ, # of landing prob-

abilities: K , Dictionary mode ∈ {True, False}, Unconstrained

∈ {True, False}

Output: Predictions: {ŷi }i ∈U
Extract Y = { Set of unique labels in: {yi }i ∈L}

for c ∈ Y do
Lc = {i ∈ L : yi = c}
if Dictionary mode then

F∆c = Dictionary (W,Lc ,K ,C)
Obtain bc and Ac as in (17) and (18)

Fc = F∆c
else

{P(K )
c , P̃

(K )
c } = LandProb(W,Lc ,K)

Obtain bc and Ac as in (13) and (15)

Fc = P(K )
c

end if
if Unconstrained then

Obtain
ˆθc as in (20)

else
Obtain

ˆθc by solving (12)

end if
fc ( ˆθc ) = Fc ˆθc

end for
Obtain ŷi = arg maxc ∈Y

[
fc ( ˆθc )

]
i
, ∀i ∈ U

Algorithm 2 LandProb

Input:W,Lc ,K

Output: P(K )
c , P̃

(K )
c

H =WD−1

p(0)c = vc
for k = 1 : K + 1 do

p(k )c = Hp(k−1)
c

p̃(k )c = p(k−1)
c − p(k )c

end for

Algorithm 3 Dictionary

Input:W,Lc ,K ,C
Output: F∆c
H =WD−1

p(0)c = vc
{f (d )c }Dd=1

= 0
for k = 1 : K do

p(k )c = Hp(k−1)
c

for d = 1 : D do
f (d )c = f (d )c +Ckdp

(k )
c

end for
end for

which can afford a closed-form solution as

ˆθc = A−1

c (bc − λ∗1), λ∗ =
1TA−1

c bc − 1

bTA−1

c bc
. (20)
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Retaining the hyperplane constraint 1Tθ = 1 prevents the trivial

solution θ = 0, and forces at least one entry of θ to be positive.

Note that for K > |L|, (19) may become ill conditioned, and yield

inaccurate solutions. This can be mitigated by imposing ℓ2−norm

regularization on θ , which is equivalent to adding ϵI to Ac , with

ϵ > 0 sufficiently large to stabilize the linear system.

A step-by-step description of the proposed AdaDIF approach

is given by Algorithm 1, along with the subroutine in Algorithm

2. Determining the limiting behavior of unconstrained AdaDIF, as

well as exploring the effectiveness of different regularizers (e.g.,

sparsity inducing ℓ1−norm) is part of our ongoing research.

4 RELATION TO PRIORWORKS
Following the seminal contribution in [9] that introduced PageRank

as a network centralitymeasure, there has been a vast body of works

studying its theoretical properties, computational aspects, as well as

applications beyond Web ranking [16, 25]. Most formal approaches

to generalize PageRank focus either on the teleportation component

(see e.g. [30, 31] as well as [8] for an application to semi-supervised

classification), or, on the so-termed damping mechanism [4, 13].

Perhaps the most general setting can be found in [4], where a family

of functional rankings was introduced by the choice of a parametric

damping function that assigns weights to successive steps of a

walk initialized according to the teleportation distribution. The per

class distributions produced by AdaDIF are in fact members of this

family of functional rankings. However, instead of choosing a fixed

damping function as in the aforementioned approaches, AdaDIF

learns a class-specific and graph-aware damping mechanism. In

this sense, AdaDIF undertakes statistical learning in the space of

functional rankings, tailored to the underlying semi-supervised

classification task.

AdaDIF also shares links with SSLmethods based on graph signal

processing proposed in [35], and further pursued in [12] for bridge

monitoring; see also [36] and [14] for recent advances on graph

filters. Similar to our approach, these graph filter based techniques

are parametrized via assigning different weights to a number of

consecutive powers of a matrix related to the structure of the graph.

Our contribution however, introduces different loss and regular-

ization functions for adapting the diffusions. Furthermore, while

[35] focuses on binary classification and [12] identifies a single

model for all classes, our approach allows for different classes to

have different propagation mechanisms. This feature can accom-

modate differences in the label distribution of each class over the

nodes, while also making AdaDIF readily applicable to multi-label

graphs. Moreover, while in [35] the weighting parameters remain

unconstrained and in [12] belong to a hyperplane, AdaDIF con-

strains the diffusion parameters on the probability simplex, which

allows the random-walk-based diffusion vectors to denote valid

probability mass functions over the nodes of the network. This

certainly enhances interpretability of the method, improves the nu-

merical stability of the involved computations, and also reduces the

search-space of the model is beneficial under data scarcity. Finally,

imposing the simplex constraint makes the model amenable to a rig-

orous analysis that relates the dimensionality of the feature space

to basic graph properties, as well as to a disciplined exploration of

its limiting behavior.

Table 1: Network Characteristics

Network |V| |E | |Y| Multilabel

Citeseer 3,233 9,464 6 No

Cora 2,708 10,858 7 No

PubMed 19,717 88,676 3 No

PPI (H. Sapiens) 3,890 76,584 50 Yes

Wikipedia 4,733 184,182 40 Yes

BlogCatalog 10,312 333,983 39 Yes

5 EXPERIMENTAL EVALUATION
Our experiments compare the classification accuracy of the novel

AdaDIF approach with state-of-the-art alternatives. For the compar-

isons, we use 6 benchmark labeled graphs whose dimensions and

basic attributes are summarized in Table 1. All 6 graphs have nodes

that belong to multiple classes, while the last 3 are multilabeled
(each node has one or more labels). We evaluate performance of

AdaDIF and the following: i) PPR and HK, which are special cases of

AdaDIF as discussed in Section 2; ii) Node2vec [18]; iii) Deepwalk

[32]; iv) Planetoid-G [40]; and, v) graph convolutional networks

(GCNs) [20].

We performed 10-fold cross-validation to select parameters needed

by i) - v). For HK, we performed grid search over t ∈ [1, 5, 10, 15].

For PPR, we fixed α = 0.98 since it is well documented that α
close to 1 yields reliable performance; see e.g., [27]. Both HK and

PPR were run up to K = 30 for convergence to be in effect. For

Node2vec, we fixed most parameters to the values suggested in

[18], and performed grid search for p,q ∈ [0.25, 1.0, 2.0, 4.0]. Since

Deepwalk can be seen as Node2vec with p = q = 1.0, we used the

Node2vec Python implementation for both. As in [18, 32], we used

the embeded node-features to train a supervised logistic regression

classifier with ℓ2 regularization. For AdaDIF, we fixed λ = 15.0,

while K = 15 was sufficient to attain desirable accuracy; only the

values of Boolean variables Unconstained and Dictionary Mode (see
Algorithm 1) were tuned by validation. For the multilabel graphs,

we found λ = 5.0 and even shorter walks of K = 10 to perform well.

For the dictionary mode of AdaDIF, we preselected D = 10, with

the first five collumns of C being HK coefficients with parameters

t ∈ [5.0, 20.0], and the other five polynomial coefficients ci = kβ

with β ∈ [2.0, 10].

For multiclass experiments, we evaluated the performance of

all algorithms on the three benchmark citation networks, namely

Cora, Citeseer, and PubMed. We obtained the labels of an increas-

ing number of nodes via uniform random sampling, and predicted

the labels of the remaining nodes. For each experiment, classifi-

cation accuracy was measured on the unlabeled nodes in terms

of Micro-F1 and Macro-F1 scores; see e.g., [28]. The results were

averaged over 20 experiments, with mean and standard deviation

reported in Table 2. Evidently, AdaDIF achieves state of the art

performance for all graphs. For Cora and PubMed, AdaDIF was

switched to dictionary mode, while for Citeseer, where the gain
in accuracy is more significant, unconstrained diffusions were em-

ployed. In the multiclass setting, diffusion-based classifiers (AdaDIF,

PPR, and HK) outperformed the embedding-based methods by a

small margin, and GCNs by a larger margin. It should be noted
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Table 2: Micro F1 and Macro F1 Scores of Various Algorithms on Multiclass Networks

Network Cora Citeseer PubMed

|L|/|V| 2.5% 5% 10% 2.5% 5% 10% 0.25% 0.5% 1.0%

M
i
c
r
o
-
F
1

AdaDIF 70.5 ± 2.4 73.7 ± 1.7 77.0 ± 1.0 51.9 ± 0.9 55.1 ± 1.0 58.6 ± 0.7 72.8 ± 2.4 76.1 ± 0.8 76.5 ± 0.5

PPR 69.8 ± 2.5 73.3 ± 1.4 77.0 ± 1.0 49.7 ± 2.2 53.0 ± 1.5 57.5 ± 0.8 71.4 ± 2.6 74.4 ± 1.1 76.0 ± 0.8

HK 70.0 ± 2.4 73.5 ± 1.8 76.7 ± 1.2 50.0 ± 2.1 53.5 ± 1.5 57.3 ± 0.9 72.8 ± 2.6 75.1 ± 1.0 76.8 ± 0.7
Node2vec 69.5 ± 1.8 73.0 ± 1.6 75.5 ± 1.4 46.0 ± 2.7 49.7 ± 1.7 52.1 ± 1.4 72.8 ± 2.8 74.8 ± 1.6 75.1 ± 1.4

Deepwalk 68.2 ± 2.5 72.1 ± 1.8 74.9 ± 1.2 45.0 ± 2.4 48.5 ± 1.7 51.2 ± 1.2 72.4 ± 2.6 73.8 ± 1.3 74.5 ± 1.2

Planetoid-G 62.5 ± 5.1 67.3 ± 4.3 75.8 ± 1.1 43.0 ± 1.8 46.8 ± 1.9 55.2 ± 1.3 63.4 ± 3.7 65.2 ± 2.0 67.8 ± 1.5

GCN 58.3 ± 4.0 66.5 ± 2.1 71.3 ± 1.7 38.9 ± 2.7 44.5 ± 2.0 50.3 ± 1.6 57.7 ± 3.4 64.5 ± 2.7 70.0 ± 1.5

M
a
c
r
o
-
F
1

AdaDIF 69.0 ± 2.3 72.3 ± 1.8 75.7 ± 1.2 46.6 ± 1.1 49.6 ± 1.6 53.9 ± 1.0 71.5 ± 2.5 74.2 ± 0.7 75.2 ± 0.8

PPR 66.7 ± 4.2 71.8 ± 1.6 75.3 ± 1.1 44.1 ± 2.0 48.4 ± 1.5 53.5 ± 0.8 69.5 ± 2.6 72.8 ± 1.1 74.7 ± 0.8

HK 67.1 ± 4.2 72.1 ± 1.9 75.5 ± 1.4 44.8 ± 2.0 48.9 ± 1.5 53.7 ± 1.0 71.0 ± 2.6 73.5 ± 1.1 75.6 ± 0.8
Node2vec 67.1 ± 2.6 71.6 ± 1.8 74.0 ± 1.3 42.6 ± 2.5 46.6 ± 1.7 48.7 ± 1.3 70.3 ± 3.2 73.0 ± 1.8 73.5 ± 1.4

Deepwalk 66.1 ± 3.2 70.5 ± 2.1 73.8 ± 1.4 41.6 ± 2.4 45.5 ± 1.5 48.5 ± 1.2 70.0 ± 3.2 72.0 ± 1.7 73.1 ± 1.3

Planetoid-G 58.0 ± 5.1 64.3 ± 4.3 74.3 ± 1.6 37.4 ± 2.1 41.6 ± 2.2 52.0 ± 2.4 61.0 ± 3.9 63.7 ± 3.0 65.2 ± 2.0

GCN 52.0 ± 6.8 61.9 ± 2.6 64.8 ± 1.9 33.0 ± 3.0 39.2 ± 1.7 43.3 ± 1.6 52.1 ± 4.4 60.2 ± 3.9 65.3 ± 2.2

Table 3: Micro F1 and Macro F1 Scores of Various Algorithms on Multilabel Networks

Network PPI BlogCatalog Wikipedia

|L|/|V| 10% 20% 30% 10% 20% 30% 10% 20% 30%

M
i
c
r
o
-
F
1

AdaDIF 15.4 ± 0.5 17.9 ± 0.7 19.2 ± 0.6 31.5 ± 0.6 34.4 ± 0.5 36.3 ± 0.4 28.2 ± 0.9 30.0 ± 0.5 31.2 ± 0.7

PPR 13.8 ± 0.5 15.8 ± 0.6 17.0 ± 0.4 21.1 ± 0.8 23.6 ± 0.6 25.2 ± 0.6 10.5 ± 1.5 8.1 ± 0.7 7.2 ± 0.5

HK 14.5 ± 0.5 16.7 ± 0.6 18.1 ± 0.5 22.2 ± 1.0 24.7 ± 0.7 26.6 ± 0.7 9.3 ± 1.4 7.3 ± 0.7 6.0 ± 0.7

Node2vec 16.5 ± 0.6 18.2 ± 0.3 19.1 ± 0.3 35.0 ± 0.3 36.3 ± 0.3 37.2 ± 0.2 42.3 ± 0.9 44.0 ± 0.6 45.1 ± 0.4
Deepwalk 16.0 ± 0.6 17.9 ± 0.5 18.8 ± 0.4 34.2 ± 0.4 35.7 ± 0.3 36.4 ± 0.4 41.0 ± 0.8 43.5 ± 0.5 44.1 ± 0.5

M
a
c
r
o
-
F
1

AdaDIF 13.4 ± 0.6 15.4 ± 0.7 16.5 ± 0.7 23.0 ± 0.6 25.3 ± 0.4 27.0 ± 0.4 7.7 ± 0.3 8.3 ± 0.3 9.0 ± 0.2
PPR 12.9 ± 0.4 14.7 ± 0.5 15.8 ± 0.4 17.3 ± 0.5 19.5 ± 0.4 20.8 ± 0.3 4.4 ± 0.3 3.8 ± 0.6 3.6 ± 0.2

HK 13.4 ± 0.6 15.4 ± 0.5 16.5 ± 0.4 18.4 ± 0.6 20.7 ± 0.4 22.3 ± 0.4 4.2 ± 0.4 3.7 ± 0.5 3.5 ± 0.2

Node2vec 13.1 ± 0.6 15.2 ± 0.5 16.0 ± 0.5 16.8 ± 0.5 19.0 ± 0.3 20.1 ± 0.4 7.6 ± 0.3 8.2 ± 0.3 8.5 ± 0.3

Deepwalk 12.7 ± 0.7 15.1 ± 0.6 16.0 ± 0.5 16.6 ± 0.5 18.7 ± 0.5 19.6 ± 0.4 7.3 ± 0.3 8.1 ± 0.2 8.2 ± 0.2

however that GCNs were mainly designed to combine the graph

with node features. In our “featureless” setting, we used the identity

matrix columns as input features, as suggested in [20, Appendix].

The scalabilty of AdaDIF
1
is reflected on the runtime comparisons

listed in Fig. 3. All experiments were run on a machine with i5

@3.50 Mhz CPU, and 16GB of RAM. For the compared algorithms

we used the implementations provided by the authors.

Finally, Table 3 presents the results on multilabel graphs, where

we compare with Deepwalk and Node2vec, since the rest of the

methods are designed for multiclass problems. Since these graphs

entail a large number of classes, we increased the number of training

samples. Similar to [18] and [32], during evaluation of accuracy the

number of labels per sampled node is known, and check how many

of them are in the top predictions. First, we observe that AdaDIF

markedly outperforms PPR and HK across graphs and metrics.

Furthermore, for the PPI and BlogCatalog graphs the Micro-F1

1
Open source implementation available at: https://github.com/DimBer/SSL_lib

score of AdaDIF comes close to that of the much heavier state-

of-the-art Node2vec. Finally, AdaDIF outperforms the competing

alternatives in terms of Macro-F1 score.

6 CONCLUSIONS
The present work, introduces a principled, data-efficient approach

to learning class-specific diffusion functions tailored for the under-

lying network topology. Experiments on real networks confirm that

adapting the diffusion function to the given graph and observed

labels, significantly improves the performance over fixed diffusions;

reaching—and many times surpassing—the classification accuracy

of computationally heavier state-of-the-art competing methods.

Emerging from this work are many exciting directions to explore.

First, one can investigate different cost functions with respect to

which the diffusions are adapted, e.g., by taking into account ro-

bustness of the resulting classifier in the presence of adversarial

data. Furthermore, it is worth investigating the space of nonlinear

https://github.com/DimBer/SSL_lib
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Figure 3: Relative runtime for multiclass networks.
functions of the landing probabilities to determine the degree to

which accuracy can be boosted further. Last but not least, it will be

interesting to develop adaptive diffusion methods, where learning

and adaptation are performed on-the-fly, without any memory and

computational overhead.
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