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ABSTRACT
Given the linked account graph with tens of millions of vertices,
and a list of confirmed risky accounts, how can we quickly find a
short list of potentially risky accounts for further human expert
investigation? Most mainstream graph-based fraud detection algo-
rithms focusing on detecting dense blocks of fake follows, or fake
reviews from the social media graph, however, do not align well
with the answer to the question.

Here we hypothesize that fraud accounts share dense connec-
tions within a "fraud community", but have less so with accounts
outside of the community. We propose GraphRAD, a risky account
detection system based on local graph clustering algorithms. Our
experiments show that from a real-world account graph of ≈ 60
million vertices and ≈ 500 million edges, GraphRAD was able to
catch 67 previously unidentified fraud accounts by proposing 28
small-scale local communities, which is significantly more effective
than the baseline model.
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1 INTRODUCTION
Payment fraud is a worldwide criminal activity causing huge finan-
cial losses every year. According to the trade newsletter Nilson Re-
port, payment fraud has caused $22.8 billion losses worldwide, while
the U.S. alone takes 39.5% of the volume (https://www.nilsonreport.com/).
Due to the intrinsic physical-card-not-present property, payment
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fraud is especially a threat to online retail customers, where by us-
ing stolen payment information, the fraudsters profit from getting
products without paying. Although leading online retailers such
as Amazon protects their customers via customer-friendly poli-
cies, the financial losses should be managed by effective prevention
mechanisms.

In Amazon, while most fraud attacks were stopped by Risk De-
tection System at the transaction time, the escaped attacks are much
harder to catch, because these escaped attacks show fewer indi-
cators of riskiness: e.g., using better camouflage, linking to good
accounts, or pretending to behave normally. The online retailer
will eventually notice these attacks when receiving reports from
customers or financial institutes.

Then how do we prevent future attacks from the same identified
fraudsters? We hypothesize that fraudsters attack with group ac-
counts, which are usually unintentionally linked with transaction
attributes such as shipping address. Once a member of the group
accounts has been reported as fraud, riskiness of rest of the group
should be revealed. However, good accounts could possibly become
false positives simply because of one shared attribute, say, a shared
rental home address. Here we hypothesize that fraud accounts form
dense subgraphs like communities in social networks, while good
accounts are not present in such communities.

In one of the designed work-flows, the human experts need to pe-
riodically start from identified fraud accounts, find the fraud-dense
subgraphs, make decisions and take actions on suspicious accounts.
Due to the high volume demands of human labor, there’s need for
an automated system that efficiently extracts these subgraphs. The
informal problem definition is: given a graph of linked accounts,
and a list of identified fraud accounts, such a system should return a
short list of small-scale, non-overlapping subgraphs such that
highly suspicious accounts are concentrated within.

Here we propose GraphRAD (Graph-based Risky Account Detec-
tion system), a scalable local-community-detection-based system
tailored to meet all our work-flow requirements. The system has
4 major modules: 1) the Graph Generator module that builds the
account link graph from transaction records, 2) the Community
Detection module that outputs suspicious communities using risky
account seeds, 3) the Community Extractor module that outputs
non-overlapping communities for human experts’ check, and ad-
ditionally, 4) a semi-supervised Scoring module that provides risk
score ranking for human experts to prioritize the work. Overall,
the GraphRAD system has shown great potential by successfully
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detecting 67 fraud accounts that escaped the transaction time eval-
uation from only 28 extracted fraud communities. For comparison,
the baseline system only captures 19 from 200 communities.

2 RELATEDWORK
In this section, we will first review related work on graph-based
fraud detection, followed by local graph clustering, the key technol-
ogy used in our community detection. Finally, we will review work
on the graph-based semi-supervised classification.

2.1 Graph-based Fraud Detection
Many graph-based fraud detection methods focus on abnormality
detection in social media, such as detecting fake followers, or fake
reviews, based on the fact that abnormality usually emerges from
unusual high-density connections. There are roughly two categories
of these methods: global and local.

The global methodsmodel on the entire graph for fraud detection.
The singular value decomposition (SVD) based method SPOKEN
[31] uses plots in the space spanned by paired eigenvectors to
identify abnormalities. The HITS [21]-like methods CatchSync [19]
uses random-walk to catch synchronized behavior. FRAUDAR [17]
finds dense blocks through optimizing a density metric. While these
methods achieve good performance on graph abnormality detection
through densely connected blocks, they do not fit into our design
requirements for: 1) not accepting input vertex labels; 2) accepting
input labels but may return blocks too large for human experts; 3)
not providing risk scores on individual vertex. ZooBP [7] estimates
node riskiness through fast and scalable belief-propagation (BP), but
does not directly output small subgraphs. Another BP-basedmethod
NetProbe [28] may meet all these requirements, but it has a strong
assumption on three types of accounts (fraud/accomplice/honest)
of online auction, and whether that type assumption also holds for
payment fraud is still questionable.

The local methods analyze local graph centered around suspi-
cious vertices. The OddBall [2] analyzes the egonet through care-
fully designed local graph features focusing on near-cliques and
stars. The CopyCatch [5] finds local dense bipartite subgraphs with
temporally synchronized behavior, and thus requires time stamps.

The GraphRAD in this paper is a mix of global and local treat-
ments. While candidate communities are initially found by the
community detection module globally, they are further filtered and
analyzed locally before presented to human experts.

We list in Table 1 the major differences between GraphRAD and
existing methods.

2.2 Community Detection
Almost all graph-based fraud detection methods seek to find un-
usual densely connected subgraphs, but they vary in definition
of "dense connection". In this section, we will review the defini-
tions from community detection approach, along with popular
algorithms in the field.

2.2.1 Community and Metrics. Community detection and graph
clustering are similar concepts used in different research communi-
ties. In this paper, community and subgraph, as well as community
detection and subgraph clustering, are interchangeably used. Specif-
ically, community is defined as a group of vertices having denser

Table 1: Differences between GraphRAD and existing meth-
ods.
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Input labels ✓ ✓ ✓ ✓ ? ✓
Output small subgraphs ? ? ✓ ✓

Non-overlapping subgraphs ✓ ✓ ✓ ✓ ? ? ✓
No assumption on vertex types ✓ ✓ ✓ ✓ ✓ ✓ ✓
No need of temporal input ✓ ✓ ✓ ✓ ✓ ✓ ✓

Scores for vertices ? ✓ ✓ ✓ ✓

connections among each other compared to connections with other
parts of the graph. Community detection is then the process of find-
ing the communities. There are two major community detection
approaches: modularity-basedmethods [26] and conductance-based
methods [18], where accordinglymodularity and conductance serve
as the community definition metrics. With conductance being a lo-
cal metric, and modularity being a global metric, small conductance
or large modularity indicates a dense community well separated
from the rest part of the graph.

In GraphRAD, we chose conductance as the community metric
since we are interested in extracting small-scale local communities.
The conductance ϕ(S) of a community S is defined in Equation 1:

ϕ(S) =

∑
i ∈S

∑
j ∈Sc Ai j

min (
∑
i ∈S di ,

∑
i ∈Sc di )

. (1)

where A is the graph adjacent matrix, di is the degree of vertex i .
Here community detection methods with conductance as the metric
are known as local community detection.

2.2.2 Local Community Detection. Local community detection,
or local graph clustering, is a semi-supervised method, which re-
turns a cluster of vertices given a single or a list of seed vertex
inputs. Specifically, local community detection is a way of extracting
small-scale communities with small (i.e., good) conductance through
regularizing the graph with sparsity operations [10].

One of the most important advantages of local community de-
tection is that there exist simple algorithms for which the running
time depends on the volume of the output community instead of
the volume of the input graph [3]. Practically this means that if the
solution of the regularized graph problem is a small community,
the running time of the algorithm will depend on the volume (sum
of outgoing edges per vertex) of the small output community.

Local community detection methods have been proven particu-
larly powerful in identifying small-scale structure in large graphs
[18, 22], and therefore they are chosen as the primary algorithms
in GraphRAD. There are a variety of related local community de-
tection algorithms, each one with slightly different pros and cons.

We refer readers to [10] for a survey of methods for the local
community detection problem. These algorithms can be generally
characterized into two major categories: spectral-based and flow-
based [10]. Spectral-based methods have the advantage that they
discover small communities each consisting of a single connected
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component [14, 22, 32, 38]. The flow-based algorithms, on the other
hand, discover communities with small conductance [22, 27], but
tolerate disconnected components within a community [22].

GraphRAD chose the spectral-based methods [3] since it makes
more sense to present a single connected subgraph to human ex-
perts, and call that a fraud community.

2.3 Graph-based semi-supervised classification
If feature vectors are provided on vertices, and labels are partially
known for some vertices, the semi-supervised classification meth-
ods can be applied to predict labels (score likelihood) for rest of
the vertices, with assumptions conditioned on the graph structure.
Here we review three approaches based on different assumptions.

2.3.1 Skip-gram. The skip-gram technique was introduced to
learn the semantic embedding of English words, by maximizing
the likelihood of observing related words appearing in the context
window from a given word [24, 25]. The skip-gram architecture
was later extended to graph embedding, where it maximizes the
likelihood of observing vertices within the random-walk range
starting from a given vertex. Different choices of random-walk lead
to different methods such as DeepWalk[30] and node2vec[13]. The
random-walk can also be reduced to pure k-hops neighbors as in
Tang et al. [33]. By adding a supervised term into the objective func-
tion, the multi-task learning method learns both vertex embedding
and semi-supervised classifier at the same time [34].

2.3.2 Graph Convolutional Neural Network. Recent studies in
deep learning have extended the convolutional neural network
from image domain to the non-Euclidaen domains such as graph
[6, 16, 20]. With the redefined convolution operation on the spectral
domain of graph, the graph convolutional network layer can be
stacked with other nonlinear operations [16]. Defferrard et al. [6]
used K-localized filters to replace the spectral convolution opera-
tions, making significant speed-up on the feed-forward operation.
Kipf et al. [20] made even more simplification by using linear first-
order approximations. Like the multi-dimensional "input channels"
in traditional convolutional neural network, the input of graph
convolutional neural network could also be multi-dimensional on
vertices, making it easy to be extended as a semi-supervised prob-
lem with incorporated vertex feature vectors.

2.3.3 Graph Regularization. The graph regularization methods
assume neighbors in graph having more shared commonality, and
penalize the differences between neighbouring vertices [1, 23]. One
way of such penalization is to insert a graph Laplacian regulariza-
tion term into the supervised loss, thus making it a semi-supervised
method [36, 37]. For parameter estimation, Zhu et al. [37] and Zhou
et al. [36] proposed diffusion-based learning algorithms that solve
alternative linear systems directly through matrix operations. Gle-
ich et al.[12] formed the diffusion-based learning problem as an
optimization problem, and added ℓ1 regularization term to obtain
a more robust solution, while a local push algorithm as in [4] was
introduced to calculate the local solution.

In GraphRAD, we inserted the graph regularization term after a
supervised logistic loss on vertex feature vectors. Similar to Zhang
et al. [35], the logistic loss assumes shared feature weights over the

entire graph, along with the graph-regularized vertex-dependent
biases.

3 PROPOSED SYSTEM ARCHITECTURE
In this section, we describe the system architecture of GraphRAD
(Figure 1).

Transaction Record: The Transaction Record is a data stor-
age service that keeps records of information such as trans-
action time, account id, and attributes like shipping address,
etc. It also keeps records of the transaction evaluation results
from the Risk Detection System. Note that these are real-time
evaluations at the transaction time, and certainly may con-
tain false negatives. The service is available to provide query
service for transactions spanning a given period of time.

Graph Generator: The Graph Generator module takes trans-
actions spanning a given period of time from the Transaction
Record, and construct the account link graph (referred to
as the "big-graph") through reduce operation by account
ids. The graph is constructed such that any two vertices
(accounts) were connected if they share at least one link
attribute in the same transaction. A heuristic degree filter is
applied where vertices with very large degrees are removed.
Another set of heuristic rules are applied to the transaction
evaluation records to generate three types of labels for every
account in the graph: Trusted, Fraud, and Risky. While it is
possible to construct a single graph from the entire bulk of
transactions, it is practical to include only the most recent
transactions, both for the computational efficiency, and for
the observation that recent activities weigh most in future
prediction.

Seeding: The Seeding module uses a set of heuristic rules to
pick up seed vertices (accounts) for the Community Detec-
tion module. The seed vertices include all Fraud-labeled and
a selected portion of the Risky-labeled vertices. This mod-
ule gates number of seed accounts fed into the downstream
module by putting a heuristic riskiness threshold, using risk
indicator features not described in this paper.

Community Detection: The Community Detection module
takes in the seed vertices provided by Seeding module, and
performs the local graph clustering algorithm on the "big-
graph". The outcome are a list of subgraphs (communities)
each centered around a seed vertex. As we assume that fraud-
sters tend to use accounts linked somehow, these communi-
ties should contain undiscovered accounts owned by fraud-
sters.

Screen + Merge: To control the scale of final communities
presented to human experts, a regression model trained on
community statistics is used to rank the community riskiness,
keeping only the risky ones. The screened communities are
then merged into a supergraph referred to as the "big-comm".

Community Extractor: This module clusters fraudster ac-
counts and locally extracts community for each cluster. It
extracts approximately non-overlapping small fraud com-
munities from the "big-comm". Together with the account
risk scores from the Scoring module described later, these
small communities are presented to human experts. This
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Figure 1: GraphRAD: System Architecture

module is necessary because: 1) it is easier for human ex-
perts to scrutinize small graphs, 2) a list of small graphs
are easy to be allocated between human experts, and 3) the
"non-overlapping" treatment avoids repeated checks.

Feature Extractor: This module generates the feature vector
for each vertex (account) of the "big-comm" using the at-
tributes stored in the Transaction Record. Note that these
attributes are different from those used to build the "big-
graph", but instead a set of transaction risk indicators not
described in this paper.

Scoring: The Scoring module takes features from the Feature
Extractor, and performs a semi-supervised classification reg-
ularized by the "big-comm" graph. The outcome are risk
scores assigned to each vertex (account) of the "big-comm".

The overall system architecture is shown in Figure 1. Circles are
colored in green, yellow, orange, and red, reflecting the increasing
fraud risk enrichment of graphs/communities after modules.

4 PROPOSED METHODS
In this section, we describe the detailed algorithms used in Com-
munity Detection, Community Extractor, and Scoring modules.

4.1 Community Detection: local graph
clustering

In the GraphRAD system, the community detection problem is
formed as finding a subgraph through graph random walks starting
from the seed, with the subgraph meeting certain criteria, e.g., min-
imized conductance. Given a graphG = {V ,E}, the graph random
walk can be performed through personalized page rank (PPR) itera-
tions. In Equation 2, we denote the PPR vector p ∈ R |V | initialized
by s ∈ R |V | , whose elements are 1 if index in S , and 0 otherwise.
S is the set of starting vertices (seeds);W ∈ R |V |× |V | is the lazy

random walk matrix; D ∈ R |V |× |V | is the diagonal degree matrix;
A ∈ R |V |× |V | is the adjacent matrix; and α controls locality of the
random walk, with increasing α leading to more localized random
walk. Once convergence is reached, elements of PPR vector would
correspond to the probability of each vertex appearing in random
walk paths starting from seeds in S .

p = αs + (1 − α)pW

W =
1
2
(I + D−1A)

si = 1, i ∈ S
si = 0, i < S

(2)

In practice, instead of running PPR iterations for convergence,
fast approximate methods are widely used. One popular method
forms the problem of obtaining PPR vector as solving a linear
system, and uses a specialized iterative scheme along with early
stopping criterion. ACL algorithm (R. Andersen, F. Chung and K.
Lang)[4], one of the first such methods, solves the linear system by
optimizing an equivalent problem through coordinate descent.

In addition to α , the parameter ρ in ACL corresponding to an ℓ1
regularization term controls sparsity of the solution [9–11]. Here
we chose α = 0.15, and ρ = 1e − 6.

ACL algorithm is a strongly local algorithm with running time
depending only on the size of the output community, therefore it
is a scalable method for large graphs in GraphRAD. Here in the
Community Detection module, we chose ACL with metrics using
conductance to obtain the PPR vector. We treat each of the N seeds
provided by the Seeding module independently, and run ACL for
each of them with s initialized as one-hot vector every time, ending
upwithN PPR vectors. Finally, Sweep-cut algorithm [4, 10] is applied
on each of the PPR vectors to obtain the partition that yields lowest
conductance, i.e., local community.
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4.2 Community Extractor: hierarchical
clustering + local graph clustering

The Community Extractor module needs to extract small-scale,
"risk-rich", and non-overlapping communities from the "big-comm"
for human check. For this problem, we could directly run the local
graph clustering algorithm as in the Community Detection Module,
providedwith Fraud-labeled accounts as seeds. However, this would
not guarantee the communities being non-overlapping, and would
lead to repeated tasks for human experts. For example, if two Fraud-
labeled accounts exist in the same community, and both of them
were in the seed list, this community will be found twice after local
graph clustering. Therefore, an efficient mechanism is necessary to
remove such redundancy.

Here we propose using hierarchical clustering before running the
local graph clustering, as in Algorithm 1. Starting with a list of Fraud-
labeled vertices from the "big-comm", the hierarchical clustering is
performed on the PPR vector of these vertices, returning clusters of
Fraud-labeled accounts. Since PPR vector represents the destination
distributions of random walks starting from a vertex, the distance
between two PPR vectors indicates how close they are in the graph.
Therefore the PPR-distance-based cluster would contain Fraud-
labeled accounts that are likely to be in one community. We set
2000 to be the maximum allowed cluster numbers. In the next step,
we remove clusters of size less than L (L = 5), because Fraud-labeled
accounts in these small clusters are less connected with others, thus
less likely to form risk-rich communities. This step is yet another
control of how many communities are finally presented to human
experts.

Next we keep a set of vertices called touched fraud. For each
cluster, we take their vertices as seeds, and remove vertices already
seen in the touched fraud set. This removal operation helps reducing
community overlapping if not completely eliminating it. The seeds
were used to initialize the PPR vector for the following ACL, with
indices of set to 1 if in seeds, and 0 otherwise. Running such an ACL
on "big-comm" returns one local fraud community. In the mean-
while, We keep adding new Fraud-labeled vertices into the touched
fraud set. Finally, we return all extracted local fraud communities.

Note that it is unfeasible to apply the Community Extractor mod-
ule directly to the "big-graph", mainly for the following two reasons:
1) PPR vector has size equivalent to the number of vertices in the
graph, which makes computing vector distances during clustering
cursed by the million size dimension of "big-graph", whereas the
"big-comm" has a much lower dimension (fewer vertices) after the
community screening; and 2) the dangling Fraud-labeled vertices
(Fraud-labeled accounts that are not connected with any others) in
the big-graph would be each extracted as a standalone local fraud
community, which however, degrades the proposal quality for hu-
man experts. The dangling vertices, however, do not exist in the
"big-comm".

4.3 Scoring: graph-based semi-supervised
classification

In addition to the local fraud communities presented to human
experts, the Scoring module provides risk scores for accounts in
these communities, based on which human experts can conve-
niently prioritize their tasks. We assume accounts linked closer

Algorithm 1 Hierarchical clustering + Local graph clustering
Input:
graph: input graph,
maxcluster: maximum number of clusters,
L: minimum size of cluster
Output: local fraud communities

local fraud communities← []
vectors← getPPRVectorOfFraudLabeledVertices(graph)
Clusters← Hierarchical Clustering(vectors, maxcluster, L)
touched fraud← {}
for do each cluster

seed← cluster \ touched fraud
local fraud comm← LocalGraphClustering(graph, seed)
touched fraud += fraud in local comm
local fraud communities += local fraud comm

end for

to the fraud-labeled are more likely to share the riskiness. On the
other hand, risk indicator features from Feature Extractor module
also independently tell riskiness of an account. Together, given that
each community must contain certain at least one Fraud-labeled
account (from the seeds) but unlikely all, we form the risk scoring
problem as a graph-based semi-supervised classification problem,
and considered 3 approaches: node2vec, graph convolutional neural
network (GCNN), and the graph-regularized local logistics regression
(GLR).

4.3.1 node2vec. Following the skip-gram architecture in the
work of word2vec [25], the node2vec [13] method learns represen-
tation of vertices in a graph, such that the conditional probability
of observing the neighbors Ns (u) of a vertex(node) u is maximized.
With the assumptions of conditional independence and symmetry
in feature space as in node2vec work, the unsupervised loss function
Lu takes the form of:

Lu =
∑
u ∈V

log P(Ns (u)| f (u)) =
∑
u ∈V

∑
ni ∈Ns (u)

P(ni | f (u))

=
∑
u ∈V
[− log

∑
v ∈V

exp(f (u)T f (v)) +
∑

ni ∈Ns (u)

f (ni )
T f (u)]

(3)

with f (u) mapping vertex u to its representation.

To make it a semi-supervised loss, we added the supervised part
as in Equation 4. Ls follows the transductive formulation as in [34],
where label yu of a vertex u depends on the concatenated vector
of feature vector xu and the representation f (u). Thew are model
parameters.

L = Lu + Ls = Lu +
∑
u ∈V

log P(yu |xu , f (u))

= Lu +
∑
u ∈V

log
exp[(xu )T , f (u)T ]wyu∑
ȳ exp[(xu )T , f (u)T ]wȳ

(4)

The per vertex partition function
∑
v ∈V exp f (u)T f (v) in Equa-

tion 3 is expensive to compute, and it was approximated using
negative sampling like the node2vec work. The Ns (u) in Equation 3
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is not limited to the direct neighbors of u, and is typically sampled
either by including neighbors within k-hop sphere [33] or vari-
ous flavors of random-walk [13, 30]. Due to the real-time running
efficiency, random-walk is usually performed separately before
optimizing the loss function. In GraphRAD system, we directly
took the PPR vector of u from previous steps, and sample Ns (u)
according to the random-walk distributions in the PPR vector [8].
The remaining parameters in the loss function are optimized using
standard stochastic gradient descent method.

4.3.2 graph convolutional neural network (GCNN). Similar to the
multiplication of image pixel intensities and kernels, the graph con-
volution operation is defined as multiplication of a signal x ∈ R |V |

(one scalar for every vertex) and a filter дθ . In spectral graph con-
volution, дθ is constructed from the eigenvectors of the graph
Laplacian L, which however, is time-consuming for both the eigen-
value decomposition, and the multiplication of dense matrices at
evaluation time (O(|V |2)). In GCNN [6], the Chebyshev polynomials
Kth-order approximation was introduced to achieve O(|E |) evalua-
tion time, as shown in Equation 5.

дθ ⋆ x =
K∑
k=0

θkTk (L̃)x (5)

where L̃ = 2
λmax

L − I |V | , λmax is the largest eigenvalue of L,
Tk (L̃) is the k-th Chebyshev polynomial of L̃, and θk is the k-th
polynomial coefficient. Note that K corresponds to number of steps
away from the center vertex.

Now let X ∈ R |V |×D , with columns being x of a individual
feature channel, and D being total feature dimension, and let θ (d )
be filter parameters of channel d , we have the prediction of

Z =
D∑
d=0

дθ (d ) ⋆X:,d (6)

, and for vertices u with labels yu , we minimize the cross-entropy
loss of:

L = −
∑
u ∈V

yuloд(Zu ) + (1 − yu )(1 − loд(1 − Zu )) (7)

4.3.3 graph-regularized local logistic regression (GLR). In this
approach, we model the label of a vertex by a logistic regression
of vertex label yi on vertex feature xi , i ∈ V (Equation 8), where
weightW is shared across the entire graph, and the bias b is vertex-
dependent.

Q(θ ;x ,y) =
∑
u ∈V

log
(
1 + e−yu (Wxu+bu )

)
+ λ

∑
(u,u′)∈E

(bu − bu′)
2

(8)

For parameter estimation, we adapted the Alternating Direction
Method ofMultipliers (ADMM) algorithm used by the network lasso
work [15]. Similar to the work of Zhang et al.[35], we introduced a
local copy ofW on each vertex, a copy ofbi on edges connectedwith
vertex i , and rewrite the loss function with augmented Lagrangian
such that parameter copies are penalized by their distances from
W and bi . The loss with augmented Lagrangian is then optimized
through a coordinate descent style procedure [35]. The optimization

steps can be easily parallelized by distributing vertices and edges
separately.

5 EXPERIMENTS
5.1 Data Pipeline
The Graph Generator module loaded historical transaction records
spanning a long enough period of time. Accounts in these trans-
actions were first aggregated onto link indicative attributes (e.g.,
shipping address), then edges were created between every pair
of accounts, if they co-occur in at least one aggregates. In this
way, the "big-graph" was generated such that accounts are rep-
resented by vertices, and shared connectivity are represented by
unweighted edges. The Graph Generator module was implemented
using Apache Spark running on AmazonWeb Services EMR (Elastic
Map Reduce) instances, generating a "big-graph" of over 60 million
vertices, and 500 million edges.

Transactions were evaluated by Risk Detection System (not de-
scribed in this paper) when orders were placed by customers. From
the historical evaluation results, along with reported fraud attacks,
the Graph Generator module uses a set of heuristic rules to assign
three types of account labels: Trusted, Fraud, and Risky. Specifically,
Trusted labels are assigned to long-established accounts without
any reported fraud; Fraud labels are assigned to reported accounts
confirmed with fraud actions; Risky labels are assigned to accounts
showing risky indicators but not confirmed as fraud.

The transaction records were chronologically split into training
records and testing records. For parameter estimation and tuning,
we only use labels of accounts appearing in the training records,
while performance was evaluated on accounts appearing in the
testing records. In testing we paid special attention to the "missed
bad": the Fraud-labeled accounts that were not evaluated as risky
by the Risk Detection System.

In our experiment, the Community Detection module was pro-
vided with a list of 90401 Risky-labeled accounts as seeds, returning
71074 local communities. Note that not all seeds successfully yielded
community because of the conductance requirement.

These communities are selected subgraphs that GraphRAD sys-
tem will focus on. However, 70K is a much too large number for
human check consumption. The Screen module uses a regression
model trained on community statistics (using risk indicators calcu-
lated from Transaction Record, but nothing related to graph topol-
ogy) to filter the communities, and the Merge module merges the
filtered communities into "big-comm". The "merge" step is necessary
because the semi-supervised Scoring module will build features
regularized by the "big-comm" instead of by local communities,
such that a wider range of relations are taken into count. In our
experiment, the "big-comm" contains 24393 vertices and 351741
edges.

5.2 Community Extractor
After running Algorithm 1 on the "big-comm", we detected 28 fraud
communities with sizes ranging from 15 to 500. In total, these 28
communities contain 4433 accounts, among which are 67 "missed
bad" out of 1899 Fraud-labeled accounts (Figure 2, all communities
combined). For easy understanding and operation distribution, the
communities are presented to human experts separately (Figure 3).
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Figure 2: Graph visualization of all proposed communities
combined. Vertices are colored as (1) green: Trusted, (2) red:
Fraud, (3) purple: "missed bad".

We observed that some "missed bad" accounts are not linked with
a Fraud-labeled account within one hop range, but linked with a
Trusted-labeled account first, and then a Fraud-labeled account at
the second hop (see arrows in Figure 3 a, b). Since the "missed bad"
were once trusted, and escaped the risk detection system, it suggests
that some of the Trusted-labeled accounts (circled in Figure 3 a, b,
and c) in these communities are highly risky, maybe playing similar
roles as the accomplice users mentioned in the NetProbe work[29].
Therefore it is reasonable to add these "trusted" accounts into a
special watch list.

5.3 Scoring
The local community presented to human experts could still contain
hundreds of accounts, and there are needs of a risk scoring method
to help prioritize the humanworking schedule. For this purpose, the
Scoring module uses semi-supervised learning algorithm to provide
scores for every vertex in all the proposed local communities. In
this work, we tried 3 approaches: node2vec, graph convolutional
neural network (GCNN), and graph-regularized logistic regression
(GLR), and used the best-tuned parameters for each of the three.

The semi-supervised algorithms were implemented using Ten-
sorFlow (https://www.tensorflow.org/), and were trained using risk
indicator features from the Feature Extractor, account links from the
"big-comm", along with Fraud labels from the training records. The
performance was evaluated using labels from the testing records.

As shown in Figure 4, GLR (AUC = 0.736) achieves signifi-
cantly better performance compared to GCNN (AUC = 0.699) and
node2vec (AUC = 0.680). Note that GLR also has a higher true
positive rate at low false positive region (< 0.2), which is closer to
the business practice. Additionally, as a simpler model, GLR is less
prone to over-fitting, and was also found in our experiments using
less training time than the other two.

5.4 GraphRAD End-To-End Performance
Following the GraphRAD architecture (Figure 1), communities
started from the "big graph", an unprocessed pool within which

(a) extracted local community of 294 ac-
counts, 119 Fraud, 13 "missed bad"

(b) extracted local community of 704 ac-
counts, 306 fraud, 13 "missed bad"

(c) extracted local community of 177 cus-
tomers, 81 fraud, 0 "missed bad"

Figure 3: Examples of communities extracted by Commu-
nity Extractor. Vertices are colored as (1) green: Trusted, (2)
red: Fraud, (3) purple: "missed bad". Arrows point to "missed
bad" not directly connected to Fraud accounts. Circles high-
light the suspicious Trusted.
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Figure 4: Receiver Operating Characteristic Plot for Testing
Data. Models used: (1) GCNN, (2) node2vec, (3) GLR

Table 2: End-To-End Performance Comparison

method "missed bad" communities ratio

baseline 19 200 0.095
GraphRAD 67 28 2.393

0.017% accounts for the "missed bad". After Community Detec-
tion and Screen modules, within the "big comm" there are 0.054%
"missed bad". After Community Extractor module, within final 28
communities there are 1.51% "missed bad". With semi-supervised
GLR model, the number further increased to 2.77%, which is overall
163 times of end-to-end "missed bad" enrichment. The enrichment
will significantly reduce the amount of work by human experts.
While the percentage of "missed bad" is used as an estimate of the
effectiveness, it only serves as a lower bound of the fraud detection
performance, since some "trusted" accounts will be questioned once
presented to human experts.

We also compared GraphRAD with a simple one-hop neighbor-
hood approach (baseline), where the communities are extracted
simply as vertices one-hop away from the seed accounts (Table 2).
The baseline was able to capture 19 "missed bad" from 200 proposed
communities. As a comparison, the more effective GraphRAD was
able to capture 67 "missed bad" from 28 proposed communities,
which would significantly reduce the amount of required human
labor.

5.5 Scalability
All modules in GraphRAD are implemented with scalability in
consideration. Running time of the local graph clustering algorithm
used in Community Detection and Extractor module is proportional
to the output community volume rather than the input "big-graph".
The running time of ADMM in Scoring module isO(E +V ), and the
distributed algorithm is easy to parallel. The Graph Generator and
Merge modules are implemented in Apache Spark for easy scaling

up. The running time of hierarchical clustering is O(n2V ), with n
being the number of Fraud-labeled accounts within big-comm, and
magnitudes smaller than V .

6 CONCLUSIONS
In this paper, we propose GraphRAD, a graph-based risk account de-
tection system. The system takes in a list of risky seedling accounts,
and output a short list small-scale, non-overlapping communities
containing highly suspicious accounts. Our experiments on real
business data have shown that from an account linkage graph of 60
million vertices and 500 million edges, the system detected 67 fraud
account that escaped the real-time risk evaluation by proposing 28
communities. Such a short list of small-scale fraud communities
could significantly reduce the workload of human experts. We need
to emphasize that GraphRAD works as a final stage gatekeeper
complimentary to the main Risk Detection System which catches
the vast majority of frauds. Any detected missing fraud accounts
are additional gains.

We also observed that a graph-regularized logistic regression
method outperformed node2vec and convolutional neural network
in the semi-supervised fraud prediction task.

For our workflow requirements, most state-of-the-art fraud de-
tection methods cannot be applied directly without non-trivial
modifications. Therefore, GraphRAD is the first published method
tackling such a practical problem. To our knowledge, it is also
the first published method applying local graph clustering into the
payment fraud detection problems.

With these observations, in the future, we will work on integrat-
ing insights from this work into our production system.
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