
Jointly learning relevant subgraph patterns and nonlinear
models of their indicators∗

Ryo Shirakawa
Graduate School of Information Science and Technology,

Hokkaido University
sira@art.ist.hokudai.ac.jp

Yusei Yokoyama
Research & Development Group, Hitachi, Ltd

Graduate School of Information Science and Technology,
Hokkaido University

yusei.yokoyama.qk@hitachi.com

Fumiya Okazaki
Graduate School of Information Science and Technology,

Hokkaido University
fokazaki.w.h.i@gmail.com

Ichigaku Takigawa
Graduate School of Information Science and Technology,

Hokkaido University
PRESTO, Japan Science and Technology Agency (JST)

takigawa@ist.hokudai.ac.jp

ABSTRACT
Classification and regression in which the inputs are graphs of ar-
bitrary size and shape have been paid attention in various fields
such as computational chemistry and bioinformatics. Subgraph in-
dicators are often used as the most fundamental features, but the
number of possible subgraph patterns are intractably large due to
the combinatorial explosion. For such a combinatorially large fea-
ture space, we propose a novel efficient algorithm to jointly learn
relevant subgraph patterns and nonlinear models of their indica-
tors. Previous methods for such joint learning of subgraph features
and models are based on search for single best subgraph features
with specific pruning and boosting procedures of adding their in-
dicators one by one, which result in linear models of subgraph in-
dicators. In contrast, the proposed approach is based on directly
learning regression trees for graph inputs using a newly derived
bound of the total sum of squares for data partitions by a given
subgraph feature, and thus can learn nonlinear models through
standard gradient boosting. An illustrative example we call the
Graph-XOR problem to consider nonlinearity, numerical experi-
ments with real datasets, and scalability comparisons to naïve ap-
proaches using explicit pattern enumeration are also presented.

KEYWORDS
Graph classification and regression, subgraph patternmining, non-
linear supervised learning

1 INTRODUCTION
Graphs are fundamental data structures for representing combina-
torial objects. However, precisely because of their combinatorial
nature, it is usually difficult to understand the underlying trends
in large datasets of graphs. The rapid increase in data in recent
years also includes data represented as graphs, and thus supervised
learning in which the inputs are graphs of arbitrary size and shape

∗The present study was supported in part by JSPS/MEXT KAKENHI #17H01783,
#17K19953, #15H05711 and JST PRESTO #JPMJPR15N9.

MLG’18, August 2018, London, United Kingdom
.

has gained considerable attention in diverse fields such as chemin-
formatics [11, 15, 22–24, 26, 27, 30, 31], bioinformatics [3, 10, 28] ,
computer vision [1, 2, 9, 19], and natural language processing [14].

The present paper investigates this problem of supervised learn-
ing with graphs of arbitrary size and shape as inputs. A typical ex-
ample is QSAR (quantitative structure-activity relationship) pre-
diction in virtual screening for drug discovery. The input graphs
aremolecular graphs representing the structural formulas of chem-
ical compounds, and the output would be their activities such as
binding affinities to a specific target, or properties such as ADMET
(absorption, distribution, metabolism, excretion, toxicity).

In this setting, the most fundamental and widely used features
are indicators of substructural features, i.e., subgraph patterns. In
QSAR cases, the target activities or properties of chemical com-
pounds are characterized by their substructural features such as
the existence of specific functional groups or several fragmental
patterns. However, we need to solve a difficult problem on how
to appropriately pre-select or spot the relevant subgraph patterns
to be incorporated as features for supervised learning. Since the
number of possible subgraph patterns are intractably large due
to the combinatorial explosion, this problem is mostly solved by
heuristics and domain knowledge. But, supervised learning is now
applied to very diverse targets and data, it has been demanded to
develop a general and widely applicable approach to this problem
of feature learning from such a combinatorially large feature space.

In the present paper, we first characterize supervised learning
with all possible substructural indicators, and then develop amethod
for jointly learning the relevant subgraph patterns and nonlinear
models of their indicators. The following are the contributions:
• We present two lesser-recognized facts to make sure the dif-
ference between linear and nonlinear models of substruc-
tural indicators as pseudo Boolean functions: (1) For a closely
related problem of supervised learning from itemsets, the
hypothesis space of the nonlinear model of all possible sub-
itemset indicators is equivalent to that of the linear model;
(2) Nevertheless, for the indicators of connected subgraphs,
the hypothesis space of the nonlinearmodel is strictly larger
than that of the linear model. (Section 4)
• We develop a novel efficient supervised learning algorithm
for joint learning of all relevant subgraph features and a

MLG’18, August 2018, London, United Kingdom Ryo Shirakawa, Yusei Yokoyama, Fumiya Okazaki, and Ichigaku Takigawa

nonlinearmodels of their indicators. Unlike existing approaches
based on ℓ1-regularized linear models, the proposed algo-
rithm is based on gradient tree boosting with base regres-
sion trees selecting each splitter out of all subgraph indica-
tors with an efficient pruning based on the new bound in
Theorem 5.1. (Section 5)
• Weempirically demonstrate that (i) for theGraph-XORdataset,
the proposed nonlinear method actually outperforms sev-
eral linear methods, which implies the existence of prob-
lems requiring nonlinear hypotheses, (ii) For several real
datasets, we also observe similar superiority of the nonlin-
ear models for some datasets, while it also turns out that the
performance of linear models is fairly comparable for some
datasets. (Section 6)

1.1 Related Research and Our Motivation
This line of research starts with the fact that practical graph kernels
require a heuristically limited class of subgraphs [1–3, 9, 11, 15, 24,
31], and constricting all-subgraphs kernel is theoretically hard [6].
In order not to overlook any important features, joint learning of
relevant subgraph patterns and classification/regressionmodels by
their indicators has been developed [14, 19, 22, 23, 27]. Although
not discussed explicitly, these previous studies are based on ℓ1-
regularized boosting that yielded linear models of subgraph indi-
cators because they used decision stumps with respect to a single
subgraph feature as base learners.

The research of the present paper starts with our observation
that replacing the decision stumps with decision trees in these ex-
isting methods is far from straightforward. This is because the pre-
vious methods are based on efficient pruning with specifically de-
rived bounds to find a single best subgraph pattern, and use the
indicator as a base learner at each iteration.

One naïve method to obtain nonlinear models of subgraph in-
dicators is to enumerate some candidate subgraphs from training
graphs, explicitly construct 0-1 indicator-feature vectors of test
graphs by solving subgraph-isomorphism directly, and apply a gen-
eral nonlinear supervised learning to those feature vectors. The
performance with all small-size subgraphs occurred in the given
graphs is known to be comparable for cheminformatics datasets[32].
However these approaches would not scale well as we see later
in Section 6.3. Another good known heuristic idea is to use r -
neighborhood subgraphs with radius r at each node as seen in
ECFP [21] and graph convolutions [7, 13]. Unfortunately, the com-
plete enumeration would not scale well either in this case, and usu-
ally requires some tricks such as feature hashing, feature folding,
or feature embedding through neural nets, all of which are very
interesting approaches but beyond the scope of this paper.

2 PRELIMINARIES
2.1 Notations
Let [n] be {1, 2, . . . ,n}, and let I(P) denote the indicator of P , i.e.,
I(P) = 1 if P is true, else 0. We denote as G ⊒ д the subgraph
isomorphism that G contains a subgraph that is isomorphic to д
and its negation asG A д. Thus, a subgraph indicator I(G ⊒ д) = 1
if G ⊒ д, otherwise 0. We also denote the training set of input

A B A C

A B C A B D

A B C D A B C

D

Figure 1: An enumeration tree

graphs Gi ∈ G and output responses yi ∈ Y as

D = {(G1,y1), (G2,y2), . . . , (GN ,yN)}, (1)

where G is a set of all finite-size, connected, discretely-labeled,
undirected graphs. We denote GN = {Gi | i ∈ [N]}, and the set of
all possible connected subgraphs as SN =

∪
G ∈GN {д | G ⊒ д}.

2.2 Search Space for Subgraphs
In supervised learning from graphs, we represent each input graph
Gi ∈ GN by the characteristic vector (I(Gi ⊒ д) | д ∈ S)with a set
S of relevant subgraph features. However, since S is not explicitly
available when the learning phase starts, we need to jointly search
and construct S during the learning process. In order to define an
efficient search space for SN , i.e., any subgraphs occurring in Gn ,
the techniques for frequent subgraph mining, which enumerates all
subgraphs that appear in more thanm input graphs for a givenm,
are useful. Note that any subgraph featureд ∈ SN can occurmulti-
ple times at multiple locations in a single graph, but I(Gi ⊒ д) = 1.
We consider the indicators only for simplicity, but the number of
occurrences can be taken into account as weighted indicators.

In the present paper, we use the search space of the gSpan algo-
rithm [33], which performs a depth-first search on the tree-shaped
search spaces on SN , referred to collectively as an enumeration
tree, as shown in Figure 1. Each node of the enumeration tree holds
a subgraph feature д′ that extends the subgraph feature д at the
parent node by one edge, namely, д′ ⊒ д. The following anti-
monotone property of subgraph isomorphism over the enumer-
ation tree on SN can be used to derive the efficient search-space
pruning of the gSpan algorithm:

Gi A д⇒ Gi A д′ for д′ ⊒ д. (2)

2.3 Gradient Tree Boosting
Gradient tree boosting (GTB) [5, 16] is a general algorithm for su-
pervised learning to predict a response y from a predictor x . For a
given hypothesis spaceH , the goal is tominimize the expected risk
Ey,x {ℓ(y, f (x))} of f ∈ H by minimizing N−1

∑
i ∈[N] ℓ(yi , f (xi))

over the training data {(xi ,yi)}i ∈[N] under some regularization.
GTB maintains an additive ensemble of k regression treesTt (x)

of the form for fixed-stepsize cases:

fk (x) = T0 + η
∑
t ∈[k]

Tt (x)

whereT0 is the mean of response variables in the training data, η is
the stepsize, and Tt (x) is the t-th regression tree as a base learner.

Jointly learning relevant subgraph patterns and nonlinear models of their indicators MLG’18, August 2018, London, United Kingdom

To fit the model to the training data, GTB performs the following
gradient-descent-like iterations as a boosting procedure:

f0(x) ← argmin
c

∑
i ∈[N]

ℓ(yi , c),

and ft (x) ← ft−1(x) + ηTt (x),
where Tt (x) is a regression tree to best approximate the values
of negative functional gradient −∇f ℓ(y, f (x)) at ft−1 obtained by
fitting a regression tree to the data {(xi , ri)}i ∈[N], where

ri = −ℓ′(yi , ft−1(xi)) where ℓ′(y, ŷ) = −
∂ ℓ(y, ŷ)
∂ŷ

.

Our experiments focus on binary classification taskswithy ∈ {−1,+1},
and thus we use the logistic loss ℓ(y, ŷ) = log(1+ exp(−2yŷ)). Note
that even for classification, GTBmust fit regression trees instead of
classification trees in order to approximate real-valued functions.

The primary hyperparameters of GTB that we consider are the
following three parameters: a max tree-depth d , a stepsize η, and
the number of trees k .

2.4 Regression Trees
The internal regression-tree fitting for r ≈ Tt (x) is performed by
the recursive partitioning below:

(1) Each node in the regression tree receives a subset D ′ ⊆ D
from the parent node.

(2) If a terminal condition is satisfied, the node becomes a leaf
decision node with a prediction value by the average of the
response values in D ′.

(3) Otherwise, the node becomes an internal node that tries to
find the best partition of D ′ to D1 and D0 = D ′ \ D1 that
minimizes the total sum of squares for r :

min
D1,D0

[
TSS(D1) + TSS(D0)

]
.

The subsets D1 and D0 are further sent to the child nodes,
and Step (1) is then recursively applied to each subset at the
child nodes.

TSS here is the total sum of squares for r :

TSS(D) = 1
2

∑
i ∈[N]

(ri − r̄)2, r̄ =
1
N

∑
i ∈[N]

ri . (3)

3 PROBLEM SETTING AND CHALLENGES
Our goal is learning a nonlinear model f over all possible subgraph
indicators I(G ⊒ д) for д ∈ SN . As we will see in Section 4, arbi-
trary functions of subgraph indicators have a unique multi-linear
polynomial form

f (G) =
∑

S ⊆SN
cS

∏
д∈S
I(G ⊒ д).

Input graphs are implicitly represented as a bag of subgraph fea-
tures, and hence as feature vectors in which the elements are an
intractably large number of binary variables of each subgraph in-
dicator. The main challenge is how to learn the relevant features
д from such a combinatorially large space SN with also jointly
learning the classifier f over those features I(G ⊒ д) for д ∈ SN .
Other technical challenges are (1) feature vectors are binary valued

and takes finite discrete values only at the vertices of a very high-
dimensional Boolean hypercube; (2) feature vectors are strongly
correlated due to subgraph isomorphism.

4 PSEUDO-BOOLEAN FUNCTIONS OF
SUBSTRUCTURAL INDICATORS

We first investigate the difference between linear and nonlinear
models in such a combinatorially large feature space. Any sub-
graph indicator I(G ⊒ д) is a 0-1 Boolean variable, and thus the hy-
pothesis space that we can consider with respect to these variables
is a family of pseudo-Boolean functions, regardless of whether they
are linear or nonlinear. A real-valued function f : {0, 1}d → R on
the Boolean hypercube {0, 1}d is called pseudo-Boolean.

In this section, we explain the inequivalence of linear and non-
linearmodels of all possible subgraph indicators. Theorem 4.1, con-
trasting the difference from closely related problems for itemsets,
suggests an advantage of the proposed nonlinear approach, and an
illustrative example we call Graph-XOR that linear models cannot
learn is presented in Section 6.1.

Theorem 4.1. (1) The hypothesis space of the nonlinear model of
all possible sub-itemset indicators is equivalent to that of the linear
model. (2) The hypothesis space of the nonlinear model of all possible
connected subgraph indicators is strictly larger than that of the linear
model.

This result is based on the following fundamental property of
pseudo-Boolean functions.

Lemma 4.2. [8, 20] Every pseudo-Boolean function f : {0, 1}d →
R has a unique multi-linear polynomial representation:

f (x1, . . . ,xd) =
∑
S ⊆[d]

cS
∏
j ∈S

x j , x j ∈ {0, 1}, cS ∈ R.

4.1 Sub-Itemset Indicators
Let x j ∈ {0, 1} be a Boolean variable defined by x j = I(j ∈ I) for
an item j ∈ [d] in a itemset I ⊆ [d]. Then we can see that linear
and nonlinear models of sub-itemset indicators I(S ⊆ I), S ⊆ [d]
are equivalent as a hypothesis space on itemsets. For any function
f : 2[d] → R, we have

f (I) =
∑

P ⊆2[d]
cP

∏
S ∈P
I(S ⊆ I) =

∑
U ∈2[d]

cU I(U ⊆ I)

=
∑

U ⊆[d]
cU

∏
j ∈U
I(j ∈ I)

whereU =
∪
S ∈P S . Theorem 4.1 (1) follows from this simple fact.

Note that including the negation terms, as in decision tree learning,
does not change the hypothesis space because it can be represented
as I(S ⊈ I) = 1 − I(S ⊆ I).

4.2 Connected-Subgraph Indicators
As for subgraph indicators I(G ⊒ д), the standard setting implicitly
assumes that subgraph feature д is a connected graph. This would
be primarily because the complete search for subgraph patterns,
including disconnected graphs, is practically impossible, given that
even a set of all connected graphs SN in GN , is already intractably
huge in practice.

MLG’18, August 2018, London, United Kingdom Ryo Shirakawa, Yusei Yokoyama, Fumiya Okazaki, and Ichigaku Takigawa

The difference between linear model fL(G) and nonlinear model
fNL(G) is not constantly zero:

fL(G) = c0 +
∑

д∈SN
cдI(G ⊒ д)

fNL(G) = c0 +
∑

д∈SN
cдI(G ⊒ д)

+
∑

S ⊆SN , |S |⩾2
cS

∏
д∈S
I(G ⊒ д)

from which Theorem 4.1 (2) follows. This also implies that if we
consider all connected-subgraph-‘set’ indicators for the co-occurrence
of several connected subgraphs, then the linear model is equiva-
lent to the nonlinear model as a hypothesis space, andmore impor-
tantly it is identical to fNL(G), which is the hypothesis space cov-
ered by the proposed algorithm in Section 5. Note that connected-
subgraph-set indicators differ from the indicators of general sub-
graphs, including disconnected-subgraph-set indicators, because
any subgraph feature д ∈ S can occur multiple times at different
partially overlapped locations in a single graph. The hypothesis
space by general subgraph indicators is beyond the scope of the
present paper, and, in practice, the complete search for such indi-
cators is computationally too challenging.

5 PROPOSED METHOD
In this section, we present a novel efficient method to produce a
nonlinear prediction model based on gradient tree boosting with
all possible subgraph indicators. Existing boosting-based methods
[14, 19, 23] are based on simple but efficiently searchable base-
learners of decision stumps (equivalent to subgraph indicators, as
demonstrated previously) and construct an efficient pruning algo-
rithm for this single best subgraph search at each iteration. In con-
trast, the proposed approach involves this subgraph search at find-
ing an optimal split at each internal node of regression trees, while
keeping the other outer loops the same as in GTB, as explained in
Section 2.3. More specifically, we need to efficiently perform the
following optimization over all possible subgraphs in SN :

min
д ∈ SN

[
TSS(D1(д)) + TSS(D0(д))

]
(4)

where TSS is the total sum of squares defined as (3), D1(д) =
{(Gi , ri) ∈ D | G ⊒ д} and D0(д) = {(Gi , ri) ∈ D | G A д}.

Here, |SN | is too intractably huge to solve (4) by exhaustively
testing subgraph д ∈ SN in order, and thus we perform a branch
and bound search over the enumerate tree on SN with the fol-
lowing lower bound for the total sum of squares of expanded sub-
graphs:

Theorem 5.1. Given D1(д) and D0(д), for any subgraph д′ ⊒ д,

TSS(D1(д′)) + TSS(D0(д′)) ≥

min
(⋄,k)

[
TSS(D1(д) \ S⋄,k) + TSS(D0(д) ∪ S⋄,k)

]
(5)

where (⋄,k) ∈ {≤, >}×{2, . . . , |D1(д)−1|}, and S⋄,k ⊂ D1(д), such
that S≤,k is a set of k pair (Gi , ri) selected fromD1(д) in descending
order of ri , and S>,k is that in increasing order. Note that \, ∪ are set
difference and set union respectively.

Alg. 1: Gradient Tree Boosting for Graphs
Input: Training data

D = {(G1,y1), (G2,y2), . . . , (GN ,yN)}, and stepsize
η

Output: Prediction model f : G → Y
Function GradientTreeBoosting (D)

f ← 1/N ∑N
i=1 yi ;

for k =1, 2, . . . do
for i ← 1 to N do

r
(k)
i ← −

[
∂ ℓ(yi ,T (Gi))

∂T (Gi)

]
T (G)=Tk−1(Gi)

end
Tk ← BuildRegressionTree

({(Gi , r
(k)
i) | i ∈ [N]}) ; ▷ Alg. 2

f ← f + ηTk ;
end
return f

Alg. 2: Regression Tree Learning for Graphs
Input: Training data D = {(G1, r1), (G2, r2), . . . , (GN , rN)}
Output: Regression tree T
Function BuildRegressionTree (D)

if the terminal condition is satisfied then
make a leaf node in T with the mean of ri ;

else
д← FindBestSplit (D) ; ▷ Alg. 3

make an internal node v in T with д ;
the left child of v ← BuildRegressionTree
(D1(д)) ;
the right child of v ← BuildRegressionTree
(D0(д)) ;

end
return T

Proof. The result follows from the property (2). See Appendix
A for details. □

The entire procedure of the proposed algorithm is illustrated in
Alg. 1 and 2. The novel algorithm for the optimal subgraph search
of (4) using the bound (5) is described in detail in Alg. 3. In order to
solve (4), the proposed algorithm uses a depth-first search on the
enumerate tree over SN . The procedure at each subgraph д is as
follows:

(1) Calculate the total sum of squares tss← TSS(D1(д)+D0(д))
of subgraph д.

(2) Update min_tss by tss if min_tss > tss.
(3) Calculate bound (5) and if min_tss < bound, then prune all

child nodes of д.
In the entire procedure, the most time-consuming part is the

subgraph search (Alg. 3), which is repeatedly called during the
learning process. Hence, introducing memorization, whereby we
store expensive calls and return the cached results when the same
pattern occurs again, can considerably speed up the entire process.
First, we can store the result ofminimizationminд ∈ SN (TSS(D1(д))+

Jointly learning relevant subgraph patterns and nonlinear models of their indicators MLG’18, August 2018, London, United Kingdom

Alg. 3: Optimal Subgraph Search for Best Split
Input: Training data D = {(G1, r1), (G2, r2), . . . , (GN , rN)}
Output:Minimizer subgraph д∗ of (4)
Function FindBestSplit (D)

repeat
д← the next node of the enumeration tree by DFS ;
tss← TSS(D1(д)) + TSS(D0(д)) ;
if tss < min_tss then

min_tss← tss;
д∗← д;

end
bound←
min(⋄,k)[TSS(D1(д) \ S⋄,k) + TSS(D0(д) ∪ S⋄,k)] ;
▷ Theorem 5.1

if min_tss < bound then
prune all children of д in the enumeration tree ;

end
until the enumeration tree search ends;
return д∗ ;

TSS(D0(д))) for each already checked д and D. Second, the sub-
graph search can be entirely skipped until we need to check any
subgraph that has not been checked in any previous iterations.

6 NUMERICAL EXPERIMENTS
6.1 The Graph-XOR Problem
The linear separability has long been discussed using the XOR (or
parity in general) example, and we present the same key example
for graphs, referred to as Graph-XOR, where linear models cannot
learn the target rule even when noiseless examples are provided.

The Graph-XOR dataset includes 1,035 graphs of seven nodes
and six edges, where 506 are positives with y = +1 and 529 nega-
tives with y = −1. As illustrated in Figure 2, each graph is gener-
ated by connecting two subgraphs by one node D⃝. The component
subgraphs are selected from the 18 types shown in Figure 3, where
all three-node path graphs with candidate nodes { A⃝, B⃝, C⃝}, and
are randomly classified into two groups. Note that A⃝– B⃝– C⃝ is
isomorphic to C⃝– B⃝– A⃝ and this duplicate redundancy due to the
graph isomorphism is removed. The response value y of a graph is
−1 if two subgraphs are selected from the same group, otherwise
+1.

Table 2 shows the performance results for the Graph-XOR data
by two-fold cross validations.We use the proposed nonlinearmethod
and two linearmethods, namely, the proposed algorithmwithmax-
imum tree-depth (d) = 1, i.e., with decision stumps, and a state-of-
the-art (but linear) method for graphs, gBoost [23]. The hyperpa-
rameter tuning is performed for the ranges described in Table 1,
and the best parameters are also listed in Table 2. Figures 4 and
5 show the accuracy and loss changes for the test data with re-
gard to the max tree depth (d) and the max subgraph size (x). Here
“subgraph size” means the number of edges.

The results shown in Table 2 clearly demonstrate that the lin-
ear models, including our model with d = 1, fail, but the nonlinear

y = +1 y = +1

y = −1 y = −1

Figure 2: Examples of the
Graph-XOR data

Group 1 Group 2
A⃝– A⃝– A⃝ B⃝– B⃝– B⃝
C⃝– C⃝– C⃝ A⃝– A⃝– B⃝
A⃝– B⃝– B⃝ A⃝– B⃝– A⃝
B⃝– A⃝– B⃝ B⃝– B⃝– C⃝
B⃝– C⃝– C⃝ B⃝– C⃝– B⃝
C⃝– B⃝– C⃝ A⃝– A⃝– C⃝
A⃝– C⃝– C⃝ A⃝– C⃝– A⃝
C⃝– A⃝– C⃝ A⃝– B⃝– C⃝
A⃝– C⃝– B⃝ B⃝– A⃝– C⃝

Figure 3: Subgraph groups

Table 1: Hyperparameter settings for Graph-XOR

Common
max subgraph size (edges) x 2, 3, 4, 5,∞

Model specific
Proposed max tree depth d 1, 2, 3, 4, 5

stepsize η 1, 0.7, 0.4, 0.1, 0.01
trees k 1-500

gBoost regularization ν
0.6, 0.5, 0.4, 0.3,
0.2, 0.1, 0.01

Table 2: Prediction accuracy (%) for the Graph-XOR

Nonlinear models Linear models
Proposed Proposed (d1) gBoost
100.0 64.3 70.0
x2 d2 η0.7 k221 x6 d1 η0.7 k26 x6 ν0.01

methods work well. This is also theoretically supported by Theo-
rem 4.1. Figure 4 also shows that only the behavior of d = 1 differ
from those of the other depths. Moreover, note that this problem
at least requires subgraph features of size 2 (i.e., two edges), but
searching excessively large subgraphs results in overfitting, as we
see for x ⩾ 4 in Figure 5. The dataset is generated by subgraphs of
size 3 in Figure 3, and search for larger subgraphs results in over-
specification tomemorize the training dataset. Good regularization
to tolerate misspecification for x would be a future problem.

d1
d2
d3
d4
d5

 0
.5

 0
.7

5
 1

 0 500

A
c
c
u

ra
c
y

of trees

 0
 0

.5
 1

 0 500

L
o

s
s

of trees

Figure 4: Test accuracy and loss with tree depth d

MLG’18, August 2018, London, United Kingdom Ryo Shirakawa, Yusei Yokoyama, Fumiya Okazaki, and Ichigaku Takigawa
 0

.5
 0

.7
5

 1

 0 500

A
c
c
u

ra
c
y

of trees
 0

 0
.5

 1

 0 500
L

o
s
s

of trees

x2
x3
x4
x5
x6

Figure 5: Test accuracy and loss with subgraph size x

6.2 QSAR with Molecular Graphs
Wealso evaluate the performance based on themost typical bench-
mark for graph classification on real datasets: the quantitative structure-
activity relationship (QSAR) prediction with molecular graphs. We
select four binary-classification datasets (CPDB,Mutag, NCI1, NCI47)
in Table 3: two data (CPDB, Mutag) for mutagenicity tests and two
data (NCI1, NCI47) for tumor growth inhibition tests from Pub-
Chem BioAssay1. NCI1 and NCI47 are balanced by randomly sam-
pling negatives of the same size as the positives in order to avoid
imbalance difficulty in evaluation. All chemical structures are en-
coded as molecular graphs using RDKit2, and some structures in
the raw data are removed by chemical sanitization3. We simply
apply a node labeling by the RDKit default atom invariants (edges
not labeled), i.e., atom type, # of non-H neighbors, # of Hs, charge,
isotope, and inRing properties. These default atom invariants use
connectivity information similar to that used for the well-known
ECFP family of fingerprints [21]. See [13] for more elaborate en-
codings.

Tables 5 and 6 show the performance results obtained by 10-fold
cross validations using the same threemethods used for the Graph-
XOR cases with different hyperparameter settings in Table 4. We
can observe that nonlinear methods often outperform the linear
methods. At the same time, we can also observe, in some cases,
that the linear methods work fairly well for the real datasets. The
real datasets would not have explicit classification rules compared
to noiseless problems such as the Graph-XOR cases. Thus, it is nec-
essary to tolerate some noises and ambiguity. Although they may
seem limited, linear hypothesis classes are known to be very pow-
erful in such cases, because they are quite stable estimators and the
input features can themselves include nonlinear features of data as
implied in Theorem 4.1. It would be an interesting open question
how to determine which to use, linear or nonlinear, from data.

We also provide the normalized feature importance scores from
GTB and the search space size in Figure 6 for the CPDB dataset.
In Figure 6, searched corresponds to the searched subgraphs, and
selected to the subgraph selected as internal nodes. This would also
implies that (i) the proposed approach can provide information on
selected relevant subgraph features and (ii) searches and uses only
a portion of the entire search space.

1https://pubchem.ncbi.nlm.nih.gov/bioassay/⟨AID⟩ (⟨AID⟩ = 1, 47)
2http://www.rdkit.org/
3 Due to this pre-processing, the number of datasets differs from that in the simple
molecular graphs in the literature, where the nodes are labeled by atom type, and the
edges are labeled by bond type.

Table 3: Dataset summary

Dataset
Graph-
XOR CPDB Mutag NCI1 NCI47

data 1035 600 187 4252 4202
nodes 7 13.7 17.9 26.3 26.3
edges 6 14.2 19.7 28.4 28.4
of nodes and edges are average.

Table 4: Hyperparameter settings for the QSAR

Common
max subgraph size (# edges) x 4, 6, 8

Model specific
Proposed max tree depth d 1, 3, 5

stepsize η 1.0, 0.7, 0.4, 0.1
trees k 1-500

gBoost regularization ν
0.6, 0.5, 0.4, 0.3,
0.2, 0.1, 0.01

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5

F
e

a
tu

re
 I
m

p
o

rt
a

n
c
e

 S
u

m

subgraph size (# edges)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 5 10 15 20

F
e

a
tu

re
 I
m

p
o

rt
a

n
c
e

order

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 200 400 600 800

F
e

a
tu

re
 I
m

p
o

rt
a

n
c
e

order

 0

 2000

 4000

 6000

 8000

 10000

 0 500

#
 o

f
s
u

b
g

ra
p

h
s

of trees

all
searched
selected

Figure 6: Feature importance and search space for CPDB

6.3 Scalability comparison to Naïve approach
As previously mentioned in Section 1.1, there exists a simple naïve
two-step approach to obtain nonlinear models of subgraph indi-
cators. Figure 7 shows the scalability of this “enumerate & learn”
approach by first enumerating all small-size subgraphs and apply-
ing general supervised learning to their indicators. The values in
the figure are the average values to process each fold in 10-fold
cross validation on a single PC with Pentium G4560 3.50GHz and
8GB memory. We enumerate all subgraphs with limited subgraph
size4, and feed their indicator features to GradientBoostingClas-
sifier with 100 trees (depth ⩽ 5) of scikit-learn5. The proposed
method is also tested with the same setting (100 trees, d5). Since
4Small-size subgraphs are known to be more appropriate for this supervised-learning
purpose than frequent subgraphs [32].
5http://scikit-learn.org

Jointly learning relevant subgraph patterns and nonlinear models of their indicators MLG’18, August 2018, London, United Kingdom

Table 5: Prediction accuracy (%) for the QSAR

CPDB Mutag NCI1 NCI47
ACC AUC ACC AUC ACC AUC ACC AUC

Nonlinear models

Proposed 79.3
(±4.8)

84.5
(±3.6)

87.8
(±6.6)

91.6
(±6.3)

84.7
(±1.7)

90.8
(±1.3)

84.5
(±1.7)

90.3
(±1.1)

Linear models

Proposed (d1) 79.3
(±4.4)

83.9
(±3.3)

87.8
(±6.6)

91.6
(±6.3)

83.1
(±1.6)

89.8
(±1.3)

82.8
(±1.4)

88.9
(±1.1)

gBoost 77.1
(±2.7)

73.6
(±4.9)

91.4
(±5.8)

93.9
(±5.0)

82.7
(±2.2)

83.9
(±2.2)

81.3
(±1.4)

81.8
(±2.6)

Reported values in literature
L1-LogReg [27] 78.3 - - - - - - -
MGK [23] 76.5 75.6 80.8 90.1 - - - -
freqSVM [23] 77.8 84.5 80.8 90.6 - - - -
gBoost [23] 78.8 85.4 85.2 92.6 - - - -
WL shortest path [24] - - 83.7 - 84.5 - - -
Random walk [24] - - 80.7 - 64.3 - - -
Shortest path [24] - - 87.2 - 73.4 - - -

Table 6: Best hyperparameters

CPDB Mutag NCI1 NCI47
Proposed x4 d5 η0.1 k120 x4 d1 η1 k22 x4 d5 η0.1 k452 x4 d3 η0.4 k308
Proposed(d1) x8 d1 η0.4 k128 x4 d1 η1 k22 x4 d1 η0.4 k499 x4 d1 η0.4 k499
gBoost x8 ν0.5 x7 ν0.1 x8 ν0.3 x8 ν0.4

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 4 5 6 7 8 9 10 11 12

NA

ti
m

e
[s

]

max subgraph size (# edges)

proposed (1step)
enum & learn (2step)

 0

6

6

6

6

7

7

 4 5 6 7 8 9 10 11 12

#
u

s
e

d
 f
e

a
tu

re
s

max subgraph size (# edges)

proposed (1step)
enum & learn (2step)

Figure 7: Scalability comparison to naïve approach

this case both use GTB and thus the performance is the same in
principle up to implementation details (empirically both 0.75-0.77
for this setting), we focus on scalability comparisons using the
fixed hyperparameters. Because the number of subgraph patterns
to be enumerated increases exponentially, off-the-shelf packages
such as scikit-learn cannot handle them at some point even when
pattern enumeration can be done. In Figure 7, we can observe pat-
tern enumeration can be done for max subgraph size = 1 to 12
(green line, left), but the 2nd scikit-learn step fails for max sub-
graph size ⩾ 10 (green line, right). In this CPDB examples, the
numbers of subgraphs, i.e., the dimensions of feature vectors, were
66336.1, 145903.7, 275422.3, 512904.1, 874540.0 for max subgraph
size = 8, 9, 10, 11, 12, respectively, and scikit-learn was only feasi-
ble for max subgraph size up to 9. Note that we also need to solve a
large number of subgraph isomorphism known to be NP-complete.

7 CONCLUSIONS
In summary, we investigated nonlinear models with all possible
subgraph indicators and provide a novel efficient algorithm to learn
from the nonlinear hypothesis space. We demonstrated that this
hypothesis space is identical to the (pseudo-Boolean) functions of
these subgraph indicators, which are, in general, strictly larger
than those of the linear models. This is also empirically confirmed
through our Graph-XOR example. Although most existing stud-
ies focus only on real datasets, this would also promote interest
in whether graph-theoretic classification problems can be approx-
imated in a supervised learning manner. At the same time, the
experimental results of the present study also strongly suggest
that we need a nonlinear hypothesis space for the QSAR problems
based on some real datasets, which would also support a standard
cheminformatics approach of applying nonlinear models, such as
random forests and neural networks, to 0-1 feature vectors by the
existence of substructural features, referred to asmolecular finger-
prints such as ECFP [21].

Since research on classification and regression trees originates
from the problem of automatic interaction detection [4, 12, 17], our
approach can provide insights on the questionwhether such higher-
order interactions between input features exist. In this sense, our
methods and findings would also be informative to consider a re-
cent hot topic of detecting such interactions in combinatorial data
[18, 25, 29].

MLG’18, August 2018, London, United Kingdom Ryo Shirakawa, Yusei Yokoyama, Fumiya Okazaki, and Ichigaku Takigawa

REFERENCES
[1] Lu Bai, Luca Rossi, Horst Bunke, and Edwin R. Hancock. 2014. Attributed Graph

Kernels Using the Jensen-Tsallis q-Differences. In Proceedings of the 2014 Euro-
pean Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML-PKDD 2014). Nancy, France, 99–114.

[2] Vincent Barra and Silvia Biasotti. 2013. 3D shape retrieval using Kernels on
Extended Reeb Graphs. Pattern Recognition 46, 11 (2013), 2985–2999.

[3] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vish-
wanathan, Alex J. Smola, and Hans-Peter Kriegel. 2005. Protein Function Pre-
diction via Graph Kernels. Bioinformatics 21, 1 (2005), i47–i56.

[4] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles. J. Stone.
1984. Classification and Regression Trees. Chapman and Hall/CRC, Belmont,
California, U.S.A.

[5] Jerome H Friedman. 2001. Greedy Function Approximation: A Gradient Boost-
ing Machine. Annals of statistics (2001), 1189–1232.

[6] Thomas Gärtner, Peter A. Flach, and Stefan Wrobel. 2003. On Graph Kernels:
Hardness Results and Efficient Alternatives. In Proceedings of the 16th Annual
Conference on Computational Learning Theory (COLT) and 7th Kernel Workshop.
129–143.

[7] Justin Gilmer, Samuel Schoenholz, Patrick F. Riley, Oriol Vinyals, and George
Dahl. 2017. Neural Message Passing for Quantum Chemistry. In Proceedings of
the 20th International Conference on Machine Learning (ICML). Washington, DC,
USA.

[8] Peter L Hammer and Sergiu Rudeanu. 1968. Boolean Methods in Operations Re-
search and Related Areas. Springer.

[9] Zaïd Harchaoui and Francis Bach. 2007. Image Classification with Segmenta-
tion Graph Kernels. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR). Minneapolis, Minnesota, USA,
1–8.

[10] Yan Karklin, Richard F. Meraz, and Stephen R. Holbrook. 2005. Classification
of non-coding RNA using graph representations of secondary structure. In Pro-
ceedings of the Pacific Symposium on Biocomputing (PSB). Hawaii, USA, 4–15.

[11] Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. 2003. Marginalized Kernels
Between Labeled Graphs. In Proceedings of the 20th International Conference on
Machine Learning (ICML). Washington, DC, USA, 321–328.

[12] Gordon V. Kass. 1975. Significance Testing in Automatic Interaction Detection
(A.I.D.). Journal of the Royal Statistical Society. Series C 24, 2 (1975), 178–189.

[13] Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley.
2016. Molecular graph convolutions: moving beyond fingerprints. Journal of
Computer-Aided Molecular Design 30, 8 (01 Aug 2016), 595–608.

[14] Taku Kudo, Eisaku Maeda, and Yuji Matsumoto. 2005. An Application of Boost-
ing to GraphClassification. InAdvances in Neural Information Processing Systems
17, Lawrence K. Saul, Yair Weiss, and Léon Bottou (Eds.). MIT Press, Cambridge,
MA, 729–736.

[15] Pierre Mahé and Jean-Philippe Vert. 2009. Graph kernels based on tree patterns
for molecules. Machine Learning 75, 1 (2009), 3–35.

[16] LlewMason, Jonathan Baxter, Peter L Bartlett, and Marcus R Frean. 2000. Boost-
ing Algorithms as Gradient Descent. In Advances in neural information process-
ing systems. 512–518.

[17] James N. Morgan and John A. Sonquist. 1963. Problems in the analysis of survey
data, and a proposal. J. Amer. Statist. Assoc. 58, 302 (1963), 415–434.

[18] Kazuya Nakagawa, Shinya Suzumura, Masayuki Karasuyama, Koji Tsuda, and
Ichiro Takeuchi. 2015. Safe Feature Pruning for Sparse High-Order Interaction
Models. arXiv preprint arXiv:1506.08002 (2015).

[19] Sebastian Nowozin, Koji Tsuda, Takeaki Uno, Taku Kudo, and Gökhan Bakır.
2007. Weighted substructure mining for image analysis. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR). Minneapolis, Minnesota, USA, 1–8.

[20] S. Rudeanu P.L. Hammer, I. Rosenberg. 1963. On the determination of the min-
ima of pseudo-Boolean functions. Studii şi cercetari matematice 14 (1963), 359–
364. in Romanian.

[21] David Rogers and Mathew Hahn. 2010. Extended-connectivity fingerprints.
Journal of Chemical Information and Modeling 50, 5 (2010), 742–754.

[22] Hiroto Saigo, Nicole Krämer, and Koji Tsuda. 2008. Partial least squares regres-
sion for graph mining. In Proceeding of the 14th ACM SIGKDD international con-
ference on Knowledge discovery and data mining. Las Vegas, Nevada, USA, 578–
586.

[23] Hiroto Saigo, Sebastian Nowozin, Tadashi Kadowaki, Taku Kudo, and Koji
Tsuda. 2009. gBoost: a mathematical programming approach to graph classi-
fication and regression. Machine Learning 75 (2009), 69–89. Issue 1.

[24] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M. Borgwardt. 2011. Weisfeiler-Lehman Graph Kernels. Journal of
Machine Learning Research 12, Sep (2011), 2539–2561.

[25] Mahito Sugiyama, Felipe Llinares López, Niklas Kasenburg, and KarstenMBorg-
wardt. 2015. Significant Subgraph Mining with Multiple Testing Correction. In
Proceedings of the 2015 SIAM International Conference on Data Mining. SIAM,
37–45.

[26] Ichigaku Takigawa and Hiroshi Mamitsuka. 2013. Graph mining: procedure,
application to drug discovery and recent advances. Drug Discovery Today 18,
1-2 (2013), 50–57.

[27] Ichigaku Takigawa and Hiroshi Mamitsuka. 2017. Generalized Sparse Learning
of Linear Models Over the Complete Subgraph Feature Set. IEEE Transactions
on Pattern Analysis and Machine Intelligence 39, 3 (2017), 617–624.

[28] Ichigaku Takigawa, Koji Tsuda, and Hiroshi Mamitsuka. 2011. Min-
ing Significant Substructure Pairs for Interpreting Polypharma-
cology in Drug-Target Network. PLoS ONE 6, 2 (2011), e16999.
https://doi.org/10.1371/journal.pone.0016999

[29] Aika Terada, Mariko Okada-Hatakeyama, Koji Tsuda, and Jun Sese. 2013. Sta-
tistical significance of combinatorial regulations. Proceedings of the National
Academy of Sciences 110, 32 (2013), 12996–13001.

[30] Koji Tsuda. 2007. Entire regularization paths for graph data. In Proceedings of
the 24th International Conference on Machine learning (ICML). Banff, Alberta,
Canada, 919–926.

[31] S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borg-
wardt. 2010. Graph Kernels. Journal of Machine Learning Research 11 (2010),
1201–1242.

[32] Nikil Wale, Ian A. Watson, and George Karypis. 2008. Comparison of descrip-
tor spaces for chemical compound retrieval and classification. Knowledge and
Information Systems 14, 3 (2008), 347–375.

[33] Xifeng Yan and Jiawei Han. 2002. gSpan: Graph-Based Substructure Pattern
Mining. In Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM). Washington, DC, USA, 721–724.

A PROOF OF THEOREM 5.1
Proof. Given D1(д) and D0(д),

bound = min
д′

[
TSS(D1(д′)) + TSS(D0(д′))

]
= min
S ⊂ D1(д)

[
TSS(D1(д) \ S) + TSS(D0(д) ∪ S)

]
(6)

= min
(⋄, k)

[
TSS(D1(д) \ S⋄,k) + TSS(D0(д) ∪ S⋄,k)

]
(7)

where (⋄,k) ∈ {≤, >}×{2, . . . , |D1(д)−1|}. From the anti-monotone
property (2), we have D1(д′) ⊆ D1(д) for д′ ⊒ д for the training
setD from which the equation (6) directly follows. Thus, we show
(7) in detail. For simplicity, let A =, {a1, . . . ,an | ai ∈ R} denote
D1(д), and B = {b1, . . . ,bm | bi ∈ R} denoteD0(д). Then, the goal
of (6) is to minimize the total sum of squares TSS(A\S)+TSS(B∪S)
by tweaking S = {s1, . . . , sk } ⊂ A. Let ā, ā−S , b̄, and b̄+S be the
means of A, A \ S , B, and B ∪ S , respectively. The key fact is that
TSS(A \ S)+TSS(B ∪ S) can be regarded as a quadratic equation of∑k
i=1 si when the size of S is fixed to k . More precisely,

TSS(A \ S) + TSS(B ∪ S)

=
∑
i∈[n]
(ai − ā−S)2 −

∑
i∈[k]
(si − ā−S)2 +

∑
i∈[m]

(bi − ā+S)2 +
∑
i∈[k]
(si − ā+S)2

= −
∑
i∈[k]
(si − ā)2 −

(∑
i∈[k](si − ā)

)2
n − k +

∑
i∈[n]
(ai − ā)2

+
∑
i∈[k]
(si − b̄)2 −

(∑
i∈[k](si − b̄)

)2
m + k

+
∑
i∈[m]

(bi − b̄)2

= −
(

1
n − k +

1
m + k

) (∑
i∈[k]

si
)2
+
(
2ā

n
n − k − 2b̄

m
m + k

) ∑
i∈[k]

si

− nk
n − k ā

2 +
mk
m + k

b̄2 +
∑
i∈[n]
(ai − ā)2 +

∑
i∈[m]

(bi − b̄)2

Therefore, TSS(A \ S) + TSS(B ∪ S) is minimized when
∑k
i=1 si is

maximized or minimized. In other words, (6) becomes minimum
when the mean of S ⊂ D1(д) is maximized or minimized. □

