
Adaptive Personalized Knowledge Graph Summarization
Lukas Faber

Hasso Plattner Institute

lukas.faber@student.hpi.de

Tara Safavi

University of Michigan Ann Arbor

tsafavi@umich.edu

Davide Mottin

Hasso Plattner Institute

davide.mottin@hpi.de

Emmanuel Müller

Hasso Plattner Institute

emmanuel.mueller@hpi.de

Danai Koutra

University of Michigan Ann Arbor

dkoutra@umich.edu

ABSTRACT
Knowledge graphs, which are rich networks of entities and concepts

connected via multiple types of relationships, have gained traction

as powerful structures for natural language understanding and

question answering. Although recent research efforts have started

to address efficient querying and storage of knowledge graphs,

such methods are neither user-driven nor flexible to changes in the
data, both of which are important in the real world. We thus intro-

duce and motivate adaptive knowledge graph summarization
to create small, personalized knowledge graphs that contain only

the information most relevant to an individual user’s interests. Such

concise summaries may be stored locally on mobile devices, allow-

ing for fast interactive querying, and constantly updated to serve

changing user needs and data evolution. In this position paper, we

make a case for adaptive knowledge graph summarization, outlin-

ing promising approaches toward efficient, personalized knowledge

graph management.

1 INTRODUCTION
As more knowledge is extracted from various sources, knowledge
graphs, or structures that store entities/concepts and their relation-

ships (Fig. 1), are quickly growing. While such large amounts of

data—on the order ofmillions of entities and billions of relationships—

enable tasks like natural language understanding and question an-

swering, graph search and processing become more challenging.

Accordingly, current research in knowledge graphs focuses on effi-

cient information retrieval via indices, or, more recently, on knowl-

edge graph summarization to construct concise but comprehensive

versions of the original KG [3, 21].

However, all existing works assume that knowledge graph (KG)

queries are handled on the server side, where the graph resides,

which introduces a delay that comprises interactivity and requires

an online connection. Moreover, typical approaches for managing

large amounts of data, such as indices, suffer from constant updates

to match the rapidly evolving knowledge graphs.

To this end, we argue for the need of adaptive and personal-
ized knowledge graph summaries, small local representations of

the knowledge graphs that can be stored client-side on mobile de-

vices, such as smartphones, enabling fast offline and online efficient

graph search. Such summaries should incrementally evolve with

user interests over time while both satisfying storage constraints

(e.g., limited capacity of a mobile phone) and limiting expensive,

or potentially impossible, accesses to the server. Additionally, by

incorporating incremental updates, adaptive graph summarization

Figure 1: Prior approaches vs. adaptive graph summariza-
tion for a user interested in “art”. In the latter, if the client-
side knowledge graph already contains the answer to the
user’s query, expensive queries to the server are bypassed.
tackles the problem of consistency in knowledge graphs, for which

no previous work exists.

Our approach to the adaptive graph summarization problem

is cross-disciplinary, incorporating techniques from databases, in-

formation retrieval, and machine learning. In this position paper,

we first review related work in the field and discuss how aspects

of existing methods from multiple research communities may be

used toward adaptive graph summarization. Finally, we highlight

promising directions to address three key challenges of adaptive

graph summarization:

• Representation: What summary representation is both ac-

curate and adherent to user device memory/storage limits?

• Personalization: Which regions of the KG should the sum-

mary contain to reflect individual user interests and queries?

• Adaptation: How can we add, remove, or update data in

the summary to meet changing user needs?

2 RELATEDWORK
We briefly give a (non-comprehensive) review of related areas of

research. For each area, we discuss how its research questions relate

to, and differ from, the goals of adaptive graph summarization.

Graph summarization. The goal of graph summarization is to

find a compact but meaningful representation of a large input graph

with respect to some goal, like pattern discovery [2, 20], ease of

visualization [4, 9] or efficient querying for different kinds of graph

queries, like structural or pattern queries [3, 14, 18]. In some ap-

proaches, additional nodes are added to reduce edge density [14],

whereas others aggregate nodes and edges to reduce the overall



graph size [3, 22] or store a template pattern with their matches

to use as materialized views [21]. An extensive survey of sum-

marization methods is given in [12]. Existing algorithms mostly

build “one-size-fits-all” solutions regardless of the user’s interests.

While recent work has addressed domain-specific graph summa-

rization [8], we aim for small summaries at the granularity of the

user level.

Database caching. Caching has been successfully employed in

many applications, such as CPUs, to speed up data access on previ-

ously accessed items. Databases also use caching for accelerating

query answering, and recently graph databases have adopted sim-

ilar strategies for graph queries [15, 17, 23]. In graphs, caching

algorithms store small graphs with their database matches, which

are used as (partial) results for future queries. The problem we

study is similar to caching at the surface, but it differs in that we

do not build an explicit match between queries and answers. By

contrast, we integrate different answers into one coherent graph

summary that answers both previously-asked and unseen queries.

Database cracking. Adaptively reorganizing relational data ac-

cording to the workload at hand motivated the field of database

cracking. A column is copied on the first access and continuously

reorganized as part of query processing [6]. In this setting, finding

a good trade-off between overhead induced on queries and system

performance is key [7]. Another challenge is designing the reor-

ganization of data so that the “cracked” index can help answering

future queries [5]. We see database cracking as complementary to

our problem, with two main differences. The first is that we deal

with a specialized data structure—a graph—rather than general re-

lational data. The second is that database cracking builds up one

large structure on the server side, whereas we aim for many small,

user-specific, client-side structures.

3 CHALLENGES AND APPROACHES
We define a knowledge graph G = (V, E) as a collection of labeled

nodes V and labeled, directed multi-edges E. The nodes represent

entities or concepts (e.g., Mona Lisa in the knowledge graph of

Fig. 1), and the edges represent relationships between nodes (e.g.,

the Mona Lisa is “exhibited in” the Louvre). We assume that a user

asks a sequence of queries based on her changing interests, as in

the scenario below, which need to be handled appropriately by the

summarization process.

Scenario. Consider a tourist planning her visit at the Louvre mu-

seum and deciding on which art pieces to see. Her quest can be

formulated as the pattern query in Fig. 2 for the knowledge graph,

which asks for every entity “exhibited in” the Louvre museum. The

answers in this example include the paintingsMona Lisa or Bacchus
or the sculpture Dying Slave. During her visit in Athens a few days

later, her searches change to learn about archaeological sites there.

Adaptive summarization of knowledge graphs requires address-

ing the three key challenges of representation, personalization, and
adaption. In this section, we discuss potential approaches and high-

light relevant works for each challenge.

3.1 Summary representation

Figure 2: Example query
(top) with three answers
(bottom three).

While mobile devices are be-

coming more powerful, their ca-

pabilities are still limited com-

pared to traditional computing

resources. Because we aim to

store data on such mobile de-

vices (i.e., on the client side), we

require “memory-aware” sum-

maries that stay strictly below

user device storage limits. To

closely model these limits, we

enforce the summary encod-

ing to stay below a byte con-

straint. A promising approach

to this end is the “supergraph”

approach [3, 10, 14, 19, 21]

in which nodes and edges are

grouped into “supernodes” and

“superedges” (Fig. 3). This ap-

proach lowers overall storage

costs, albeit by introducing some

modeling error.

For example, Čebirić et al. [3] group nodes of the same equiva-

lence class—i.e., nodes with shared ingoing and/or outgoing edge

types—into supernodes. Song et al. [21] construct d-summaries, or

generalized graph patterns with concrete matches in the knowl-

edge graph, in which supernodes comprise nodes with identically

typed neighborhoods reachable via the same edge labels. In our

case, nodes should be considered similar if they share many out-

going edges and are connected to similar nodes. Figure 3 shows

an example summary of the knowledge graph in Fig. 1. It contains

two supernodes: the two paintings Mona Lisa and Bacchus form
one supernode because they were both painted by Leonardo da

Vinci, and the two persons “Mozart” and “Darwin” form the other.

Superedges then comprise all pairs of edges between the nodes

they contain. The modeling error is thus the surplus edges in the

summary that are not present in the original graph.

3.2 Summary personalization
Unlike existing graph summarization techniques, our goal is to cre-

ate many small graph summaries, each personalized to a different

user. The challenge here is identifying the KG region(s) of interest

for each user. A simple yet promising approach to this end comes

from relational main memory databases: Levandoski et al. [11] iden-

tify a small number of tuples to be retained in main memory, with

the rest on disk. The tuples in main memory are called “hot” storage

and the tuples on disk are “cold” storage, with the “temperature” of

a tuple proportional to its frequency of access.

A key limitation of this approach, though, is that it handles every

tuple individually. Our aim is to answer queries in a graph format,

so we must preserve relationship (edge) information as well. A

node’s heat must thus incorporate its own access frequency and
the access frequency of its neighboring nodes. An intuitive way to

model this is with heat diffusion processes [13] such that queried

nodes gain heat and diffuse that heat to their neighborhood. After

2



Figure 3: Certain parts of the KG from Fig. 1 are grouped
together to form superedges and supernodes.

a query, each of which directly “touches” some group of nodes, the

heat of each touched node and its neighborhood increases, whereas

untouched nodes lose heat proportional to a decay factor.

3.3 Summary adaptation
Truly personalized summaries must adapt according to evolving
user interests and needs. Similar to cache eviction [1, 16], we must

replace less-useful data with more relevant information, and retain

information that will likely prove useful to the user in the future.

Again, the challenge here is that we must not treat nodes individ-

ually, but together with their neighborhood. We suggest to optimize

the summary around evolving node temperature. Since warmer

nodes are considered more immediately “interesting” to the user,

the modeling error around these nodes should be minimal. In other

words, the supernodes and superedges encompassing these nodes

and their adjacent relationships must be more fine-grained, with

fewer erroneous edges. Conversely, we accept higher modeling

error around cooler nodes because the user is less likely to access

them. Temperature is an immediate model for the user’s interest: If

the interest in some topic decreases, previously interesting nodes

will cool down over time and become cold (i.e., uninteresting). At

the same time new nodes will become “hot” By continually mini-

mizing modeling error so that there are fewer surplus edges around

“hot” nodes, the summary can be adaptively restructured to follow

changing user interests.

Example. For the knowledge graph from Fig. 1 with the query from

Fig. 2 we could construct the summary in Fig 3. It contains two

supernodes. The supernode on the bottom-left contains only cold

entities. Hence the introduced errors, such as “Mozart discovered

the theory of evolution”, hardly matter as the user will probably not

query that part. On the other hand, the supernode on the top-right

contains hot nodes. We can still create such supernode because the

two nodes, Mona Lisa and Baccus, have identical neighborhoods,

thus no modeling error is introduced. On the contrary, grouping

the nodes Michelangelo and Leonardo da Vinci would introduce

errors. As these nodes are warm, since they are closely connected

to paintings in the Louvre, no supernode is created.

4 CONCLUSION
In this paper we motivate the need for adaptive graph summa-

rization. Our position is that, for massive graph datasets and in

particular knowledge graphs that inherently serve different people

in different ways, “one-size-fits-all” graph summaries are less useful

to users than adaptive, personalized summaries. We believe that

the next frontier of graph summarization lies in personalized and

incrementally adapting techniques. Future work in this direction

will be a step toward efficient information access and knowledge

discovery for all users, regardless of location or online connectivity.

5 ACKNOWLEDGEMENTS
This work was supported by a fellowship within the FITweltweit

programme of the German Academic Exchange Service (DAAD),

and the University of Michigan.

REFERENCES
[1] Sorav Bansal and Dharmendra S Modha. 2004. CAR: Clock with Adaptive Re-

placement.. In FAST, Vol. 4. 187–200.
[2] Gregory Buehrer and Kumar Chellapilla. 2008. A Scalable Pattern Mining Ap-

proach to Web Graph Compression With Communities. ACM, 95–106.

[3] Šejla Čebirić, François Goasdoué, and Ioana Manolescu. 2015. Query-oriented

summarization of RDF graphs. PVLDB 8, 12 (2015), 2012–2015.

[4] Cody Dunne and Ben Shneiderman. 2013. Motif Simplification: Improving

Network Visualization Readability with Fan, Connector, and Clique Glyphs.

In SIGCHI. ACM, 3247–3256.

[5] Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland HC Yap. 2012. Sto-

chastic database cracking: Towards robust adaptive indexing in main-memory

column-stores. PVLDB 5, 6 (2012), 502–513.

[6] Stratos Idreos, Martin L Kersten, Stefan Manegold, et al. 2007. Database Cracking..

In CIDR, Vol. 7. 68–78.
[7] Stratos Idreos, Stefan Manegold, Harumi Kuno, and Goetz Graefe. 2011. Merging

what’s cracked, cracking what’s merged: adaptive indexing in main-memory

column-stores. PVLDB 4, 9 (2011), 586–597.

[8] Di Jin and Danai Koutra. 2017. Exploratory Analysis of Graph Data by Leveraging

Domain Knowledge. In ICDM. 187–196.

[9] Danai Koutra, U Kang, Jilles Vreeken, and Christos Faloutsos. [n. d.]. VoG:

Summarizing and Understanding Large Graphs. SIAM.

[10] Kristen LeFevre and Evimaria Terzi. 2010. GraSS: Graph structure summarization.

In SDM. 454–465.

[11] Justin J Levandoski, Per-Åke Larson, and Radu Stoica. 2013. Identifying hot and

cold data in main-memory databases. In ICDE. 26–37.
[12] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph Summa-

rization Methods and Applications: A Survey. ACM Comput. Surv. 51, 3, Article
62 (June 2018), 34 pages.

[13] Hao Ma, Haixuan Yang, Michael R Lyu, and Irwin King. 2008. Mining social

networks using heat diffusion processes for marketing candidates selection. In

CIKM. 233–242.

[14] Antonio Maccioni and Daniel J Abadi. 2016. Scalable pattern matching over

compressed graphs via dedensification. In KDD. 1755–1764.
[15] Michael Martin, Jörg Unbehauen, and Sören Auer. 2010. Improving the per-

formance of semantic web applications with SPARQL query caching. In ESWC.
304–318.

[16] Nimrod Megiddo and Dharmendra S Modha. 2003. ARC: A Self-Tuning, Low

Overhead Replacement Cache.. In FAST, Vol. 3. 115–130.
[17] Nikolaos Papailiou, Dimitrios Tsoumakos, Panagiotis Karras, and Nectarios

Koziris. 2015. Graph-aware, workload-adaptive sparql query caching. In KDD.
1777–1792.

[18] Matteo Riondato, David García-Soriano, and Francesco Bonchi. 2014. Graph

Summarization With Quality Guarantees. IEEE, 947–952.

[19] Matteo Riondato, David García-Soriano, and Francesco Bonchi. 2017. Graph

summarization with quality guarantees. Data Min. Knowl. Discov. 31, 2 (2017),
314–349.

[20] Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos.

2015. TimeCrunch: Interpretable Dynamic Graph Summarization.

[21] Qi Song, YinghuiWu, andXin LunaDong. 2016. Mining summaries for knowledge

graph search. In ICDM. 1215–1220.

[22] Nan Tang, Qing Chen, and Prasenjit Mitra. 2016. Graph stream summarization:

From big bang to big crunch. In SIGMOD. 1481–1496.
[23] Jing Wang, Nikos Ntarmos, and Peter Triantafillou. 2017. GraphCache: a caching

system for graph queries. EDBT (2017).

3


	1 Introduction
	2 Related Work
	3 Challenges and Approaches
	3.1 Summary representation
	3.2 Summary personalization
	3.3 Summary adaptation

	4 Conclusion
	5 Acknowledgements
	References

