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ABSTRACT
Research in the social sciences is increasingly based on large and
complex data collections, where individual data sets from different
domains are linked and integrated to allow advanced analytics. A
popular type of data used in such a context are historical censuses,
as well as birth, death, and marriage certificates. Individually, such
data sets however limit the types of studies that can be conducted.
Specifically, it is impossible to track individuals, families, or house-
holds over time. Once such data sets are linked and family trees
spanning several decades are available it is possible to, for exam-
ple, investigate how education, health, mobility, employment, and
social status influence each other and the lives of people over two
or even more generations. A major challenge is however the accu-
rate linkage of historical data sets which is due to data quality and
commonly also the lack of ground truth data being available. Unsu-
pervised techniques need to be employed, which can be based on
similarity graphs generated by comparing individual records. In this
paper we present initial results from clustering birth records from
Scotland where we aim to identify all births of the same mother and
group siblings into clusters. We extend an existing clustering tech-
nique for record linkage by incorporating temporal constraints that
must hold between births by the same mother, and propose a novel
greedy temporal clustering technique. Experimental results show
improvements over non-temporary approaches, however further
work is needed to obtain links of high quality.
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1 INTRODUCTION
Databases that contain personal information, such as censuses or
historical civil registries [25], generally contain multiple records
describing the same individual (entity) or group of individuals such
as families or households, where each individual will occur in such
databases with different types of roles [7, 8]. A baby is born, then
recorded as a daughter or son in a census, and later she or he might
marry (as a bride or groom) and become the mother or father of her
or his own children. Being able to link such records across different
databases will allow the reconstruction of whole populations and
open a multitude of studies in the health and social sciences that
currently are not feasible on individual databases [3, 20].

The process of identifying the sets of records that correspond
to the same individual is known as record linkage, entity resolution,
or data matching [6]. Record linkage involves comparing pairs of
records to decide if the records of a pair refer to the same entity
(known as a match) or to different entities (a non-match). In such a
comparison process generally the similarities between the values of
a selected set of attributes are compared to decide if a pair of records
is similar enough to be classified as a match (if for example the simi-
larities are above a pre-define threshold value). In many application
domains this simple pair-wise linkage process does however not
provide enough information to identify the relationships between
different individuals [7, 11].

Recently, in contrast to traditional pair-wise record linkage,
group linkage [24] has received significant attention because of
its applicability of linking groups of individuals, such as families or
households [8, 15]. The identification of relationships between in-
dividuals can enrich data and improve the quality of data, and thus
facilitate more sophisticated analysis of different socio-economic
factors (such as health, wealth, occupation, and social structure) of
large populations [13, 16]. Studying these issues are important to
identify how societies evolve over time and discover the changes
that influenced and contributed for social evolution [12].

Historical record linkage involves the linkage of historical records,
including records from censuses as well as from birth, death, and
marriage certificates, to construct longitudinal data sets about a
population. Over the past two decades researchers working in differ-
ent domains have studied the problem of historical record linkage.
In 1996 Dillon investigated an approach to link census records from
the US and Canada to generate a longitudinal database to examine
changes in household structures [10]. The Integrated Public Use
Microdata Series (IPUMS, see: https://www.ipums.org/) is a large
project initiated by the Minnesota Population Centre (MPC) for
linking large demographic data collections. The Life-M project is
another example of transforming records from birth, marriage, and

https://www.ipums.org/
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death certificates as well as census records into an intergenerational
longitudinal database [2]. The project considers US data from the
19th and 20th centuries and aims to use birth certificates as a basis
for historical record linkage of large historical databases.

The Digitising Scotland project [9], which this work is a part of,
aims to transcribe and link all civil registration events recorded in
Scotland between 1856 and 1973. Around 14 million birth, 11 million
death, and 4 million marriage records need to be linked to create a
linked database covering thewhole population of Scotland spanning
more than a century to allow researchers in various domains to
conduct studies that are currently impossible to do.

Here we present work-in-progress on a specific step used in
traditional family reconstruction as conducted by demographers
and historians [25, 27]: the bundling (clustering) of birth records
by the same mother to identify siblings. Once siblings groups have
been identified, they can be linked to census, marriage, and death
records using group linkage techniques [14]. Linked bundles of
siblings allow a variety of studies for example about fertility and
mortality and how these have changed over time [25].

Contributions: In this paperwe investigate how clustering tech-
niques for entity resolution [19, 26] can be employed for bundling
birth records by the same mother, where temporal constraints can
be incorporated to ensure no biologically impossible birth records
by the same mother are linked together. We propose and evaluate
a novel greedy temporal clustering approach, and compare it with
a temporal variation of an existing clustering technique for entity
resolution which has shown to work well in a previous study [26].
We conduct an empirical study on a data set from Scotland which
has been extensively linked semi-manually by domain experts [25]
providing us with ground truth data to calculate linkage quality.
We show that temporal clustering techniques can outperform the
linkage using non-temporal techniques in terms of linkage quality.

2 RELATEDWORK
Record linkage has been an active field of research for over half
a century in several research domains. Several recent books and
surveys provide different perspectives of this area [6, 11, 18, 22].

Classification techniques for record linkage can be categorised
into supervised and unsupervised techniques. Clustering techniques,
which are unsupervised, view record linkage as the problem of how
to identify all records that refer to the same entity and to group
these records into the same cluster. Hassanzadeh et al. [19] pre-
sented a framework to comparatively evaluate different clustering
techniques for record linkage. Saeedi et al. [26] recently proposed
a framework to perform clustering for record linkage on a par-
allel platform using Apache Flink. Both these frameworks have
implemented and evaluated several clustering approaches. In the
evaluation by Saeedi et al. [26] star clustering (as described and
modified in Section 3.3) was one of the overall best performing
techniques compared to other clustering techniques. Neither of the
two frameworks, however, has considered temporal constraints.

The linkage of historical data collections with the aim to produce
large temporal linked data sets has recently received increased at-
tentionwithin the context of population reconstruction [3, 20]. Such
linked population databases can be an exciting resource in areas
such as health, history, and demography because these databases

Algorithm 1: Pair-wise similarity graph generation
Input:
- R: List of records to be linked
- A: List of attributes from R to be compared
- S: List of similarity functions to be applied on attributes from A
- w: List of weights given to attribute similarities, with |w | = |S |
- b, r Number of bands and band size for min-hash based LSH blocking
- smin : Minimum similarity for record pairs to be added to the generated graph
Output:
- G: Undirected pair-wise similarity graph

1: V = ∅, E = ∅, G = (V, E) // Initialise empty graph
2: L = MinHashLSHIndexing(R, b, r ) // Generate Min-hash index
3: for l ∈ L do: // Loop over all Min-hash blocks
4: for (ri , r j ) : ri ∈ l, r j ∈ l, ri .id < r j .id do:
5: si, j = CompareRecords(ri , r j , A, S, w) // Compute similarities
6: si, j = Normalise(si, j , w) // Normalise the similarity
7: if si, j ≥ smin then:
8: AddNodes(G.V, {ri , r j }) // Create two new nodes in G
9: AddEdge(G.E, (ri , r j ), si, j ) // Create an edge in G
10: return G

allow answering complex questions about temporal changes of a
society that so far have been impossible to address. Most projects
in historical record linkage are challenged by low data quality (due
to scanning and transcription errors of handwritten forms), as well
as a lack of ground truth data (which is difficult and expensive to
obtain). Therefore, research in this area has concentrated on either
exploiting the structure in such data sets (such as households and
families) and developed group linkage methods [8, 13, 14, 24] or
collective techniques [7]. Alternative approaches explore the use
of limited ground truth data for evaluating linkage quality [1, 2].

3 TEMPORAL GRAPH LINKAGE
Our overall approach to temporal graph linkage consists of two
major phases which we describe in detail in this section. First we
generate an undirected graph based on pair-wise similarity calcula-
tions between individual records (birth certificates in our case). This
is followed by a clustering of records (nodes) in this graph where
we do take temporal constraints between records into account, as
we describe in Section 3.2. In Sections 3.3 and 3.4 we discuss two
temporal clustering approaches, the first based on the extension
of an existing star-based clustering approach [19, 26], while the
second approach generates clusters in a greedy temporal manner.

For notation we use bold letters for lists, sets and clusters (with
upper-case bold letters for lists of sets, lists and clusters), and normal
type letters for numbers and text. Lists are shown with square and
sets with curly brackets, where lists have an order but sets do not.

3.1 Similarity Graph Generation
The steps involved in the pair-wise similarity calculation phase
are outlined in Algorithm 1. The main input to the algorithm is a
list of records, R, which we aim to link and cluster (in our case we
aim to determine which birth records are by the same mother). We
assume each record has a unique numerical identifier, r .id , and a
time-stamp, r .t , which in our case is the registration date of a birth
certificate. We use the list A of attributes which we will compare
between records using the list of similarity functions S. These are
approximate string matching functions such as Jaro-Winkler or edit
distance [4], or functions specific to the content of an attribute like
a numerical year difference function [6]. We also provide a list of
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Figure 1: Temporal constraints as the plausibility for the
same mother to be able to give birth to two children, where
the horizontal axis shows the time difference (in days) and
the vertical axis the plausibility p∆t that two birth records
are possible for a certain time difference. Due to errors in
registration dates, for multiple births we allow for a few
days difference for twins and triplets, and then have a plau-
sible interval between birth from 9 months onwards up-to
35 years. Two births by the same womanmore than 40 years
apart is deemed not to be plausible.

weights, w, to be assigned to the calculated similarities. The value
of the similarity sa for attribute a ∈ A between two records ri and
r j will be calculated as sa (ri , r j ) = Sa (ri , r j ) ·wa , wherewa is the
weight for attribute a ∈ A and Sa is the similarity function used on
a. The attributes and corresponding weight values we use in our
experiments are shown in Table 1 in Section 4.

In order to prevent a full pair-wise comparison of each record inR
with every other record in R (which has a complexity ofO(|R|2)), we
employ min-hashing based on locality sensitive hashing (LSH) [21]
which requires the two parameters b (the number of min-hash
bands) and r (the band size). Furthermore, we provide a minimum
similarity threshold smin which determines which record pairs are
to be included in the similarity graph G being generated.

Algorithm 1 starts by initialising an empty graph, followed by
the generation of the min-hash index L which consists of blocks
of records, l. Each block l ∈ L contains one or more records from
R that share the same min-hash value based on the content of the
attribute values in A. In lines 3 and 4 of the algorithm we loop over
these blocks l ∈ L and generate all unique pairs of records in each
block l. In line 5 we compare the unique record pairs (ri , r j ) from
block l to calculate a vector of similarities si, j . We then normalise
these similarities into 0.0 ≤ si, j ≤ 1.0 in line 6. If this normalised
similarity is at least the minimum similarity threshold smin then in
lines 8 and 9 we insert the two records ri and r j as nodes into the
similarity graph G, and we create an undirected edge between ri
and r j where the edge attribute is the normalised similarity si, j .

We finally in line 10 return the generate graph G which is used
in the second phase of our approach to conduct clustering of the
nodes in this graph. While in the pair-wise similarity calculation
algorithm we do not consider any temporal constraints, we could
add a temporal plausibility calculation step after line 6 and only
insert a record pair into G if the pair is both similar enough and
also temporarily possible, as we describe next.

3.2 Modelling Temporal Constraints
Within the context of clustering birth records by the same mother,
we model temporal constraints as a list T of time intervals where it

is plausible for a mother to have given birth to two babies. As illus-
trated in Figure 1, we need to consider issues such as data quality as
well as multiple births (like twins and triplets, which potentially are
born on two consecutive days). For each day difference ∆t between
two birth records (i.e. the number of days between two births) we
calculate a plausibility value p∆t (with 0.0 ≤ p∆t ≤ 1.0), where
p∆t = 1.0 for day differences where two births by the same mother
are possible, and p∆t = 0.0 for day differences where it is biologi-
cally not possible for the same mother to have given birth to two
babies. To account for wrongly recorded dates of birth we apply
linear discounting of plausibility values, as shown in Figure 1.

We can use these temporal plausibility values to modify the
similarity values between records by multiplying normalised record
pair similarities (si, j , as calculated in Algorithm 1) with plausibility
values, and then not considering record pairs in the graph G where
their new modified similarity is below a given threshold.

We can apply these temporal constraints during the pair-wise
similarity calculation step described in Section 3.1 (to only include
record pairs into the graph G that are plausible from a temporal
point of view). In the clustering step described in Sections 3.3 and 3.4
below, we also need to check for every pair of records in a cluster if
they are temporarily plausible. A cluster can contain pairs of records
that are not in G because their similarity si, j is below the threshold
smin , and these pairs also need to be plausible with regard to the
given temporal constraints. Formally, for a given cluster c, it must
hold: ∀(ri ∈ c, r j ∈ c) : p∆t ≥ pmin , where pmin is a minimum
plausibility threshold (similar to the similarity threshold smin used
in Algorithm 1). If this condition is not fulfilled for a record ri ∈ c
with all other records in c, then ri needs to be removed from c.

While we currently set these temporal intervals of plausible
births by the same mother based on discussions with domain ex-
perts, in the future we aim to learn temporal plausibility values
from ground truth data. Besides temporal constraints between birth
records by the same mother, in our application (where we aim to re-
construct populations by linking birth, death, marriage, and census
records) there are other constraints we can consider. For example,
a death of an individual can only occur on the same day or after
the person’s birth. A marriage should only occur once a person
has reached a minimum age. Similarly, records of the births by a
mother can only occur once she has reached a certain minimum
age, and before she has reached a certain maximum age.

3.3 Star Clustering
The second phase of our approach is to use a clustering algorithm to
group all births by the same mother. We selected star clustering be-
cause this algorithm has shown to be one of the best performers in
a previous evaluation study of clustering algorithms for entity reso-
lution [26]. Our contribution to improve star clustering is two-fold:
(a) we introduce temporal constraints as discussed in the previous
section, and (b) we develop several methods for cluster centre se-
lection and post-processing of overlapping clusters. Algorithm 2
outlines our modified star clustering algorithm.

Our modified algorithm is able to either consider temporal con-
straints (if the list of constraints T is provided) or ignore them (if T
is empty) when generating clusters. The input to the algorithm are
the pair-wise similarity graph, G, as generated by Algorithm 1, and
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Algorithm 2: Temporal star clustering
Input:
- G: Undirected pair-wise similarity graph
- T: List of temporal constraints (as discussed in Section 3.2)
- pmin : Minimum plausibility for record pairs to be added to a star cluster
- smin : Minimum similarity for record pairs to be added to a star cluster
-msor t : Method to sort nodes for processing
-mr eso : Method to resolve overlapping clusters
Output:
- C: Final list of clusters

1: C = [ ] // Initialise an empty list of clusters
2: U = [ ] // Initialise an empty list to hold unassigned nodes
3: for vi ∈ G.V do: // Loop over all nodes in graph
4: ni = GetSimNeighbours(G, vi , smin ) // Similar neighbours of vi
5: di = |ni | // Degree of vi
6: ai = CalcAvrSimNeighbours(G, vi , ni ) // Calculate average similarity
7: U.add ((vi , di , ni , ai )) // Add tuple to list of unassigned nodes
8: SortTuples(U,msor t ) // Sort according to sorting method
9: for (vi , di , ni , ai ) ∈ U do:
10: U.r emoveTuple (vi ) // Remove assigned node from unassigned list
11: ci = {vi } // Initialise a new cluster with selected node as centre
12: while ni , ∅ do:
13: vj = GetNextBestNeighbour(ci , ni ) // Select next best neighbour
14: ni .r emove(vj ) // Remove selected next best neighbour
15: if IsTempPossSimNeighbour(vj , ci , T, pmin ) do:
16: ci ∪ {vj } // Add temporally plausible node to cluster
17: U.r emoveTuple(vj ) // Remove node added to the cluster
18: C.add (ci ) // Add cluster to the final cluster list
19: vr ep = GetRepeatNodes(C) // Get nodes that occur in multiple clusters
20: C = ResolveOverlap(C, vr ep,mr eso, smin ) // Assign nodes to best cluster
21: return C

the list T of temporal constraints. We also require the minimum
plausibility pmin and minimum similarity smin thresholds to decide
if a node is added to a cluster, and the sorting and overlap resolving
methods,msor t andmr eso , which we discuss in detail below.

The algorithm starts by initialising an empty list of clusters,
C, and an empty list U which will hold information about the
nodes that are not yet assigned to clusters. Initially, all nodes in
the similarity graph G are marked as unassigned by adding them
to U in the loop starting in line 3. For each node vi ∈ G.V , using
the function GetSimNeighbours() in line 4 we get the set of its
neighbours ni ∈ G that have an edge similarity of at least smin .
We count the number of these neighbours as the degree di of node
vi in line 5, and also calculate the average similarity of all edges
between vi and its similar neighbours in ni . In line 7 we append a
tuple containing vi , di , ni , and ai to the list of unassigned nodes U.

Once tuples for all nodes in G have been added into U, we sort
U such that the best node to select as a cluster centre is at the
beginning of this list. We investigate three different methods of
how to order nodes based on the sorting method provided inmsor t :
• Avr-sim-first: We order the tuples in descending order based
on their average similarities ai first and then based on the degree
di (with larger di first). With this ordering we will process nodes
that have high similarities to other nodes first.

• Degree-first: We order the tuples in descending order based on
their degree di first and then based on their average similarity ai
(with larger ai first). With this ordering we will process nodes
that have many edges with high similarities to other nodes first.

• Comb: With this method we order nodes in descending order
based on combined score where we multiply their average sim-
ilarity with the logarithm of their degree, i.e. ai × loд(di ). We
take the logarithm of di because ai is normalised into 0 ≤ ai ≤ 1
while di is a positive integer value and therefore would dominate

the combined score. With this method we aim to weigh both
degree and average similarities to obtain an improved ordering.

In lines 9 to 18 of the algorithm, we process one tuple in U after
another. Only an unassigned node can become the centre of a new
star cluster. The tuple of node vi ∈ U selected to become a star
centre is removed from the list of unassigned nodes and a new
cluster ci is created in line 11. Then we find the next best node to
add to cluster ci , using the functionGetNextBestNeighbour(). This
function selects the node vj ∈ ni which has the highest average
similarity with the nodes that are currently assigned to the cluster
ci . The selected node vj is removed from ni in line 14 so it cannot
be selected as the best neighbour in the next iteration. For each next
best neighbour vj we check in line 15 if vj is plausible with every
other node in ci with regard to the temporal constraints given in the
list T using the function IsTempPossSimNeighour() (note that if T
is empty then this function always returns true), and the minimum
plausibility threshold pmin . We add the plausible nodes vj to the
cluster ci in line 16 and remove their corresponding tuples from
U in line 17. This means these nodes cannot become the centre of
another star cluster.

The final steps of Algorithm 2, lines 19 and 20, deal with those
nodes that are members of more than one cluster (note these are
not star cluster centres). Overlapping clusters are not desirable
for record linkage because each cluster represents one entity. In
line 19 we therefore identify the set vr ep of nodes which occur
in more than one cluster in the list C, and in line 20 we use the
function ResolveOverlap() to resolve overlapping clusters, where
the methodmr eso determines how we assign a node vj ∈ vr ep to
its best cluster. We investigate three methods to resolve overlaps:
• Avr-all: We average the similarities between the node vj and all
the nodes in a cluster it is connected to in the similarity graph G
by dividing this similarity sum by n − 1 where n is the number
of nodes in the cluster (including vj ), i.e. we do take nodes in a
cluster which are not connected to vj in G into account.

• Avr-high: We calculate the average similarity between the node
vj and all the nodes in a cluster it is connected to in the similarity
graph G, with similarities of at least smin .

• Edge-ratio: In this method we count the number of edges be-
tween vj and nodes in a cluster that have a similarity of at least
smin and divide this number by n − 1 where n is the number of
nodes in the cluster (including vj ).

For each nodevj ∈ vr ep , we assign it to the cluster with the highest
value according to the selected method to resolve overlaps. For all
three methods, if for a given node vj two or more clusters have the
same calculated score then we assign vj to the cluster where vj has
the highest number of similar edges to. At the end of this process,
the final list of clusters C contains no overlapping clusters.

3.4 Greedy Temporal Clustering
The second temporal clustering approach is based on the idea of
iteratively adding nodes to clusters using a greedy selection method,
as illustrated in Figure 2. We initially create one cluster per record,
and insert these singleton clusters into a priority queue that is
sorted according to time-stamps (i.e. the dates of birth registrations
in our case) with the smallest time-stamp first. We then process
the earliest cluster first, and aim to expand this cluster with a new
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Figure 2: Example of the greedy temporal linkage approach
described in Section 3.4, showing nodes (records) and edges
(similarities) from the directed similarity graphGD . Records
r1 to r3 show an existing cluster, and the question now is
which best future record (from r4, r5, and r6) is to be added
to the cluster next. We consider three selection methods: (a)
the earliest next possible (according to temporal constraints)
record in the graph G (in this example r4), (b) the future
record with the highest maximum similarity (r5), or (c) the
future record with the highest average similarity (r6).

record that is in the future (of the latest record in the cluster), as
Figure 2 shows. In this greedy approach the question is how to select
the best future node (record) to add to a cluster. We implement (and
evaluate in Section 4) three different such selection methods:
• Next: Select the temporal next record (with the smallest time-
stamp) that is connected via an edge in the graphG to any record
in the cluster. This method does neither consider the similarities
between nodes (besides the edges in G) nor their connectivities
and serves as a greedy baseline.

• Max-sim: Select the record in the future that is connected via
an edge in the graph G to any record in the cluster and that has
the highest similarity si, j with any record in the cluster. This
method generates clusters where nodes are connected via edges
of high similarities, however, these clusters might not be dense.

• Avr-sim: Select the record in the future that is connected via an
edge in the graph G to one or more records in the cluster and
that has the highest average similarity over these edges. This
method generates dense clusters with high similarity edges.
As with star clustering, we can consider temporal constraints

when selecting the next record to be added into a cluster, or we can
ignore any temporal constraints. Algorithm 3 outlines the steps
involved in this temporal greedy clustering approach.

The main input to the algorithm are the pair-wise similarity
graph, G, and a list of temporal constraints, T, as discussed in Sec-
tion 3.2.We also input aminimumplausibility thresholdpmin which
is used to consider which record pairs are to be added into clusters
based on their temporal constraints, and the selection methodmsel
which determines which nodes (records) to add into a cluster.

We first (in line 1) convert the undirected similarity graph G
into a directed graph where each node (birth record) has an out-
going edge to any future node, as shown in Figure 2. The function
GenerateTempDirGraph() generates a directed graph GD by con-
sidering the time differences between the pairs of nodes in G, such
that ∀(vi ,vj ) ∈ GD .E : vj .t ≥ vi .t . In line 4, the algorithm then
loops over each node v ∈ GD and adds v to the final list of clusters
C ifv does not have any incoming or outgoing edges to other nodes
(lines 5 and 6), i.e. the node is a singleton. Otherwise, a new cluster

Algorithm 3: Greedy temporal clustering
Input:
- G: Undirected pair-wise similarity graph
- T: List of temporal constraints (as discussed in Section 3.2)
- pmin : Minimum plausibility for record pairs to be considered
-msel : Method on how to select the next node to add to a cluster
Output:
- C: Final list of clusters

1: GD = GenerateTempDirGraph(G) // A temporal directed graph
2: C = [ ] // Initialise an empty list of clusters
3: Q = [ ] // Initialise an empty priority queue
4: for v ∈ GD .V do: // Loop over all nodes in GD
5: if ( |v .in() | = 0) ∧ ( |v .out () | = 0) then: // A singleton
6: C.add ({v }) // Add to the final list of clusters
7: else:
8: Q.add ((v .t, {v })) // Add node with its time-stamp to queue Q
9: Sort(Q) // Sort queue according to time-stamps (earliest first)
10: while Q , [] do: // Loop over temporal clusters until Q is empty
11: (t, ctmp ) = Q.pop() // Get first cluster tuple in Q
12: o = ∪vi .out (), vi ∈ ctmp // Set of all outgoing nodes
13: if o = ∅ do: // No outgoing nodes found in ctmp
14: C.add (ctmp ) // Add ctmp to the final list of clusters
15: else:
16: if msel = Next do: // Select node with smallest time-stamp
17: vn = vi ∈ o : argmin{vi .t : vi ∈ o}
18: if msel =Max-sim do: // Select node with the highest similarity
19: vn = vi ∈ o : argmax{si, j : vi ∈ ctmp, vj ∈ o}
20: if msel = Avr-sim do: // Select node with highest average similarity
21: vn = vi ∈ o : argmax{∑ si, j / | {(vi , vj ) : vi ∈ ctmp, vj ∈ o} | }
22: p∆t = CheckTempConstr(vn .t, ctmp, T) // Temporal plausibility
23: if p∆t ≥ pmin do:
24: Q.add ((vn .t, ctmp ∪ {vn })) // Add expanded ctmp to Q
25: Sort(Q) // Sort queue according to time-stamps (earliest first)
26: else:
27: C.add (ctmp ) // Add ctmp to the list of final clusters
28: return C

is created containing only nodev , and this cluster is added together
with its time-stamp, v .t , as a tuple into the priority queue Q for
further processing (line 8).

In line 9 we sort Q according to the time-stamps of each cluster
such that the cluster with the smallest time-stamp is at the begin-
ning of the queue. The main loop of the algorithm starts in line 10
where in each iteration we retrieve the cluster ctmp with the earli-
est time-stamp t (line 11). We then find for each node vc ∈ ctmp all
its outgoing nodes in GD , and in line 12 we combine these into the
set o of all outgoing nodes for ctmp . If o is empty for the current
cluster ctmp then ctmp is added to the final list of clusters C in line
14 because it cannot be expanded further.

On the other hand, if there are outgoing nodes (i.e. o is not
empty), then based on the selection method msel , as explained
above, the algorithm selects the next best node,vn , to be added into
the current cluster ctmp in lines 16 to 21. Using the functionCheck-
TempConstr() in line 22 we then check the temporal plausibility
p∆t between nodevn and all nodes in ctmp based on the list of tem-
poral constraints T (if this list is empty, i.e. no temporal constraints
are given, then we set p∆t = 1). If the calculated p∆t is at least pmin
(i.e. vn is temporary plausible with all other nodes in ctmp ), then
vn is added to the current cluster ctmp and the expanded cluster
is added as a new tuple into Q with vn .t as the tuple’s time-stamp
(line 24). Q is sorted again in line 25 to ensure the cluster with the
smallest time-stamp (of its temporarily last record) is selected in
the next iteration (line 25). If vn is not temporally plausible with
at least one node in ctmp then ctmp is added to the final list of
clusters C in line 27 because it cannot be expanded further.
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Table 1: Attributes in birth certificates used for three variations of calculating pair-wise similarities to generate the graph G.

Attribute Similarity function Weight All attributes Parent names only Parent names and addresses
Father first name Jaro-Winkler 6.578 ✓ ✓ ✓
Father last name Jaro-Winkler 7.168 ✓ ✓ ✓
Mother first name Jaro-Winkler 4.483 ✓ ✓ ✓
Mother last name Jaro-Winkler 7.168 ✓ ✓ ✓
Mother maiden last name Jaro-Winkler 5.985 ✓ ✓ ✓
Parents marriage day Exact 4.610 ✓
Parents marriage month Exact 3.855 ✓
Parents marriage year Year difference 5.240 ✓
Parents marriage place 1 Jaro-Winkler 4.435 ✓
Parents marriage place 2 Jaro-Winkler 3.607 ✓
Occupation father Jaro-Winkler 2.247 ✓
Occupation mother Jaro-Winkler 1.274 ✓
Address 1 Jaro-Winkler 4.715 ✓ ✓
Address 2 Jaro-Winkler 3.548 ✓ ✓
Source parish Jaro-Winkler 4.562 ✓ ✓

Table 2: The five most frequent values and their correspond-
ing frequency counts for first and last names of fathers and
mothers in the Isle of Skye birth data set.

First name Last name
Father Mother Father Mother

John (3,444) Mary (2,740) Mcleod (1,571) Mcdonald (1,793)
Donald (2,628) Catherine (2,607) Mcdonald (1,556) Mcleod (1,761)

Alexander (1,665) Ann (2,084) Mckinnon (1,168) Mckinnon (1,164)
Malcolm (800) Margaret (2,031) Nicolson (1,047) Nicolson (908)
Neil (787) Christina (1,626) Mclean (908) Mclean (850)

4 EXPERIMENTAL EVALUATION
We evaluate our proposed temporal clustering approaches using
a real Scottish birth data set that covers the population of the Isle
of Skye over the period from 1861 to 1901. This data set contains
17,614 birth certificates, where each of these contains personal
information about the baby and its parents, as shown in Table 1.

This data set has been extensively curated and linked semi-
manually by demographerswho are experts in the domain of linking
such historical data [23, 25]. Their approach followed long estab-
lished rules for family reconstruction [27], leading to a set of linked
birth certificates. We thus have a set of manually generated links
that allows us to compare the quality and coverage of our automat-
ically identified links to those identified by the domain experts.

As with other historical data sets [1, 14], this birth data set has a
very small number of unique name values (2,055 first names and
only 547 last names). As Figure 3 shows, the frequency distributions
of names are also very skewed. The five most common first and
last name values occur in between 30% and 40% of all records, as
Table 2 illustrates. Many records have missing values in address or
occupation attributes, and for unmarried women the details of a
baby’s father are mostly missing.

As commonly performed in record linkage research [6, 22], we
evaluate our clustering approaches with regard to precision (how
many of the identified links between birth records are true links
according to the demographers) and recall (how many true links
have our clustering approaches identified and inserted into the same
clusters). We do not present F-measure results given recent work
has identified some problematic aspects when using the F-measure
to compare record linkage approaches [17].

We implemented all techniques using Python 2.7.6 and used the
string matching functionalities provided in Febrl [5] to conduct the
pair-wise record comparisons. We set the LSHmin-hash parameters
as b = 100 (number of bands) and r = 4 (band size) in order to
obtain a recall of 99.7% of the true matches in the ground truth data
set for the similarity graph G. We used three different subset of
attributes, A, as described in Algorithm 1 and illustrated in Table 1.
For details of the similarity functions used see [6]. We calculated
attribute similarities with either the weights shown in Table 1, or
with all attribute weights set to 1.0. We thus ended up with six
similarity graphs where we set smin = 0.7: weighted and no weights,
and All attributes, Parent names and addresses, and Parent names
only. This allows us to investigate how different ways to calculate
pair-wise similarities influence the quality of the final clustering.

For the clustering approaches described in Sections 3.3 and 3.4,
we evaluate the three sorting and resolving methods for star cluster-
ing, and the three selection methods for greedy temporal clustering.
For star clustering we show plots for the three resolving methods
because the three sorting methods provided very similar results,
with Avr-sim-first being the overall best sorting method.

We show the final clustering results obtained as precision-recall
curves in Figures 4 and 5 where we changed the value of the
minimum similarity threshold to include pair-wise similarities (i.e.
edges) in the graph G from 1.0 to 0.7 in 0.05 steps.

These rather unusual looking precision-recall curves need some
explanation. When the minimum similarity threshold smin used to
generate the pair-wise graph G is lowered, more false matches are
included as edges into G, thus reducing the precision as expected.
However, recall seems to have an inverse relationship with smin
up-to a certain point (recall increases while smin is decreased) and
then recall decreases with smin . We believe that this behaviour is
caused by the greedy nature of the algorithms and the skewness
of the attribute value distribution. When smin is too high (such
as 1.0), many true-matches which are not exact matches (due to
mistakes in data transposition, etc.) get dropped, leading to lower
recall. When smin is slightly more lenient (such as 0.95 or 0.9), re-
call improves since more of the true-matches with slight spelling
mistakes are included into clusters and are therefore matched. How-
ever, when smin is further lowered, the number of high similarity
non-matches increases (due to skewness of the distribution) and
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Figure 3: Frequency distribution of (a) first names and (b) last names of parents, and (c) addresses in the Isle of Skye birth data
set. Note the y-axis are in log scale. Notice the highly skewed frequency distributions where a few names occur many times.

these non-matches will be clustered incorrectly. This is caused by
the greedy nature of both clustering algorithms, where after an
incorrect node is selected as the next best node the actual true
matches are never offered a chance to be clustered together. This
behaviour is mostly accentuated when only parent names are used
to calculate the similarities between certificates. This is because the
distribution of parent names is the most skewed, as Figure 3 shows.

As both Figures 4 and 5 show, when temporal constraints are
included in the clustering phase then precision generally increases
considerably while recall only decreases little. The overall best per-
forming approach was using unweighted similarities of only parent
names. The overall highest precision and recall results without
temporal constraints were 0.877 and 0.897, while when applying
temporal constraints they were 0.925 and 0.888, respectively.

The result plots also show that overall star clustering achieves
better results with regard to recall than the temporal greedy tech-
nique, however the similarity based selection methods for temporal
greedy clustering achieve overall higher minimum precision results.

5 CONCLUSIONS AND FUTUREWORK
In this work-in-progress paper we have developed and evaluated
two clustering approaches for linking birth certificates in the con-
text of historical record linkage. Both algorithms are based on a
graph that represents the similarities calculated between individual
birth certificates. We have evaluated six approaches how this graph
is generated based on comparing different attribute combinations
in a weighted or unweighted fashion, and how the characteristics
of this graph affect the final clustering outcomes. Our experimental
evaluation on a real Scottish data set have shown that incorporating
temporal constraints (when a woman can give birth or not) can
improve the quality of the final linked data set.

As future work we aim to improve our proposed greedy tem-
poral clustering algorithm as well as temporal star clustering to
obtain better linkage results. We aim to investigate why certain
birth certificates are not linked (missed true matches, lowering
recall) while others are falsely linked (wrong matches, lowering
precision). We then aim to expand our graph-based clustering tech-
niques to also incorporate links across birth, marriage, death, and
census certificates by generating a single large similarity graph
where nodes represent certificates and edges similarities between
them, and where edges can be of different types [7]. Such a graph
will not only allow temporal constraints to be considered but also
gender and role-type specific constraints [7, 8]. We plan to model
temporal aspects of how the records about a certain individual

will occur in historical population databases. Our ultimate aim is
to develop unsupervised techniques for the accurate and efficient
linkage of large and complex historical population databases in
order to provide researchers in areas such as health and the social
sciences with high quality longitudinal data sets.
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Figure 4: Precision-recall results for the temporal star clustering approach described in Section 3.3 using the three discussed
overlap resolving methods, and without (top row) and with (bottom row) temporal constraints. Each plot shows results for the
six similarity graphs described in Section 4 (with / without weighted similarities and different attributes compared).
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